A Journey to the Core of the Plant Cell Cycle
Abstract
1. Introduction
2. Where Do We Come From?
3. Early Studies
4. Where Are We Now?
4.1. Cell Cycle Control during Organ Development
4.2. Chromatin Dynamics and Genome Replication during S-Phase
4.3. Perspectives on Other Cell Cycle Topics
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basu, S.; Greenwood, J.; Jones, A.W.; Nurse, P. Core Control Principles of the Eukaryotic Cell Cycle. Nature 2022, 607, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Coudreuse, D.; Nurse, P. Driving the Cell Cycle with a Minimal CDK Control Network. Nature 2010, 468, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- DePamphilis, M.L. (Ed.) DNA Replication in Eukaryotic Cells; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 1996; ISBN 0879694599. [Google Scholar]
- DePamphilis, M.L. (Ed.) DNA Replication and Human Disease; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2006; ISBN 978-087969766-2. [Google Scholar]
- Gutierrez, C.; Guo, Z.S.; Roberts, J.; DePamphilis, M.L. Simian Virus 40 Origin Auxiliary Sequences Weakly Facilitate T-Antigen Binding but Strongly Facilitate DNA Unwinding. Mol. Cell. Biol. 1990, 10, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Gruss, C.; Gutierrez, C.; Burhans, W.C.; DePamphilis, M.L.; Koller, T.; Sogo, J.M. Nucleosome Assembly in Mammalian Cell Extracts before and after DNA Replication. EMBO J. 1990, 9, 2911–2922. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Sogo, J.M.; Salas, M. Analysis of Replicative Intermediates Produced during Bacteriophage Phi 29 DNA Replication In Vitro. J. Mol. Biol. 1991, 222, 983–994. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Freire, R.; Salas, M.; Hermoso, J.M. Assembly of Phage Phi 29 Genome with Viral Protein P6 into a Compact Complex. EMBO J. 1994, 13, 269–276. [Google Scholar] [CrossRef]
- Davies, J.W.; Stanley, J. Geminivirus Genes and Vectors. Trends Genet. 1989, 5, 77–81. [Google Scholar] [CrossRef]
- Pilartz, M.; Jeske, H. Abutilon Mosaic Geminivirus Double-Stranded DNA Is Packed into Minichromosomes. Virology 1992, 189, 800–802. [Google Scholar] [CrossRef]
- Suárez-López, P.; Gutiérrez, C. DNA Replication of Wheat Dwarf Geminivirus Vectors: Effects of Origin Structure and Size. Virology 1997, 227, 389–399. [Google Scholar] [CrossRef][Green Version]
- Sanz-Burgos, A.P.; Gutiérrez, C. Organization of the Cis-Acting Element Required for Wheat Dwarf Geminivirus DNA Replication and Visualization of a Rep Protein-DNA Complex. Virology 1998, 243, 119–129. [Google Scholar] [CrossRef][Green Version]
- Castellano, M.M.; Sanz-Burgos, A.P.; Gutiérrez, C. Initiation of DNA Replication in a Eukaryotic Rolling-Circle Replicon: Identification of Multiple DNA-Protein Complexes at the Geminivirus Origin. J. Mol. Biol. 1999, 290, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Luque, A.; Sanz-Burgos, A.P.; Ramirez-Parra, E.; Castellano, M.M.; Gutierrez, C. Interaction of Geminivirus Rep Protein with Replication Factor C and Its Potential Role during Geminivirus DNA Replication. Virology 2002, 302, 83–94. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gutierrez, C. Geminivirus DNA Replication. Cell. Mol. Life Sci. 1999, 56, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C. DNA Replication and Cell Cycle in Plants: Learning from Geminiviruses. EMBO J. 2000, 19, 792–799. [Google Scholar] [CrossRef]
- Hanley-Bowdoin, L.; Bejarano, E.R.; Robertson, D.; Mansoor, S. Geminiviruses: Masters at Redirecting and Reprogramming Plant Processes. Nat. Rev. Microbiol. 2013, 11, 777–788. [Google Scholar] [CrossRef]
- Bell, S.P.; Kobayashi, R.; Stillman, B. Yeast Origin Recognition Complex Functions in Transcription Silencing and DNA Replication. Science 1993, 262, 1844–1849. [Google Scholar] [CrossRef]
- Costa, A.; Diffley, J.F.X. The Initiation of Eukaryotic DNA Replication. Annu. Rev. Biochem. 2022, 91, 107–131. [Google Scholar] [CrossRef]
- Lewis, J.S.; Gross, M.H.; Sousa, J.; Henrikus, S.S.; Greiwe, J.F.; Nans, A.; Diffley, J.F.X.; Costa, A. Mechanism of Replication Origin Melting Nucleated by CMG Helicase Assembly. Nature 2022, 606, 1007–1014. [Google Scholar] [CrossRef]
- Castellano, M.M.; del Pozo, J.C.; Ramirez-Parra, E.; Brown, S.; Gutierrez, C. Expression and Stability of Arabidopsis CDC6 Are Associated with Endoreplication. Plant Cell 2001, 13, 2671–2686. [Google Scholar] [CrossRef]
- Castellano, M.M.; Boniotti, M.B.; Caro, E.; Schnittger, A.; Gutierrez, C. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type-Specific Manner. Plant Cell 2004, 16, 2380–2393. [Google Scholar] [CrossRef]
- Diaz-Trivino, S.; Castellano, M.M.; Sanchez, M.P.; Ramirez-Parra, E.; Desvoyes, B.; Gutierrez, C. The Genes Encoding Arabidopsis ORC Subunits Are E2F Targets and the Two ORC1 Genes Are Differently Expressed in Proliferating and Endoreplicating Cells. Nucleic Acids Res. 2005, 33, 5404–5414. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Accotto, G.P.; Mullineaux, P.M.; Brown, S.C.; Marie, D. Digitaria Streak Geminivirus Replicative Forms Are Abundant in S-Phase Nuclei of Infected Cells. Virology 1993, 195, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Schvartzman, J.B.; Gutierrez, C. The Relationship between the Cell Time Available for Repair and the Effectiveness of a Damaging Treatment in Provoking the Formation of Sister-Chromatid Exchanges. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1980, 72, 483–489. [Google Scholar] [CrossRef]
- López-Sáez, J.F.; Calvo, A.; Cruz, J.L.; Gutierrez, C.; Carmona, M.J.; García-Herdugo, G. Cell Proliferation in File Meristems: A General Theory and Its Analysis by Computer Simulation. Environ. Exp. Bot. 1983, 23, 59–69. [Google Scholar] [CrossRef]
- Hernandez, P.; Gutierrez, C. Caffeine Induces Sister-Chromatid Exchanges during the Whole S-Phase of the Cell Cycle. Chromosoma 1985, 92, 214–217. [Google Scholar] [CrossRef]
- Pardo, E.G.; Hernández, P.; Gutiérrez, C. The Incorporation of Deoxyuridine Monophosphate into DNA Increases the Sister-Chromatid Exchange Yield. Exp. Cell Res. 1987, 168, 507–517. [Google Scholar] [CrossRef]
- Gutierrez, C. Excision Repair of Uracil in Higher Plant Cells: Uracil-DNA Glycosylase and Sister-Chromatid Exchanges. Mutat. Res. 1987, 181, 111–126. [Google Scholar] [CrossRef]
- Lee, M.G.; Nurse, P. Complementation Used to Clone a Human Homologue of the Fission Yeast Cell Cycle Control Gene Cdc2. Nature 1987, 327, 31–35. [Google Scholar] [CrossRef]
- John, P.C.; Sek, F.J.; Lee, M.G. A Homolog of the Cell Cycle Control Protein P34cdc2 Participates in the Division Cycle of Chlamydomonas, and a Similar Protein Is Detectable in Higher Plants and Remote Taxa. Plant Cell 1989, 1, 1185–1193. [Google Scholar]
- Feiler, H.S.; Jacobs, T.W. Cell Division in Higher Plants: A Cdc2 Gene, Its 34-KDa Product, and Histone H1 Kinase Activity in Pea. Proc. Natl. Acad. Sci. USA 1990, 87, 5397–5401. [Google Scholar] [CrossRef]
- Ferreira, P.C.; Hemerly, A.S.; Villarroel, R.; Van Montagu, M.; Inze, D. The Arabidopsis Functional Homolog of the P34cdc2 Protein Kinase. Plant Cell 1991, 3, 531–540. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hata, S.; Kouchi, H.; Suzuka, I.; Ishii, T. Isolation and Characterization of CDNA Clones for Plant Cyclins. EMBO J. 1991, 10, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Hemerly, A.; Bergounioux, C.; Van Montagu, M.; Inze, D.; Ferreira, P. Genes Regulating the Plant Cell Cycle: Isolation of a Mitotic-like Cyclin from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 1992, 89, 3295–3299. [Google Scholar] [CrossRef] [PubMed]
- Hirt, H.; Mink, M.; Pfosser, M.; Bogre, L.; Gyorgyey, J.; Jonak, C.; Gartner, A.; Dudits, D.; Heberle-Bors, E. Alfalfa Cyclins: Differential Expression during the Cell Cycle and in Plant Organs. Plant Cell 1992, 4, 1531–1538. [Google Scholar] [PubMed]
- Serrano, M.; Hannon, G.J.; Beach, D. A New Regulatory Motif in Cell-Cycle Control Causing Specific Inhibition of Cyclin D/CDK4. Nature 1993, 366, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Suarez-Lopez, P.; Gutierrez, C. Identification and Analysis of a Retinoblastoma Binding Motif in the Replication Protein of a Plant DNA Virus: Requirement for Efficient Viral DNA Replication. EMBO J. 1995, 14, 4073–4082. [Google Scholar] [CrossRef]
- Soni, R.; Carmichael, J.P.; Shah, Z.H.; Murray, J.A. A Family of Cyclin D Homologs from Plants Differentially Controlled by Growth Regulators and Containing the Conserved Retinoblastoma Protein Interaction Motif. Plant Cell 1995, 7, 85–103. [Google Scholar]
- Dahl, M.; Meskiene, I.; Bogre, L.; Ha, D.T.; Swoboda, I.; Hubmann, R.; Hirt, H.; Heberle-Bors, E. The D-Type Alfalfa Cyclin Gene CycMs4 Complements G1 Cyclin-Deficient Yeast and Is Induced in the G1 Phase of the Cell Cycle. Plant Cell 1995, 7, 1847–1857. [Google Scholar] [CrossRef][Green Version]
- Nagar, S.; Pedersen, T.J.; Carrick, K.M.; Hanley-Bowdoin, L.; Robertson, D. A Geminivirus Induces Expression of a Host DNA Synthesis Protein in Terminally Differentiated Plant Cells. Plant Cell 1995, 7, 705–719. [Google Scholar]
- Desvoyes, B.; Mendoza, A.D.; Ruiz-Trillo, I.; Gutierrez, C. Novel Roles of Plant RETINOBLASTOMA-RELATED (RBR) Protein in Cell Proliferation and Asymmetric Cell Division. J. Exp. Bot. 2014, 65, 2657–2666. [Google Scholar] [CrossRef]
- Desvoyes, B.; Gutierrez, C. Roles of Plant Retinoblastoma Protein: Cell Cycle and Beyond. EMBO J. 2020, 39, e105802. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Sanz-Burgos, A.P.; Hannon, G.J.; Gutierrez, C. Plant Cells Contain a Novel Member of the Retinoblastoma Family of Growth Regulatory Proteins. EMBO J. 1996, 15, 4900–4908. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Parra, E.; Xie, Q.; Boniotti, M.B.; Gutierrez, C. The Cloning of Plant E2F, a Retinoblastoma-Binding Protein, Reveals Unique and Conserved Features with Animal G(1)/S Regulators. Nucleic Acids Res. 1999, 27, 3527–3533. [Google Scholar]
- Sekine, M.; Ito, M.; Uemukai, K.; Maeda, Y.; Nakagami, H.; Shinmyo, A. Isolation and Characterization of the E2F-like Gene in Plants. FEBS Lett. 1999, 460, 117–122. [Google Scholar] [CrossRef]
- Ach, R.A.; Taranto, P.; Gruissem, W. A Conserved Family of WD-40 Proteins Binds to the Retinoblastoma Protein in Both Plants and Animals. Plant Cell 1997, 9, 1595–1606. [Google Scholar] [PubMed]
- Umen, J.G.; Goodenough, U.W. Control of Cell Division by a Retinoblastoma Protein Homolog in Chlamydomonas. Genes Dev. 2001, 15, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.J.; Orozco, B.M.; Roe, J.L.; Nagar, S.; Ou, S.; Feiler, H.S.; Durfee, T.; Miller, A.B.; Gruissem, W.; Robertson, D.; et al. A Geminivirus Replication Protein Interacts with the Retinoblastoma Protein through a Novel Domain to Determine Symptoms and Tissue Specificity of Infection in Plants. EMBO J. 2000, 19, 3485–3495. [Google Scholar] [CrossRef]
- Ebel, C.; Mariconti, L.; Gruissem, W. Plant Retinoblastoma Homologues Control Nuclear Proliferation in the Female Gametophyte. Nature 2004, 429, 776–780. [Google Scholar] [CrossRef]
- Mariconti, L.; Pellegrini, B.; Cantoni, R.; Stevens, R.; Bergounioux, C.; Cella, R.; Albani, D. The E2F Family of Transcription Factors from Arabidopsis thaliana. Novel and Conserved Components of the Retinoblastoma/E2F Pathway in Plants. J. Biol. Chem. 2002, 277, 9911–9919. [Google Scholar] [CrossRef]
- Kosugi, S.; Ohashi, Y. E2Ls, E2F-like Repressors of Arabidopsis that Bind to E2F Sites in a Monomeric Form. J. Biol. Chem. 2002, 277, 16553–116558. [Google Scholar] [CrossRef]
- de Bruin, A.; Maiti, B.; Jakoi, L.; Timmers, C.; Buerki, R.; Leone, G. Identification and Characterization of E2F7, a Novel Mammalian E2F Family Member Capable of Blocking Cellular Proliferation. J. Biol. Chem. 2003, 278, 42041–42049. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, L.; Jensen, M.R.; Helin, K. E2F7, a Novel E2F Featuring DP-Independent Repression of a Subset of E2F-Regulated Genes. EMBO J. 2003, 22, 6289–6298. [Google Scholar] [CrossRef] [PubMed]
- Logan, N.; Delavaine, L.; Graham, A.; Reilly, C.; Wilson, J.; Brummelkamp, T.R.; Hijmans, E.M.; Bernards, R.; La Thangue, N.B. E2F-7: A Distinctive E2F Family Member with an Unusual Organization of DNA-Binding Domains. Oncogene 2004, 23, 5138–5150. [Google Scholar] [CrossRef]
- Ramirez-Parra, E.; Frundt, C.; Gutierrez, C. A Genome-Wide Identification of E2F-Regulated Genes in Arabidopsis. Plant J. 2003, 33, 801–811. [Google Scholar] [CrossRef]
- Vandepoele, K.; Vlieghe, K.; Florquin, K.; Hennig, L.; Beemster, G.T.; Gruissem, W.; Van de Peer, Y.; Inze, D.; De Veylder, L. Genome-Wide Identification of Potential Plant E2F Target Genes. Plant Physiol. 2005, 139, 316–328. [Google Scholar] [CrossRef] [PubMed]
- AGI Analysis of the Genome Sequence of the Flowering Plant Arabidopsis Thaliana. Nature 2000, 408, 796–815. [CrossRef]
- Lang, L.; Schnittger, A. Endoreplication—A Means to an End in Cell Growth and Stress Response. Curr. Opin. Plant Biol. 2020, 54, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Shimotohno, A.; Aki, S.S.; Takahashi, N.; Umeda, M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Annu. Rev. Plant Biol. 2021, 72, 273–296. [Google Scholar] [CrossRef]
- Pedroza-Garcia, J.A.; Mazubert, C.; Del Olmo, I.; Bourge, M.; Domenichini, S.; Bounon, R.; Tariq, Z.; Delannoy, E.; Pineiro, M.; Jarillo, J.A.; et al. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis. Plant Physiol. 2017, 173, 1735–1749. [Google Scholar] [CrossRef]
- Sablowski, R.; Gutierrez, C. Cycling in a Crowd: Coordination of Plant Cell Division, Growth, and Cell Fate. Plant Cell 2022, 34, 193–208. [Google Scholar] [CrossRef]
- Potuschak, T.; Doerner, P. Cell Cycle Controls: Genome-Wide Analysis in Arabidopsis. Curr. Opin. Plant Biol. 2001, 4, 501–506. [Google Scholar] [CrossRef]
- Gutierrez, C.; Ramirez-Parra, E.; Castellano, M.M.; del Pozo, J.C. G(1) to S Transition: More than a Cell Cycle Engine Switch. Curr. Opin. Plant Biol. 2002, 5, 480–486. [Google Scholar] [CrossRef]
- Dewitte, W.; Murray, J.A. The Plant Cell Cycle. Annu. Rev. Plant Biol. 2003, 54, 235–264. [Google Scholar] [CrossRef] [PubMed]
- Doonan, J.H. The Plant Cell Cycle: An Overview. Methods Mol. Biol. 2005, 296, 31–50. [Google Scholar] [CrossRef]
- Inze, D.; De Veylder, L. Cell Cycle Regulation in Plant Development. Annu. Rev. Genet. 2006, 40, 77–105. [Google Scholar] [CrossRef]
- Francis, D. The Plant Cell Cycle—15 Years On. New Phytol. 2007, 174, 261–278. [Google Scholar] [CrossRef]
- Bryant, J.A.; Francis, D. The Plant Cell Cycle. Ann. Bot. 2011, 107, 1063. [Google Scholar] [CrossRef][Green Version]
- Scofield, S.; Jones, A.; Murray, J.A.H. The Plant Cell Cycle in Context. J. Exp. Bot. 2014, 65, 2557–2562. [Google Scholar] [CrossRef]
- Desvoyes, B.; Arana-Echarri, A.; Barea, M.D.; Gutierrez, C. A Comprehensive Fluorescent Sensor for Spatiotemporal Cell Cycle Analysis in Arabidopsis. Nat. Plants 2020, 6, 1330–1334. [Google Scholar] [CrossRef]
- Echevarría, C.; Gutierrez, C.; Desvoyes, B. Tools for Assessing Cell Cycle Progression in Plants. Plant Cell Physiol. 2021, 62, 1231–1238. [Google Scholar] [CrossRef]
- D’Ario, M.; Tavares, R.; Schiessl, K.; Desvoyes, B.; Gutierrez, C.; Howard, M.; Sablowski, R. Cell Size Controlled in Plants Using DNA Content as an Internal Scale. Science 2021, 372, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Simonini, S.; Bemer, M.; Bencivenga, S.; Gagliardini, V.; Pires, N.D.; Desvoyes, B.; van der Graaff, E.; Gutierrez, C.; Grossniklaus, U. The Polycomb Group Protein MEDEA Controls Cell Proliferation and Embryonic Patterning in Arabidopsis. Dev. Cell 2021, 56, 1945–1960.e7. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-K.; Herrmann, A.; Yang, J.; Iwasaki, R.; Sakamoto, T.; Desvoyes, B.; Kimura, S.; Gutierrez, C.; Kim, E.-D.; Torii, K.U. Deceleration of the Cell Cycle Underpins a Switch from Proliferative to Terminal Divisions in Plant Stomatal Lineage. Dev. Cell 2022, 57, 569–582.e6. [Google Scholar] [CrossRef] [PubMed]
- Costas, C.; Sanchez, M.P.; Stroud, H.; Yu, Y.; Oliveros, J.C.; Feng, S.; Benguria, A.; Lopez-Vidriero, I.; Zhang, X.; Solano, R.; et al. Genome-Wide Mapping of Arabidopsis Origins of DNA Replication and Their Associated Epigenetic Marks. Nat. Struct. Mol. Biol. 2011, 18, 395–400. [Google Scholar] [CrossRef]
- Sequeira-Mendes, J.; Araguez, I.; Peiro, R.; Mendez-Giraldez, R.; Zhang, X.; Jacobsen, S.E.; Bastolla, U.; Gutierrez, C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell 2014, 26, 2351–2366. [Google Scholar] [CrossRef]
- Scheres, B. Stem-Cell Niches: Nursery Rhymes across Kingdoms. Nat. Rev. 2007, 8, 345–354. [Google Scholar] [CrossRef]
- Desvoyes, B.; Echevarria, C.; Gutierrez, C. A perspective on cell proliferation kinetics in the root apical meristem. J. Exp. Bot. 2021, 72, 6708–6715. [Google Scholar] [CrossRef]
- Clowes, F.A.L. The duration of the G1 phase of the mitotic cycle and its relation to radiosensitivity. New Phytol. 1965, 64, 355–359. [Google Scholar] [CrossRef]
- Rahni, R.; Birnbaum, K.D. Week-Long Imaging of Cell Divisions in the Arabidopsis Root Meristem. Plant Methods 2019, 15, 30. [Google Scholar] [CrossRef]
- Pacheco-Escobedo, M.A.; Ivanov, V.B.; Ransom-Rodríguez, I.; Arriaga-Mejía, G.; Avila, H.; Baklanov, I.A.; Pimentel, A.; Corkidi, G.; Doerner, P.; Dubrovsky, J.G.; et al. Longitudinal Zonation Pattern in Arabidopsis Root Tip Defined by Multiple Structural Change Algorithm. Ann. Bot. 2016, 118, 763–776. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Dubrovsky, J.G. Longitudinal Zonation Pattern in Plant Roots: Conflicts and Solutions. Trends Plant Sci. 2013, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Desvoyes, B.; Fernandez-Marcos, M.; Sequeira-Mendes, J.; Otero, S.; Vergara, Z.; Gutierrez, C. Looking at Plant Cell Cycle from the Chromatin Window. Front. Plant Sci. 2014, 5, 369. [Google Scholar] [CrossRef] [PubMed]
- Otero, S.; Desvoyes, B.; Peiro, R.; Gutierrez, C. Histone H3 Dynamics Uncovers Domains with Distinct Proliferation Potential in the Arabidopsis Root. Plant Cell 2016, 28, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Blythe, S.A.; Wieschaus, E.F. Zygotic Genome Activation Triggers the DNA Replication Checkpoint at the Midblastula Transition. Cell 2015, 160, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Suzuki, T.; Iwata, E.; Nakamichi, N.; Suzuki, T.; Chen, P.; Ohtani, M.; Ishida, T.; Hosoya, H.; Muller, S.; et al. Transcriptional Repression by MYB3R Proteins Regulates Plant Organ Growth. EMBO J. 2015, 34, 1992–2007. [Google Scholar] [CrossRef]
- Magyar, Z.; Bögre, L.; Ito, M. DREAMs Make Plant Cells to Cycle or to Become Quiescent. Curr. Opin. Plant Biol. 2016, 34, 100–106. [Google Scholar] [CrossRef]
- Nomoto, Y.; Takatsuka, H.; Yamada, K.; Suzuki, T.; Suzuki, T.; Huang, Y.; Latrasse, D.; An, J.; Gombos, M.; Breuer, C.; et al. A Hierarchical Transcriptional Network Activates Specific CDK Inhibitors That Regulate G2 to Control Cell Size and Number in Arabidopsis. Nat. Commun. 2022, 13, 1660. [Google Scholar] [CrossRef]
- Echevarria, C.; Desvoyes, B.; Marconi, M.; Franco-Zorrila, J.M.; Lee, L.; Sablowski, R.; Birnbaum, K.; Wabnik, K.; Gutierrez, C. Stem Cell Regulators Control a G1 Duration Gradient in the Pant Root Meristem. BioRxiv 2022. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Ferela, A.; Debernardi, J.M.; Perrone, A.P.; Rodriguez, R.E.; Palatnik, J.F. GIF Transcriptional Coregulators Control Root Meristem Homeostasis. Plant Cell 2018, 30, 347–359. [Google Scholar] [CrossRef]
- Shultz, R.W.; Tatineni, V.M.; Hanley-Bowdoin, L.; Thompson, W.F. Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice. Plant Physiol. 2007, 144, 1697–1714. [Google Scholar] [CrossRef]
- Shultz, R.W.; Lee, T.J.; Allen, G.C.; Thompson, W.F.; Hanley-Bowdoin, L. Dynamic Localization of the DNA Replication Proteins MCM5 and MCM7 in Plants. Plant Physiol. 2009, 150, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.P.; Ramos, G.B.; de Almeida-Engler, J.; Cabral, L.M.; Coqueiro, V.M.; Macrini, C.M.; Ferreira, P.C.; Hemerly, A.S. Genome Based Identification and Analysis of the Pre-Replicative Complex of Arabidopsis thaliana. FEBS Lett. 2004, 574, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.P.; Costas, C.; Sequeira-Mendes, J.; Gutierrez, C. Regulating DNA Replication in Plants. Cold Spring Harb. Perspect. Biol. 2012, 4, a010140. [Google Scholar] [CrossRef]
- Macalpine, H.K.; Gordan, R.; Powell, S.K.; Hartemink, A.J.; Macalpine, D.M. Drosophila ORC Localizes to Open Chromatin and Marks Sites of Cohesin Complex Loading. Genome Res. 2010, 20, 201–211. [Google Scholar] [CrossRef]
- Cayrou, C.; Ballester, B.; Peiffer, I.; Fenouil, R.; Coulombe, P.; Andrau, J.C.; van Helden, J.; Mechali, M. The Chromatin Environment Shapes DNA Replication Origin Organization and Defines Origin Classes. Genome Res. 2015, 25, 1873–1885. [Google Scholar] [CrossRef]
- Comoglio, F.; Schlumpf, T.; Schmid, V.; Rohs, R.; Beisel, C.; Paro, R. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins. Cell Rep. 2015, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Pourkarimi, E.; Bellush, J.M.; Whitehouse, I. Spatiotemporal Coupling and Decoupling of Gene Transcription with DNA Replication Origins during Embryogenesis in C. elegans. eLife 2016, 5, e21728. [Google Scholar] [CrossRef]
- Sequeira-Mendes, J.; Diaz-Uriarte, R.; Apedaile, A.; Huntley, D.; Brockdorff, N.; Gomez, M. Transcription Initiation Activity Sets Replication Origin Efficiency in Mammalian Cells. PLoS Genet. 2009, 5, e1000446. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, M.; Pinzon, N.; Ghommidh, C.; Beyne, E.; Seitz, H.; Cayrou, C.; Mechali, M. The Gastrula Transition Reorganizes Replication-Origin Selection in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 2017, 24, 290–299. [Google Scholar] [CrossRef]
- Sequeira-Mendes, J.; Vergara, Z.; Peiro, R.; Morata, J.; Araguez, I.; Costas, C.; Mendez-Giraldez, R.; Casacuberta, J.M.; Bastolla, U.; Gutierrez, C. Differences in Firing Efficiency, Chromatin and Transcription Underlie the Developmental Plasticity of Arabidopsis Originome. Genome Res. 2019, 29, 784–797. [Google Scholar] [CrossRef]
- Mechali, M. Eukaryotic DNA Replication Origins: Many Choices for Appropriate Answers. Nat. Rev. 2010, 11, 728–738. [Google Scholar] [CrossRef]
- Vergara, Z.; Gutierrez, C. Emerging Roles of Chromatin in the Maintenance of Genome Organization and Function in Plants. Genome Biol. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Sequeira-Mendes, J.; Gutierrez, C. Links between Genome Replication and Chromatin Landscapes. Plant J. 2015, 83, 38–51. [Google Scholar] [CrossRef]
- Wheeler, E.; Brooks, A.M.; Concia, L.; Vera, D.L.; Wear, E.E.; LeBlanc, C.; Ramu, U.; Vaughn, M.W.; Bass, H.W.; Martienssen, R.A.; et al. Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin. Plant Physiol. 2020, 183, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Vergara, Z.; Sequeira-Mendes, J.; Morata, J.; Peiro, R.; Henaff, E.; Costas, C.; Casacuberta, J.M.; Gutierrez, C. Retrotransposons Are Specified as DNA Replication Origins in the Gene-Poor Regions of Arabidopsis Heterochromatin. Nucleic Acids Res. 2017, 45, 8358–8368. [Google Scholar] [CrossRef] [PubMed]
- Duronio, R.J. Developing S-Phase Control. Genes Dev. 2012, 26, 746–750. [Google Scholar] [CrossRef]
- Vergara, Z.; Sequeira-Mendes, J.; Masoud, K.; Costas, C.; Noir, S.; Caro, E.; Mora-Gil, V.; Genschik, P.; Gutierrez, C. Distinct Roles of Arabidopsis ORC1 Proteins in DNA Replication and Heterochromatin Maintenance. Nat. Commun. 2022, submitted.
- Jacob, Y.; Stroud, H.; Leblanc, C.; Feng, S.; Zhuo, L.; Caro, E.; Hassel, C.; Gutierrez, C.; Michaels, S.D.; Jacobsen, S.E. Regulation of Heterochromatic DNA Replication by Histone H3 Lysine 27 Methyltransferases. Nature 2010, 466, 987–991. [Google Scholar] [CrossRef]
- Hale, C.J.; Potok, M.E.; Lopez, J.; Do, T.; Liu, A.; Gallego-Bartolome, J.; Michaels, S.D.; Jacobsen, S.E. Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana. PLoS Genet. 2016, 12, e1006092. [Google Scholar] [CrossRef]
- Raynaud, C.; Sozzani, R.; Glab, N.; Domenichini, S.; Perennes, C.; Cella, R.; Kondorosi, E.; Bergounioux, C. Two Cell-Cycle Regulated SET-Domain Proteins Interact with Proliferating Cell Nuclear Antigen (PCNA) in Arabidopsis. Plant J. 2006, 47, 395–407. [Google Scholar] [CrossRef]
- Fransz, P.; ten Hoopen, R.; Tessadori, F. Composition and Formation of Heterochromatin in Arabidopsis thaliana. Chromosome Res. 2006, 14, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Simon, L.; Desset, S.; Duc, C.; Cotterell, S.; Poulet, A.; Le Goff, S.; Tatout, C.; Probst, A.V. Replication-Coupled Histone H3.1 Deposition Determines Nucleosome Composition and Heterochromatin Dynamics during Arabidopsis Seedling Development. New Phytol. 2018, 221, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Y.; Feng, S.; LeBlanc, C.A.; Bernatavichute, Y.V.; Stroud, H.; Cokus, S.; Johnson, L.M.; Pellegrini, M.; Jacobsen, S.E.; Michaels, S.D. ATXR5 and ATXR6 Are H3K27 Monomethyltransferases Required for Chromatin Structure and Gene Silencing. Nat. Struct. Mol. Biol. 2009, 16, 763–768. [Google Scholar] [CrossRef]
- Menges, M.; de Jager, S.M.; Gruissem, W.; Murray, J.A. Global Analysis of the Core Cell Cycle Regulators of Arabidopsis Identifies Novel Genes, Reveals Multiple and Highly Specific Profiles of Expression and Provides a Coherent Model for Plant Cell Cycle Control. Plant J. 2005, 41, 546–566. [Google Scholar] [CrossRef]
- Gutierrez, C. 25 Years of Cell Cycle Research: What’s Ahead? Trends Plant Sci. 2016, 21, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Anca, I.A.; Fromentin, J.; Bui, Q.T.; Mhiri, C.; Grandbastien, M.A.; Simon-Plas, F. Different Tobacco Retrotransposons Are Specifically Modulated by the Elicitor Cryptogein and Reactive Oxygen Species. J. Plant Physiol. 2014, 171, 1533–1540. [Google Scholar] [CrossRef]
- Makarevitch, I.; Waters, A.J.; West, P.T.; Stitzer, M.; Hirsch, C.N.; Ross-Ibarra, J.; Springer, N.M. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress. PLoS Genet. 2015, 11, e1004915. [Google Scholar]
- Bourbousse, C.; Mestiri, I.; Zabulon, G.; Bourge, M.; Formiggini, F.; Koini, M.A.; Brown, S.C.; Fransz, P.; Bowler, C.; Barneche, F. Light Signaling Controls Nuclear Architecture Reorganization during Seedling Establishment. Proc. Natl. Acad. Sci. USA 2015, 112, E2836–E2844. [Google Scholar] [CrossRef]
- Van Damme, D.; De Rybel, B.; Gudesblat, G.; Demidov, D.; Grunewald, W.; De Smet, I.; Houben, A.; Beeckman, T.; Russinova, E. Arabidopsis Alpha Aurora Kinases Function in Formative Cell Division Plane Orientation. Plant Cell 2011, 23, 4013–4024. [Google Scholar] [CrossRef]
- Weimer, A.K.; Nowack, M.K.; Bouyer, D.; Zhao, X.; Harashima, H.; Naseer, S.; De Winter, F.; Dissmeyer, N.; Geldner, N.; Schnittger, A. Retinoblastoma Related1 Regulates Asymmetric Cell Divisions in Arabidopsis. Plant Cell 2012, 24, 4083–4095. [Google Scholar] [CrossRef]
- Petrovska, B.; Cenklova, V.; Pochylova, Z.; Kourova, H.; Doskocilova, A.; Plihal, O.; Binarova, L.; Binarova, P. Plant Aurora Kinases Play a Role in Maintenance of Primary Meristems and Control of Endoreduplication. New Phytol. 2012, 193, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Shaw, P. Chromatin Organization and Cell Fate Switch Respond to Positional Information in Arabidopsis. Nature 2006, 439, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Desvoyes, B.; Ramirez-Parra, E.; Xie, Q.; Chua, N.H.; Gutierrez, C. Cell Type-Specific Role of the Retinoblastoma/E2F Pathway during Arabidopsis Leaf Development. Plant Physiol. 2006, 140, 67–80. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Sugimoto, K. Control of Plant Cell Differentiation by Histone Modification and DNA Methylation. Curr. Opin. Plant Biol. 2015, 28, 60–67. [Google Scholar] [CrossRef]
- Schommer, C.; Debernardi, J.M.; Bresso, E.G.; Rodriguez, R.E.; Palatnik, J.F. Repression of Cell Proliferation by MiR319-Regulated TCP4. Mol. Plant 2014, 7, 1533–1544. [Google Scholar] [CrossRef]
- Bhosale, R.; Boudolf, V.; Cuevas, F.; Lu, R.; Eekhout, T.; Hu, Z.; van Isterdael, G.; Lambert, G.; Xu, F.; Nowack, M.K.; et al. A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell 2018, 30, 2330–2351. [Google Scholar] [CrossRef]
- Bhosale, R.; Maere, S.; De Veylder, L. Endoreplication as a Potential Driver of Cell Wall Modifications. Curr. Opin. Plant Biol. 2019, 51, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Harashima, H.; Sugimoto, K. Integration of Developmental and Environmental Signals into Cell Proliferation and Differentiation through RETINOBLASTOMA-RELATED 1. Curr. Opin. Plant Biol. 2016, 29, 95–103. [Google Scholar] [CrossRef]
- Perilli, S.; Perez-Perez, J.M.; Di Mambro, R.; Peris, C.L.; Diaz-Trivino, S.; Del Bianco, M.; Pierdonati, E.; Moubayidin, L.; Cruz-Ramirez, A.; Costantino, P.; et al. RETINOBLASTOMA-RELATED Protein Stimulates Cell Differentiation in the Arabidopsis Root Meristem by Interacting with Cytokinin Signaling. Plant Cell 2013, 25, 4469–4478. [Google Scholar] [CrossRef]
- Heyman, J.; Cools, T.; Vandenbussche, F.; Heyndrickx, K.S.; Van Leene, J.; Vercauteren, I.; Vanderauwera, S.; Vandepoele, K.; De Jaeger, G.; Van Der Straeten, D.; et al. ERF115 Controls Root Quiescent Center Cell Division and Stem Cell Replenishment. Science 2013, 342, 860–863. [Google Scholar] [CrossRef]
- Cruz-Ramirez, A.; Diaz-Trivino, S.; Wachsman, G.; Du, Y.; Arteaga-Vazquez, M.; Zhang, H.; Benjamins, R.; Blilou, I.; Neef, A.B.; Chandler, V.; et al. A SCARECROW-RETINOBLASTOMA Protein Network Controls Protective Quiescence in the Arabidopsis Root Stem Cell Organizer. PLoS Biol. 2013, 11, e1001724. [Google Scholar] [CrossRef] [PubMed]
- Vilarrasa-Blasi, J.; Gonzalez-Garcia, M.P.; Frigola, D.; Fabregas, N.; Alexiou, K.G.; Lopez-Bigas, N.; Rivas, S.; Jauneau, A.; Lohmann, J.U.; Benfey, P.N.; et al. Regulation of Plant Stem Cell Quiescence by a Brassinosteroid Signaling Module. Dev. Cell 2014, 30, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Garcia, M.P.; Pavelescu, I.; Canela, A.; Sevillano, X.; Leehy, K.A.; Nelson, A.D.; Ibanes, M.; Shippen, D.E.; Blasco, M.A.; Cano-Delgado, A.I. Single-Cell Telomere-Length Quantification Couples Telomere Length to Meristem Activity and Stem Cell Development in Arabidopsis. Cell Rep. 2015, 11, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Betegón-Putze, I.; Mercadal, J.; Bosch, N.; Planas-Riverola, A.; Marquès-Bueno, M.; Vilarrasa-Blasi, J.; Frigola, D.; Burkart, R.C.; Martínez, C.; Conesa, A.; et al. Precise Transcriptional Control of Cellular Quiescence by BRAVO/WOX5 Complex in Arabidopsis Roots. Mol. Syst. Biol. 2021, 17, e9864. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J. Glucose-TOR Signalling Reprograms the Transcriptome and Activates Meristems. Nature 2013, 496, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Belda-Palazón, B.; Adamo, M.; Valerio, C.; Ferreira, L.J.; Confraria, A.; Reis-Barata, D.; Rodrigues, A.; Meyer, C.; Rodriguez, P.L.; Baena-González, E. A Dual Function of SnRK2 Kinases in the Regulation of SnRK1 and Plant Growth. Nat. Plants 2020, 6, 1345–1353. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, C. A Journey to the Core of the Plant Cell Cycle. Int. J. Mol. Sci. 2022, 23, 8154. https://doi.org/10.3390/ijms23158154
Gutierrez C. A Journey to the Core of the Plant Cell Cycle. International Journal of Molecular Sciences. 2022; 23(15):8154. https://doi.org/10.3390/ijms23158154
Chicago/Turabian StyleGutierrez, Crisanto. 2022. "A Journey to the Core of the Plant Cell Cycle" International Journal of Molecular Sciences 23, no. 15: 8154. https://doi.org/10.3390/ijms23158154
APA StyleGutierrez, C. (2022). A Journey to the Core of the Plant Cell Cycle. International Journal of Molecular Sciences, 23(15), 8154. https://doi.org/10.3390/ijms23158154