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Abstract: Inmunohistochemistry remains an indispensable tool in diagnostic surgical pathology. In
parathyroid tumours, it has four main applications: to detect (1) loss of parafibromin; (2) other man-
ifestations of an aberrant immunophenotype hinting towards carcinoma; (3) histogenesis of a neck
mass and (4) pathogenetic events, including features of tumour microenvironment and immune
landscape. Parafibromin stain is mandatory to identify the new entity of parafibromin-deficient par-
athyroid neoplasm, defined in the WHO classification (2022). Loss of parafibromin indicates a
greater probability of malignant course and should trigger the search for inherited or somatic
CDC73 mutations. Aberrant immunophenotype is characterised by a set of markers that are lost
(parafibromin), down-regulated (e.g., APC protein, p27 protein, calcium-sensing receptor) or up-
regulated (e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to
benign parathyroid disease. Aberrant immunophenotype is not the final proof of malignancy but
should prompt the search for the definitive criteria for carcinoma. Histogenetic studies can be nec-
essary for differential diagnosis between thyroid vs. parathyroid origin of cervical or intrathyroidal
mass; detection of parathyroid hormone (PTH), chromogranin A, TTF-1, calcitonin or CD56 can be
helpful. Finally, immunohistochemistry is useful in pathogenetic studies due to its ability to high-
light both the presence and the tissue location of certain proteins. The main markers and challenges
(technological variations, heterogeneity) are discussed here in the light of the current WHO classi-
fication (2022) of parathyroid tumours.

Keywords: parathyroid carcinoma; parathyroid adenoma; multiglandular parathyroid disease;
atypical parathyroid tumour; WHO classification; immunohistochemistry; parafibromin; Ki-67;
p27; calcium-sensing receptor; tumour microenvironment

1. Introduction

Primary hyperparathyroidism [1-4], the classic manifestation of parathyroid tu-
mours, represents the third most common endocrine pathology with an estimated preva-
lence of 3/1000 [5-7]. There is close bidirectional association between primary hyperpara-
thyroidism and neoplasms of the parathyroid glands. In most cases, primary hyperpara-
thyroidism is caused by parathyroid tumours. In turn, almost all parathyroid neoplasms
present with primary hyperparathyroidism although the existence of non-functional par-
athyroid tumours, mainly carcinomas, has been suggested in few case reports [8-10].
Thus, the clinical and laboratory manifestations of the primary hyperparathyroidism rep-
resent the mainstay for the diagnostics of parathyroid tumours [1-4].

The epidemiological characteristics of parathyroid neoplasms are also largely de-
rived from the data on primary hyperparathyroidism because most cancer registries con-
centrate on malignant entities while parathyroid tumours are predominated by
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adenomas. Indeed, adenomas are found in 80-85% patients affected by primary hy-
perparathyroidism. In 10-15% cases of primary hyperparathyroidism, multiple glands are
involved; this condition was formerly known as primary hyperplasia [11]. Currently, the
given pathology has been redefined by World Health Organization (WHO) as multiglan-
dular parathyroid disease [12]. Parathyroid carcinoma is associated with 0.1% to 5%
[11,13] of all cases of primary hyperparathyroidism. In the Western world, it is thought to
be responsible for less than 1% of all cases [13] although significantly higher proportion
of 5.2% (16 cases) has been reported in an Italian study of 290 surgically treated patients
[14]. As the diagnosis of parathyroid carcinoma occasionally is reached only by morpho-
logical evaluation of surgical specimens, more frequent occurrence of malignancy could
be expected among operated patients compared to the general group of primary hy-
perparathyroidism. However, the variability between surgical cohorts is also well-docu-
mented, e.g., parathyroid carcinoma constituted 2.1% vs. 0.3% of surgically treated spo-
radic primary hyperparathyroidism in two European cohorts [15]. In China, carcinoma
constitutes 3.9% of primary hyperparathyroidism, affecting 14/361 operated patients [16].
The population incidence of parathyroid carcinoma is 3.5-5.7 cases per 10 million [17],
and it is rising, e.g., from 3.8 to 6.6 per 10 million person-years in Korea over time period
from 2003 to 2016 [18]. Parathyroid carcinoma represents 0.005% of total cancer burden
[17].

Significant progress has been achieved in the diagnostics and treatment of parathy-
roid mass lesions. First, the growing awareness of parathyroid pathology and increased
availability of laboratory and radiological evaluation have shifted the diagnostic para-
digm from clinically based suspicion [11] or even difficult diagnosis [19] in symptomatic
patients to almost incidental findings [20,21] via routine biochemical laboratory assess-
ment of serum calcium and parathyroid hormone (PTH) levels. Indeed, the incidence of
primary hyperparathyroidism raised sharply after standard serum calcium tests were in-
vented [22]. The next surge of incidence has been associated with screening and in-depth
evaluation of osteoporosis patients via bone density measurements in combination with
assessment of calcium and PTH levels to identify secondary osteoporosis [7,22].

Second, the parathyroid surgery is currently benefitting from its golden age [21]. The
indications, technologies and steps of operative intervention have been well-defined, sup-
ported by intraoperative assessment of parathyroid hormone. Currently, parathyroid sur-
gery is considered safe and curative in 97-98% of cases [21].

Wider application of surgical intervention has expanded pathologists” experience in
diagnostic evaluation of parathyroid tissues. A stable basis for parathyroid research was
set as well. This led to the third major achievement in parathyroid pathology — the current
(2022) WHO classification that is based on deeper understanding of the pathogenesis of
parathyroid disease, bringing at least three revolutionary innovations [12] in regard to (1)
multiglandular parathyroid disease in primary hyperparathyroidism; as well as (2) atyp-
ical parathyroid tumour and (3) the novel concept of parafibromin-deficient parathyroid
neoplasms.

Genetic and epigenetic changes drive the development of parathyroid neoplasms
[23-25] and influence the proteome. To assess the presence and cellular location of certain
proteins, immunohistochemistry is an indispensable tool. Due to its widespread use in
diagnostic surgical pathology and abundant quality control programs, pathologists and
technicians have reasonable experience with it, ensuring reliability. The method can be
subjected to quantification via digital pathology and to technological standardization, e.g.,
via total test approach. Thus, immunohistochemistry has become a reasonable adjunct in
pathology. For instance, the clinical significance of immunohistochemical surrogate tests
in breast carcinoma is similar to gene expression profiling-defined molecular classification
[26-28]; immunohistochemistry is studied as a substitute for molecular subtyping of glio-
mas [29,30] and develops as next-generation immunohistochemistry for detection of ge-
netic alterations via evaluation of certain proteins [31].
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In parathyroid pathology, immunohistochemical evaluation of parafibromin has an
equally important role along with genetic detection of CDC73 mutations. The other appli-
cations of immunohistochemistry in parathyroid disease (Figure 1) include pathogenetic
studies (e.g., expression of cyclin D1 or PD-L1, or the cellular composition and molecular
characteristics of the tumour microenvironment); ability of certain proteins and panels to
distinguish between benign and malignant parathyroid tumours; and histogenetic differ-
ential diagnostic considerations (e.g., thyroid vs. parathyroid origin).

Diagnosis: Favours carcinoma over a benign tumour

Prognosis:

* Worse prognosis in confirmed carcinoma

* Higher recurrence risk in atypical parathyroid
tumour

Parafibromin-deficient parathyroid neoplasm

Loss of
parafibromin

CARCINOMA:

* Loss of
parafibromin

* High proliferation

activity: Ki-67 > 5%

* Loss of APC, p27,
Bcl-2, MDM2, RB
or E-cadherin

* Expression of

PGP9.5, galectin-3,
hTERT or aberrant

p53

Positive markers in
parathyroid
tumours:

* PTH

* Chromogranin A
* Vimentin

* Cytokeratins

* GATA3
Negative:

* TTF-1

* Thyroglobulin

* CD56

. »

Benign
tissues vs.
carcinoma

Parathyroid
IHC

’ Histogenesis

). 4

« LCA

Pathogenesis

* Cyclin D1
* Calcium sensitivity: CaSR and
related molecular pathways

+ Tumour microenvironment

+ Local immune landscape (PD-
L1; tumour-infiltrating
lymphocytes)

Figure 1. Applications of immunohistochemistry in parathyroid pathology.

Considering the practical and scientific implications, the current review is devoted
to immunohistochemical profile of parathyroid tumours in accordance with the new
WHO (2022) classification of parathyroid neoplasms.

2. The Definitions: Morphological Diagnostic Criteria of Parathyroid Tumours by
WHO Classification (2022)

To discuss the features of any clinicopathological entities, solid foundation is man-
datory, namely, the definitions and diagnostic criteria, set by WHO and/or professional
associations. This is particularly relevant to parathyroid tumours, as a new edition of
WHO classification is released on 2022 [12], bringing some significant changes.

Historically, primary hyperparathyroidism was mostly attributed to three patholo-
gies. The most frequent cause of primary hyperparathyroidism was parathyroid adenoma
comprising 80-85% of cases; followed by primary parathyroid hyperplasia, found in 10—
15% patients and the few cases of parathyroid carcinoma, responsible for less than 1%
cases of primary hyperparathyroidism [32,33]. Upon typical presentation, these entities
were easily recognised. Parathyroid adenoma was diagnosed if a single encapsulated or
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demarcated, non-invasive parathyroid neoplasm lacking intralesional adipose tissue was
found in a patient experiencing surgery-related decrease of the parathyroid hormone level
[34-36]. The diagnosis of adenoma was further supported by an adjacent peripheral rim
of residual gland. Parathyroid hyperplasia presented as a multiglandular pathology
showing mixture of parenchymal and fat cells with increased parenchyma-to-fat ratio
[34,36,37]. Unequivocal invasive growth and/or presence of metastases justified the diag-
nosis of parathyroid carcinoma [38].

However, the historical classification faced difficulties, which mainly focused on two
areas: the clinically significant distinction between carcinoma and adenoma, and the dif-
ferential diagnosis between adenoma and primary parathyroid hyperplasia. The problem
“carcinoma vs. adenoma” would be triggered by a tumour that shows worrisome clinical,
morphological or immunohistochemical features (Figure 2) yet lacks unequivocal inva-
sion fulfilling the criteria of parathyroid carcinoma. To denote such tumours, the term
“atypical parathyroid adenoma” was coined both in medical research [39-41] and infor-
mal hospital communications where it was used to emphasise the increased concern about
the further course of disease, yet to avoid overtreatment and possible psychological insult
associated with diagnosis of carcinoma.

* Issue diagnosis of
parafibromin deficient
parathyroid neoplasm and
proceed with morphological
diagnostics (adenoma vs.
atypical parathyroid tumour
vs. carcinoma)

* High proliferation activity:
Ki-67 >5%

* Expression of PGP9.5,
galectin-3, hTERT or aberran
p53

* Loss of APC, p27, Bcl-2,
MDM2, RB, E-cadherin

* Loss of
Aberant parafibromin

immuno-

Perform constitutional

henotype
P YP CDC73 gene sequencing

* Band-like fibrosis

* Tumour cells within the
capsule

¢ Cellular atypia

* Necrosis

* Atypical mitoses

mitoses / 10 mm?3
¢ Trabecular architecture

* Increased mitotic activity: >5

' * Palpable neck mass
* Parathyroid gland >3 cm
. Increased Clinical * Severe hypercalcemia:
AtyplcaI. suspicion of Hindlngs >3 mmol/L; > 12 mg/dL .
morphological . i * Markedly elevated PTH level:
features parathyroid RUSPICIGUS of > 3 x over the upper limit of
carcinoma malignancy reference interval

* PTH3: PTH2 ratio exceeds 1
’ * Adhesions: intraoperatively

Search for
unequivocal
criteria of
carcinoma

* Metastasis

* Invasion into surrounding fat,
thyroid gland, cesophagus

* Angioinvasion with tumour
thrombus

* Perineural invasion

Figure 2. Suspicious features and unequivocal diagnostic criteria of parathyroid carcinoma.

The distinction between primary parathyroid hyperplasia and adenoma also had
clinical relevance regarding the number of glands that should be surgically removed to
cure the hyperparathyroidism. The pathological differential diagnosis could become dif-
ficult if no adjacent rim of normal or atrophic gland was present in adenoma or if nodular
cell groups were evident in otherwise hyperplastic gland. In addition, the experiments in
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animal models [42] and immunohistochemical studies of human parathyroid tissue [38]
suggested close pathogenetic relationship between so-called primary hyperplasia and ad-
enoma. Further, the cases previously designated as primary parathyroid hyperplasia
showed clonality contrasting to the expected polyclonal cellular proliferation in true hy-
perplasia [12].

Both these issues have been clarified in the current (2022) WHO classification of par-
athyroid tumours [12]. The entity of “atypical parathyroid tumour” should be used to
classify former atypical adenomas that show certain suspicious features but still do not
reach the established diagnostic criteria of carcinoma. Primary parathyroid hyperplasia
involving multiple glands has been reclassified as multiglandular parathyroid disease
[12], a term that is in line with surgeons’ needs to describe targets and approach [43]. Mul-
tiple multiglandular parathyroid adenomas is another recognised entity involving several
parathyroid glands; the diagnosis is issued if each nodule corresponds to the features of
adenomas [12].

Currently, the WHO classification of parathyroid tumours includes the entities of
multiglandular parathyroid disease, adenoma, atypical parathyroid tumour, and carci-
noma [12].

As previously, adenoma represents a benign tumour. It is well-circumscribed. In ap-
proximately 50% of cases, adjacent normal or atrophic glandular tissue is still present,
contrasting with the tumour. Stromal fat is usually absent in adenoma; however, it can be
abundant in lipoadenoma. Adenomas are composed of chief, oncocytic, transitional or
water-clear cells. Follicles can be present; extensive follicular architecture must be distin-
guished from thyroid tissues via morphology or immunohistochemistry. Specific types of
adenoma have been defined (Table 1).

Table 1. Diagnostic criteria for specific types of parathyroid adenomas.

Type Criterion Ref.
Oncocytic adenoma Oncocytes compose > 75% of the tumour .
i Erickson
Water-clear adenoma Entirely composed of water-clear cells otal. 2022

Cysticadenoma  Extensive cystic change affecting > 50% of parenchyma
- , [12]
Lipoadenoma Stromal fat represents > 50% of the tumour

Atypical parathyroid tumour is defined as a parathyroid neoplasm of uncertain ma-
lignant potential. It shows some cytological or histological features that increase suspicion
of carcinoma, but the diagnostic criteria of carcinoma cannot be identified although suffi-
cient number of tissue samples has been submitted for microscopy. The worrisome fea-
tures that constitute the diagnostic criteria of atypical parathyroid tumour, include the
following:

e  Trabecular or sheet-like architecture;

e  Band-like fibrosis in the absence of history of fine needle aspiration (FNA) that might
induce scarring via needle track or at the site of FNA-induced necrosis. Secondary or
tertiary hyperparathyroidism are also associated with fibrotic bands and should be
considered clinically;

e Cytological atypia, enlarged nucleoli;

e  Mitotic activity exceeding 5 mitoses/50 high power fields;

e  Atypical mitoses;

e  Coagulation necrosis in the absence of history of FNA;

e  Adherence to the surrounding tissues but not frank invasion into these tissues;

e  Tumour cells located within the capsule, but lacking full-thickness penetration
through the capsule [12].

The presence of the listed traits should induce active search for the definitive criteria
of parathyroid carcinoma. However, the characteristics of atypical parathyroid tumour
themselves are not sufficient to justify the diagnosis of carcinoma.
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Parathyroid carcinoma is a clear-cut malignancy, manifesting with either invasion or
metastasis. To classify a parathyroid tumour as carcinoma, any of the following diagnostic
criteria [12] must be present:

¢ Angioinvasion in a blood vessel located either outside the tumour or in the capsule;
the tumour growth through vascular wall and/or carcinoma cells within thrombus
must be visible. Considering the fenestrated endothelium, a mere presence of neo-
plastic cells in an intratumoural vessel does not qualifies for true invasion. Vascular
invasion must also be distinguished from artificial displacement (“seeding”) of tu-
mour cells into blood vessel lumen, that can happen during grossing. True vascular
invasion is recognised by verified tumour penetration through vessel’s wall or by
presence of the tumour cells in a thrombus, showing a biological reaction to invasion;

e Invasion in lymphatics provided that retraction phenomenon is excluded. Immuno-
histochemistry for endothelial markers is highly recommended for this;

e  Perineural or intraneural invasion;

¢ Invasion into surrounding soft tissues, thyroid, oesophagus, skeletal muscle. Pres-
ence of neoplastic cells within the tumour capsule does not qualify for the diagnosis
of carcinoma. The mere presence of parathyroid tissues within the thyroid also is not
sufficient to justify the diagnosis of parathyroid carcinoma, because ectopic location
of a parathyroid gland, adenoma or carcinoma is a well-known phenomenon [44,45].
Invasion must also be distinguished from parathyromatosis — a rare condition char-
acterised by a presence of multiple microscopic islets of benign parathyroid tissue
scattered throughout the soft tissues of neck and/or superior mediastinum [46-50];

e  Metastases in lymph nodes or distant organs [12]. However, considering the indolent
course of parathyroid carcinoma, metastatic spread is not always present. In a re-
cently published large, SEER-based study, evaluating 609 cases of parathyroid carci-
noma (1975-2016), lymph node metastases were found in 25.2% of all patients and
29.2% of cases where lymph node status was reported. Distant metastases were pre-
sent in 2.2% of all patients and 3.8% of cases with a known stage [17].

3. Immunohistochemical Profile of Parathyroid Tumours
3.1. Parafibromin

Parafibromin, the tumour suppressor protein coded by Cell Division Cycle 73 (CDC73)
gene, represents the most extensively studied immunohistochemical target in parathyroid
pathology. It is the driver of parathyroid carcinogenesis and thus the only protein that is
advised to be detected immunohistochemically in parathyroid tumours (at least in all car-
cinomas and atypical parathyroid tumours) in accordance with the current (2022) WHO
recommendations [12].

In 2002, germline mutation of CDC73 gene, known also as HRPT2 (hyperparathy-
roidism 2), was found in families affected by the autosomal dominant hyperparathyroid-
ism-jaw tumour syndrome (penetrance 65-90%). This syndrome attracted attention due
to the significantly increased lifetime risk of parathyroid carcinoma approaching 15% in
mutation carriers [12,51,52].

As the name of syndrome “hyperparathyroidism-jaw tumour syndrome” indicates,
carriers of germline mutation in CDC73/HRPT?2 gene have increased risk to develop hy-
perparathyroidism and ossifying fibromas of the maxillary and mandibular bones. The
presence of parathyroid lesions and fibromas is reflected also in the name of parafibromin
[51]. Regarding parathyroid pathology, single or multiple [35,39,53,54] parathyroid ade-
nomas or parathyroid carcinomas are the most frequent features of this syndrome, seen
in 90% of cases. Adenomas remain the most frequent cause of hyperparathyroidism even
within the frames of hyperparathyroidism-jaw tumour syndrome [12]. However, the pro-
portion of carcinoma is unusually high: in the hyperparathyroidism-jaw tumour syn-
drome patients, it is responsible for 15-37.5% of hyperparathyroidism cases [51] con-
trasting with the rare occurrence (0.1-5%) of carcinoma in the general cohort of primary
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hyperparathyroidism [11,13]. Hyperparathyroidism-jaw tumour syndrome can present as
a seemingly sporadic parathyroid lesion. It has been estimated that 20-30% of apparently
sporadic parathyroid carcinomas are associated with germline CDC73/HRPT2 mutation
[12,35,51]. Further, genetically confirmed hyperparathyroidism-jaw tumour syndrome
can manifest with multiglandular parathyroid disease [54]. The frequency of benign fibro-
osseous lesions (ossifying fibromas) of jaw bones is 10-30%; these lesions can be single or
multiple, uni- or bilateral. In addition, renal cysts, hamartomas or tumours (Wilms tu-
mour, papillary carcinoma, metanephric adenoma) are present in 10% of cases and heter-
ogeneous spectrum of uterine pathology (reported as leiomyoma, adenomyosis, endome-
trial hyperplasia, adenofibroma or adenosarcoma) — in 40% of female patients. Occasion-
ally, pancreatic adenocarcinomas, mixed germ cell tumours of the testis, Hurtle cell ade-
nomas of the thyroid gland, and pituitary adenomas have been described in these kin-
dreds [35,52-54].

However, the role of CDC73/HRPT?2 is not limited to a rare inherited syndrome. So-
matic mutations of CDC73 have been found in a significant fraction of sporadic parathy-
roid tumours: 60-90.9% of parathyroid carcinomas and up to 6% of parathyroid adenomas
harbour CDC73 mutation [39,41,51,55].

Parafibromin is a tumour suppressor protein that induces cell cycle arrest by repress-
ing cyclin D1 [56]. It is involved in the regulation of p53 pathway [51]. CDC73 mutations
lead to loss of both function and immunohistochemical expression of parafibromin. Since
the first discoveries, absence of parafibromin has been associated with diagnostic evi-
dence [57-59] and worse prognosis of parathyroid carcinomas [59-61] and malignant be-
haviour of tumours histologically diagnosed as atypical adenomas [40]. However, contro-
versies exist that can be attributed to technological differences and challenges [51], nu-
clear, nucleolar or cytoplasmic location of reactivity [62-64] or cases showing partial or
weak expression [51,62,65,66].

In normal parathyroid glands, parafibromin is invariably present in the nuclei [67].
Loss of parafibromin has been reported in few cases (0-3.7%) of multiglandular parathy-
roid disease [38,67,68], 0-17.6% of adenomas [38,39,55,67] and 33.3-100% of parathyroid
carcinomas [38,55,67,69] except carcinomas associated with tertiary hyperparathyroidism
(0%) as reported by Tominaga et al., 2008 [70]. The main studies on parafibromin expres-
sion in parathyroid tumours are summarised in Table 2.

Table 2. Loss of parafibromin expression in parathyroid tumours and tissues.

Absolute Numbers of Negative/Investigated Cases; Frequency of Parafibromin Loss (%)

., Atypical Para- Multiglandular
Patt
attern Parat.hyrmd thyroid Tu- Adenoma Parathyroid Normal Gland Reference
Carcinoma .
mour Disease
o o 1/27 PPH §; o Uljanovs et al.,
Total nuclear loss 5/5; 100.0% 0/102; 0.0% 379 0/45; 0.0% 2021 [38]
Juhlin et al.,
. 00 2. . O0 . . O0
Total nuclear loss 2/10; 20.0% 2/46 AA 2 43% 2/182;1.1% 2019 [71]
. 25/46 AA 2; Juhlin et al.,
. O, . O,
Partial nuclear loss 5/10; 50.0% 54.3% 8/182; 4.4% 2019 [71]
Juhlin et al.,
. 00 2. . 00 . . 00
Nucleolar loss 0/10; 0.0%  3/46AA 2% 6.5%  4/182;2.2% 2019 [71]
Nuclear loss, evalu Hosny Mohamn-
. P eV 7/21;33.3% 0/3 AA 2 0.0% 1/73; 1.4% med et al., 2017
ated via cut-off score [69]
Nuclear loss, defined 6/19 AA 2; Kumari et al.,

as<10%

7/14; 50.0%

31.6% 19/194;9.8% 2016 [72]
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Total nuclear loss
Total nuclear loss
Total nuclear loss
Total nuclear loss

Nuclear loss (>99%)

Total nuclear loss

Total nuclear loss
Total nuclear loss
Total nuclear loss

Total nuclear loss

Karaarslan et
al., 2015 [73]
Truran et al.,,

2/2;100.0% 0/6 AA2%0.0%  0/84;0.0%

11/24; 45.8% 2014 [57]
2/13 AA 2 Guarnieri et al.,
. O, . o,
8/12; 66.7% 15.49% 3/17;17.6% 2012 [39]
Wang et al.,
; 00 ;O 0o 3 0. 00 ; U, O0
9/15; 60.0% 1/18; 5.6% 0/8 PH 3; 0.0% 0/5; 0.0% 2012 [67]
3/8; 37.5% 1/18;5.6% Kim etal, 2012
[66]
0/14PPH;  0/16 parathyro- | crnandez-
5/16;31.3%  0/2AA%0.0%  0/18;0.0% 0% e 05(;% Ranvier et al.,
U7 atosis; U.U7 2009 [68]
0/12 PSTPH 4 Howell et al.,
. O, . 0, . 0,
14/27; 51.9% 0/78; 0.0% 0.0% 0/4; 0.0% 2009 [74]
0/85, 0% 1/7 Tominaga et al.,
mts; 14.3% mts 2008 [70]
Cetani et al.
. % 2. 0% - 4.5% ,
11/11; 100.0% 2/4 AA 2 50.0% 1/22;4.5% 2007 [55]
0/25 PPH 1; Tan et al., 2004
22:40.9% 48: 0% :0.0%
9/22; 40.9% 0/48; 0% 0.0% 0/6; 0.0% 75]

In the original sources, different terms have been used in accordance with the actual classifications
and terminology at the time of publication: ! PPH, primary parathyroid hyperplasia; 2 AA, atypical
adenoma; 3 PH, parathyroid hyperplasia; ¢ PST PH, primary, secondary or tertiary parathyroid hy-
perplasia. ° primary and metastatic parathyroid carcinoma in the setting of tertiary hyperparathy-
roidism, i.e., “on the background of advanced secondary hyperparathyroidism”.

Technological difficulties represent the greatest problem of immunohistochemistry
for parafibromin, followed and deepened by the differences in evaluation. The immuno-
histochemical results show overlap between adenoma and carcinoma. However, this is
not attributable solely to technological shortcomings, but rather to the tumour biology as
gene assessment also yields overlapping data. Mutations of CDC73/ HRPT2 have been
reported in only 60-90.9% of parathyroid carcinoma and 1-6% of adenomas [39,41,51,55].
Clearly, the parafibromin profile overlap between adenoma and carcinoma is a part of
parathyroid tumour biology.

In our experience, albeit the immunohistochemical stain is technically challenging, it
has a rewardingly high diagnostic value. The procedure must be followed rigorously, and
repeated stains can be necessary, but reliable final result with appropriate internal positive
controls can be reached [38].

3.2. Proliferation Activity by Ki-67

Ki-67 is a nuclear protein that is expressed during the active phase of cell cycle while
strongly down-regulated during the GO phase. As the presence of immunohistochemically
detectable Ki-67 identifies proliferating cells, Ki-67 is widely used in morphological pro-
tocols for tumour diagnostics, including grading, molecular classification, prognostic
evaluation and prediction of treatment efficacy. The biological functions of Ki-67 include
mitotic, interphase and regulatory processes. During mitosis, Ki-67 participates in the
build-up of perichromosomal layer: a ribonucleoprotein sheath that coats the condensed
chromosomes and prevents them from aggregation. In interphase, Ki-67 protein main-
tains the structure of heterochromatin. Ki-67 also regulates the cell cycle via p21 protein-
related pathways [38,76,77].

The main studies on proliferation activity by Ki-67 in parathyroid tumours are sum-
marised in Table 3.
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Table 3. Proliferation activity by Ki-67 expression in parathyroid tumours and tissues.

Absolute Numbers of Positive/Investigated Cases; Proportion of Positive Cases (%) or Prolif-

eration Activity by Fraction of Positive Cells (%)

A h to Evalua-
pproactiotr(: vatua Parathvroid Atypical Para- Multiglandular
. y thyroid Tu- Adenoma Parathyroid Normal Gland Reference
Carcinoma .
mour Disease
S .
Mean f.r.actlon (/o.) of 5.8% 1.6% 1.0% PPH 1 0.4% Uljanovs et al.,
positive nuclei 2021 [38]
Hotspot-based nu- Uljanovs et al.,
11.8% 5% 2.8% PPH ! 1.0%
clear fraction (%) 8% 3:5% 8% 0% 2021 [38]
Exceeds cut-off > 5%; 5/14 AA 2 Sungu et al.,
10; .0%
NOS 5/10; 50.0% 35,7% 2018 [78]
Hosny Moham-
Exceeds cut-off > 5%;
xceeds cuboff>3%: g1 857%  23667%  0/73;0.0% med et al.,, 2017
NOS
[69]
Exceeds cut-off 5%; Karaarslan et
. %, 2. 7% -1.2%
highest * 0/2;0.0% 1/6 AA%16.7% 1/84;1.2% al, 2015 [73]
Exceeds cut-off > 4%; Truran et al.
’ 23;21.7% ’
highest 5/23; & 2014 [57]
Fernandez-
E t-off > 5%; 14PPHYL 1/1 thyro- .
Xceedslfl‘é)so 75 915,600% 02 AA%00%  1/1856% O 0.0 I/n 5tpai”f v, Ranvier etal,
.U7o atos1s; 6.7/ 70 2009 [68]
Mean fraction of posi- Kaczmarek et
1.9% 1.8% 3.5%
tive nuclei (%) & & & al., 2008 [79]
Exceeds cut-off > 5%; Hadar et al.
’ 15/26; 57.7% 0/26; 0.0% ’
NOS 4 & f : 2005 [80]
2.84% (mean in 2.84% (mean in 3.38% in 21
Mean fraction of posi- 17 adenomas 17 adenomas PPI'_I . ; 149 in0.19% in 10 nor- Thomopoulou
tive nuclei (%) and 2 carcino- and 2 carcino- 3 O’SI;H 30 mal glands et al., 2003 [81]
mas) mas)
Mean fraction of posi- 6.1% in 12 car- 3.3% in 11 ade- 26 /eorml:slti}cly_ 0.1in 9 normal Abbona et al.,
tive nuclei (%) cinomas nomas perp glands 1995 [82]
glands

* Authors classified the cases as <1% vs. 1-5 % vs. >5%. Only the latter group is shown here. In the
original sources, different terms have been used in accordance with the actual classifications and
terminology at the time of publication: ' PPH, primary parathyroid hyperplasia; 2 AA, atypical ade-
noma; *SPH, secondary parathyroid hyperplasia. NOS, not further specified.

Increased cellular proliferation by Ki-67 fraction has been shown in parathyroid tu-
mours and hyperplasia in contrast to non-altered glands [81]. Further, statistically signif-
icantly higher proliferation activity was observed in parathyroid carcinomas than in ade-
nomas [83]. The reported mean proliferation fraction in carcinoma ranges from 6.1% [82]
to 8.4% [84] or even 13.9% [85]. In adenomas, the mean proliferation index by Ki-67 is
reported as 1.9 [79]-4.3% [86] significantly exceeding the Ki-67 levels in residual parathy-
roid tissues [80]. Hence, currently it is generally believed that cut-off level at 5% can help
to distinguish benign parathyroid tumours from the carcinoma although the sole prolif-
eration fraction does not qualify for a WHO-accepted diagnostic criterion [12].

However, controversies still exist. Occasionally, the proliferation fraction in second-
ary parathyroid hyperplasia and multiglandular parathyroid disease has exceeded the
values in adenoma and carcinoma [81]. Further, Kaczmarek et al. noted that normal and
hyperplastic tissues were characterised by proliferation fractions of 3.5% and 1.8%,
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respectively [79]. In contrast, other studies have reported on increasing proliferative ac-
tivity from normal glands to multiglandular parathyroid disease, adenoma and carcinoma
[38].

Technological variables and shortcomings can affect any immunohistochemical vis-
ualisation procedure (Table 4). However, these issues are less probable regarding Ki-67
because it is a robust antigen, and most laboratories have extensive long-term experience
in its detection. In parathyroid pathology, traps for Ki-67 assessment are set by the tumour
biology. The most evident of them is the heterogeneity. Regarding Ki-67 expression, het-
erogeneity manifests as a prominent hotspot pattern: clustering of positive nuclei [38]
strongly suggesting that proliferation and cell cycle regulation in parathyroid tumours
also follows the principles of biological noise and positional effects [87]. Consequently,
the mean and hotspot-measured highest proliferation fraction in tumours can differ sig-
nificantly. For instance, the mean proliferation fractions in normal parathyroid glands,
multiglandular parathyroid disease, adenomas and carcinomas are 0.4%; 1.0%; 1.6% and
5.8%, respectively; contrasting with hotspot-measured highest values in the same set of
sections: 1.0%; 2.8%; 3.5% and 11.8% [38].

Table 4. Technological variables influencing immunohistochemical visualisation.

Step Variable
Time and temperature of cold ischemia before fixation;

Fixation Choice of the fixative;
Time of fixation; underfixation and overfixation
Protocol of dehydration;
Processing Incubation time in xylene and paraffin;
Temperature of melted paraffin
. . Type of antigen retrieval: heat-induced antigen retrieval
Antigen retrieval .
(HIER) vs. enzymatic treatment vs. none
Mode: microwave vs. temperature;

Temperature, time, pressure (if applicable);

HIER parameters pH of the buffer: acidic (e.g., citrate; pH = 6.0), neutral (e.g.,
TBS; pH =7.6) vs. basic (e.g., TEG; pH =9.0)
Clonality (polyclonal vs. monoclonal), clone, isotype
Primary antibody Dilution;
Incubation time and temperature
Visualisation system Choice of the system
Washing of tissue sections Excessive or insufficient

The differences between Ki-67 expression in various parathyroid pathologies retain
statistical significance and range sequence between different pathologies irrespective of
the mode of counting: mean vs. hotspot [38]. However, the numerical values and thus cut-
off thresholds could differ. To avoid discrepancies, a unified evaluation protocol must be
established setting the approach to the counting and the number of cells.

3.3. Cell Cycle Regulation
3.3.1. p27 Protein

The p27 protein is best-known as a cyclin dependent kinase inhibitor and tumour
suppressor that slows cell cycle progression, mediating G1 arrest. It also regulates G2/M
progression. Other functions of p27 include control of cellular differentiation, motility and
migration, as well as the activation of apoptosis. Malignant cells can lose p27 expression
due to impaired synthesis or accelerated degradation, or inappropriate intracellular local-
isation of the relevant protein [88-90].
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In parathyroid pathology, loss of p27 is considered an alert to possible malignancy.
The published data almost invariably highlight low expression in parathyroid carcinoma
despite slight controversies regarding benign parathyroid pathologies. Thus, decreasing
levels of p27 expression were reported in normal parathyroid glands, hyperplastic tissues,
parathyroid adenoma and carcinoma, namely, 89.6%, 69.6%, 56.8% and 13.9% by Erickson
et al., 1999 [84]. Later, the expression levels were reported to be similar in adenoma and
multiglandular parathyroid disease, but the down-regulation in parathyroid carcinoma
was re-confirmed as statistically significant (p = 0.010). The biological differences also were
marked. In normal parathyroid glands, almost all cells (97.9%) expressed p27 protein. The
fraction of p27-expressing cells was 94.3% in multiglandular parathyroid disease associ-
ated with primary hyperparathyroidism and 92.8% in adenoma, contrasting with 59.0%
upon malignant change [38]. Suppression of p27 in carcinoma has been verified by Arvai
et al., 2012 [91], and the difference between adenomas, tumours of uncertain malignant
potential and carcinomas (80% of adenomas vs. 43% of atypical adenomas vs. 18% of car-
cinomas by cut-off threshold at 30% of tumour cells) was found to be statistically signifi-
cant [92].

Immunohistochemical downregulation of p27 protein represents one of the least con-
troversial features of aberrant immunophenotype, that points towards diagnosis of carci-
noma in a parathyroid tumour. Nevertheless, loss of p27 is also seen in parathyroid pa-
thology within the frames of multiple endocrine neoplasia (MEN) syndromes [93].

3.3.2. p21 Protein

The p21 protein controls cell cycle progression, apoptosis and transcription. It is the
key mediator of cell cycle arrest in response to DNA damage [94] and a component of p53
pathway [92]. The expression of p21 has dual effects, including suppression or enhance-
ment of apoptosis [94,95].

In early studies, setting the cut-off threshold at the level of 10%, nuclear expression
of p21 was found in 58% of adenoma and 55% of carcinoma cases [92]. Tissue microarrays
were used in the given study [92]. Later, significant heterogeneity of p21 expression was
observed manifesting as the hotspot pattern [38]. The remarkable heterogeneity hinted on
cautious interpretation of microarray-based results although the differences and trends in
p21 expression were preserved independently of the counting mode: mean vs. hotspot
[38].

The data provided by Stojadinovic et al., 2003, indicated similar p21 levels in ade-
noma and carcinoma [92]. More recently, comparison of mean and highest fraction of p21-
positive cells disclosed statistically significant and biologically notable differences in p21
expression. The mean values were 3.1% in normal glands; 12.8% in adenoma; 15.7% in
multiglandular parathyroid disease and only 7.6% in carcinoma (p < 0.001). The same pat-
tern was followed by hotspot-measured highest values: 3.8% in normal glands, 23.7% in
adenoma, 29.8% in multiglandular parathyroid disease and 15.6% in carcinoma (p <0.001).
Pathogenetically, these findings indirectly indicate either the duality of p21 [95] or a pro-
tective action that is up-regulated in early benign proliferations but lost upon malignant
change. From the diagnostic point, the intermediate values in carcinoma do not encourage
to use p21 for differential diagnosis between benign vs. malignant parathyroid disease.
Finally, if changing p21 levels by targeting its translational regulation or post-translational
modification will be considered as an additive therapy for specific cancers to suppress
neoplastic phenotypes or to reduce drug resistance [95], in parathyroid pathology, multi-
glandular parathyroid disease, e.g., in relevant MEN syndrome patients could be the best-
suited target.

3.3.3. Cyclin D1
The cyclin D1 regulates transcription and acts as an important molecular switch in

the proliferation control. As an allosteric activator, it forms a complex with cyclin depend-
ent kinases 4 and 6 (CDK4 and CDK®6) that phosphorylate and thus inactivate the tumour
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suppressor protein Rb, resulting in the cell cycle progress from the G1 to S phase [96,97].
The overexpression of cyclin D1 in parathyroid neoplasms can be caused by pericentric
inversion of chromosome 11p that results in CCND1 gene control by parathyroid hormone
gene promoter. However, this inversion is seen in lower frequency than the overexpres-
sion of the relevant cyclin D1 protein, e.g., 5-8% vs. 40% in adenomas [98]. Consequently,
other mechanisms are involved, such as gene amplification, transcriptional activation,
e.g., via Wnt or MAPK pathways [96] or deranged degradation [99,100].

In transgenic mice, overexpression of the cyclin D1-coding gene resulted in hy-
perparathyroidism. This pathogenetic association was consistent with the primary role of
cyclin D1 in parathyroid hyperfunction. Morphologically, the animals developed hyper-
plasia as well as asymmetrical encapsulated nodular growths that showed tubular archi-
tecture and compressed the adjacent gland, thus closely resembling adenomas. By im-
munohistochemistry, no cyclin D1 expression was found in parathyroid tissues of wild-
type animals while irregular positive staining was evident in hyperplastic glands of trans-
genic mice [42].

Paralleling animal experiments, high levels of cyclin D1 protein have been reported
in human multiglandular parathyroid disease in the setting of primary hyperparathyroid-
ism. The highest fraction of cyclin D1-expressiong cells in multiglandular parathyroid dis-
ease exceeds the levels seen in adenoma hypothetically suggesting that cyclin D1 repre-
sents as an early molecular driver in parathyroid cell proliferation [38]. This is also in ac-
cordance with the fact that cyclin D1 stain lacks the ability to distinguish between benign
vs. malignant parathyroid tumours [12]. Instead, it may show expression differences be-
tween the early stages: multiglandular parathyroid disease, formerly designated hyper-
plasia, and adenoma. These differences are statistically significant and biologically nota-
ble in contrast with minor margin regarding Ki-67 [38].

Expression of cyclin D1 shows remarkable intertumoural heterogeneity, both in ade-
nomas and carcinomas [41,55] as well as significant intralesional heterogeneity with pres-
ence of cold and hot spots that closely resembles the patterns of Ki-67 and p21 expression.
The set-up of scoring protocols (mean vs. highest fraction of cyclin D1-positive cells) can
influence the degree of statistical significance and thus lead to different conclusions [38].

Several scientific teams have evaluated immunohistochemical expression of cyclin
D1 in parathyroid carcinoma (Table 5). Truran et al. defined negative staining for cyclin
D1 as the carcinoma-associated pattern. This feature was observed in a minor fraction of
parathyroid carcinoma cases (2/24; 8.3%), and authors did not recommend to include it in
the diagnostic panel of parathyroid carcinoma [57]. Several other research groups evalu-
ated the contrary pattern: nuclear overexpression of cyclin D1 either by mean fraction of
positive cells or by different cut-offs. However, they also disregarded overexpression of
cyclin D1 as a marker for differential between parathyroid carcinoma versus adenoma
[92,101].

Although higher levels of wild-type parafibromin have been shown to block expres-
sion of cyclin D1 [102], by immunohistochemistry, no correlation has been reported by
expression of cyclin D1 and loss of parafibromin in parathyroid pathology [38,41,55,103].
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Table 5. Expression of cyclin D1 in parathyroid tumours and tissues.

Absolute Numbers of Pattern-Showing/Investigated Cases; Proportion of Positive Cases (%)

or Fraction of Positive Cells (%)

Pattern Parathvroid Atypical Para- Multiglandular
] y thyroid Tu- Adenoma Parathyroid Normal Gland Reference
Carcinoma .
mour Disease
M lue of st 1j t al.
can vatne of SO 31.5% 12.0% 24.8% PPH 1 1019  Ubanovsetal,
nuclear expression 2021 [38]
Highest (hotspot) .
1 L
value of strongnu-  41.8% 228%  42.5%PPH! 1199 ~ Canovsetal,
. 2021 [38]
clear expression
Nuclear expression 10/14 AA 2 Sungu et al.,
7/10; 70.0% 21;23.8%
exceeding 5% /10; 70.0% 71.4% 5/21; 23.8% 2018 [79]
Lack of expression
considered as the car- Truran et al.
2/24; 8.3% ’
cinoma-associated 24, 83% 2014 [57]
pattern
Nuclear expression 211:182% 1/8 AA% 12.5%  4/44; 9.1% Stojadinovic et
exceeding 5% A 1o PR al., 2003 [92]
Strong nuclear ex- Thomopoulou
pression exceeding 2/2;100.0% 11/17; 64.7% 0/10; 0.0% etal, 2503 [81]
20%
27.4% in joint 27.4% in joint
Mean value of strong group of carci- group of carci- 14.5% in PPH! <19 Thomopoulou
nuclear expression noma and ade- noma and ade- 3.7% in SPH 3 ? etal., 2003 [81]
noma noma
istobal et al.
Nuclear expression 41/46; 89.1% 9/10; 90.0% Crlzso(())o a[l me 4]a /
Mean value o.f nuclear 25.8% 27 1% Cristobal et al.,
expression 2000 [104]
More than 10% of
Ce.lls in aden.oma 9/24 (7, nucle.ar; Tkeda et al.,
stained more inten- 2, cytoplasmic); 2002 [105]
sively than non-tu- 37.5%

mour cells

In the original sources, different terms have been used in accordance with the actual classifications
and terminology at the time of publication: ' PPH, primary parathyroid hyperplasia; 2 AA, atypical
adenoma; ®SPH, secondary parathyroid hyperplasia.

3.3.4. p53 Protein

The “genome guard”, p53 protein is normally found within cells in small quantities
due to a short half-life. The low physiological concentrations are almost undetectable by
immunohistochemistry although some commercial antibodies stain wild-type p53 pro-
tein. TP53 mutations can result in the synthesis of aberrant p53 proteins that have longer
half-lives and therefore accumulate in cells reaching higher intracellular levels that be-
come immunohistochemically detectable. On the other hand, silencing TP53 mutations
lead to absence of protein and therefore negative stain. Thus, TP53 mutation analyses and
immunohistochemistry for p53 protein provide two different levels of molecular assess-
ment lacking correlation but providing complementary information [106].

Regarding p53 in parathyroid tumours, facilitated degradation of the relevant mRNA
can be implicated. Parafibromin can bind to mRNA of p53 and destabilise it [64]. En-
hanced association with mutant parafibromin [64] might result in faster degradation of
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p53 mRNA. The final outcome would be absence of immunohistochemically detectable
P53 expression and enhanced cellular proliferation in parathyroid carcinoma while be-
nign lesions retained wild-type protein. The general landscape of p53 expression in para-
thyroid diseases thus would lack diagnostic differences, remaining invariably negative.
Indeed, constant negative p53 expression in normal parathyroid as well as benign and
malignant tumours has been reported previously [38,92]. However, other research teams
have noted reactivity in even 15% of adenomas [80] and overexpression of p53 in carci-
noma [91]. Although reliable over-expression of p53 protein is still considered an alarming
sign of possible malignancy [12], this feature seems to be rare in parathyroid carcinogen-
esis.

3.4. APC Protein

Adenomatous polyposis coli (APC) gene is a tumour suppressor that inhibits the Wnt
molecular pathway. It is known for its role in colorectal carcinogenesis and association
with familial adenomatous polyposis (FAP) [107,108]. Its protein product can be detected
by immunohistochemistry and has been recommended by WHO (2022) as an adjunct in
the diagnostics of parathyroid carcinoma [12]. Parathyroid adenomas usually retain APC
while carcinomas tend to become negative, therefore loss of APC has been listed among
the biomarkers that indicate an increased risk of malignant behaviour of a parathyroid
tumour [12]. Hosny Mohammed et al. observed loss of APC in 20/21 (95.2%) parathyroid
carcinomas, contrasting with 38/73 (52.1%) adenomas [69]. However, Kumari et al. re-
ported on loss of APC (<10% of cytoplasmic staining) in 9% of carcinomas, 23.5% of atyp-
ical adenomas and 22% of adenomas [72]. Loss of APC acts as a screening marker for ma-
lignant potential, but the diagnosis of carcinoma still must be proved by WHO criteria,
that are based on manifestations of invasive growth and metastatic spread.

Nevertheless, the information on APC in parathyroid tumours is quite scant. In a
recent systematic review on biomarkers of parathyroid cancer [58], only five articles on
APC levels (detected via immunohistochemistry or polymerase chain reaction) were in-
cluded. In two publications, the APC expression in parathyroid carcinoma was found to
be statistically significantly decreased. The third team noted a statistically insignificant
up-regulation in carcinoma, and statistical evaluation was not performed in the remaining
two articles [58].

3.5. Intermediary Filaments
3.5.1. Cytokeratin 19

Cytokeratin 19 is a widely expressed intermediary filament. It is invariably present
in parathyroid adenomas, carcinomas [109] and normal parathyroid glands [110]. Re-
cently, a statistically significant up-regulation of cytokeratin 19 was found in proliferating
parathyroid lesions encompassing adenoma, multiglandular parathyroid disease and car-
cinoma. The expression was markedly heterogeneous [38].

From the point of view of surgical pathologist, it is important to remember that thy-
roid tumours and cancer metastases in cervical lymph nodes also are likely to express
cytokeratin 19 [111-115]. Hence, the diagnostic value of cytokeratin 19 in parathyroid pa-
thology is low but this antigen could rather evoke scientific interest because of its up-
regulation in carcinoma. As the diagnostic criteria of parathyroid carcinoma reflect capac-
ity for invasion and metastatic spread, the altered expression level of intermediate fila-
ments might have pathogenetic importance.

3.5.2. Vimentin

Vimentin is a major mesenchymal intermediate filament, controlling cellular motil-
ity, signalling and directional migration [116].

The glandular histology mostly precluded the researchers from in-depth assessment
of vimentin in parathyroid tissues, except stroma [110]. In addition, the rarity of
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parathyroid carcinoma hampered the studies of epithelial-mesenchymal transition in par-
athyroid malignancies.

In early reports, vimentin expression in normal parathyroid glands was found to be
restricted to stroma [110]. The limited data on adenomas confirmed stromal reactivity but
remained controversial in regard to the presence of vimentin in parenchyma [35,110]. Ex-
pression of vimentin has been reported in parathyroid carcinoma-derived cell line exhib-
iting both epithelial and mesenchymal traits [117].

Recently, our team highlighted some new features: parenchymal expression, differ-
ent patterns and up-regulation of vimentin in proliferating parathyroid lesions along with
changes in its expression pattern. In normal glands, only perinuclear, highly heterogene-
ous vimentin expression was observed. The fraction of vimentin-positive parenchymal
cells increased from 9.3% in normal tissues to 11.7% in multiglandular parathyroid dis-
ease, 19.3% in adenomas and 36.8% in carcinoma. Paralleling the scores of vimentin-pos-
itive cells, cytoplasmic reactivity appeared. In carcinomas, the cytoplasmic expression pat-
tern was invariable. Multiglandular parathyroid disease and adenomas showed combina-
tion of both patterns, with predominantly perinuclear pattern in multiglandular parathy-
roid disease and tendency to more frequent cytoplasmic staining in adenomas. Heteroge-
neity was remarkable in all groups, but only both benign proliferating parathyroid pa-
thologies showed nodularity of vimentin expression [38].

3.6. CD44

CD44 represents a family of integral cell surface glycoproteins. It is a single-span
transmembrane adhesion molecule lacking kinase activity [118,119]. The main ligand of
CD44 is hyaluronic acid that is abundantly present in extracellular matrix. The interaction
between ligand-binding domain of CD44 and hyaluronic acid changes the conformation
of the molecule resulting in the recruitment of adaptor proteins (ERM, Src, and others) to
its intracellular domain. This, in turn, triggers downstream biological effects as prolifera-
tion, motility and migration, adhesion and invasion. CD44 is expressed during embryonic
development, on mesenchymal cells and in carcinogenesis. In tumours, it frequently indi-
cates poor prognosis and is recognised as one of the cancer stem cell markers [29,118-122].

Only few scientific teams have studied CD44 expression in parathyroid tumours. Fo-
cal, irregular expression of CD44 in normal parathyroid glands and adenomas was de-
scribed by Zeromski et al., 1998 [123]. A decade later, contrasting data appeared as up-
regulation of CD44 was found in primary and secondary hyperparathyroidism. CD44 was
present in 13/27 (48.1%) of the abnormal glands, showing statistically significant differ-
ence (p = 0.03) from the immunophenotypic absence of CD44 in normal glands [124]. Still
later, almost complete absence of CD44 was re-confirmed in 179 parathyroid cases, in-
cluding normal glands, multiglandular parathyroid disease, adenomas and carcinomas
[38]. Thus, CD44 has no significant role of the pathogenesis, differential diagnosis or prog-
nosis of parathyroid pathology.

The lack of CD44 in parathyroid tissues and tumours might seem unusual consider-
ing that chromogranin A expression in parathyroid neoplasms indicates neuroendocrine
differentiation [12], and several other neuroendocrine tumours express CD44, although it
is not a specific neuroendocrine marker. Presence of CD44 has been reported, e.g., in pan-
creatic neuroendocrine neoplasms, pulmonary carcinoids and high-grade neuroendocrine
carcinomas (small cell carcinoma and large cell neuroendocrine carcinoma), and medul-
lary thyroid carcinoma [125-129]. The key to solve the putative discrepancy might be in
embryology. Neural crest-derived neoplasms tend to be CD44-negative while CD44 ex-
pression is more consistent for endoderm-derived neuroendocrine tumours [130]. Devel-
opment of parathyroid glands in humans parallels the embryogenesis in mice [131] in-
volving endoderm of the third and fourth pharyngeal pouches that interacts with and
receives molecular signals from the surrounding neural-crest-derived mesenchyme [132—
135]. Neural crest mesenchyme also contributes directly to the development of cervical
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structures, including parathyroid glands as evidenced by unusual co-expression of Snail,
Twist and E-cadherin in normal and benign parathyroid glands [36,136].

3.7. Neuroendocrine and Hormone Markers: Chromogranin A, Synaptophysin, CD56, PTH and
TTF-1

Neuroendocrine and hormone markers are helpful to detect the histogenesis of a tu-
mour or mass lesion. Parathyroid tumours occasionally have to be distinguished from
thyroid neoplasms because of close anatomic relation [137] between both glands, includ-
ing occasional intrathyroidal location of normal parathyroid gland or parathyroid carci-
noma. The histogenetic diagnosis is difficult also in fine needle aspiration cytology [138].

The neuroendocrine differentiation in parathyroid tissues is limited, generally man-
ifesting as isolated positive reaction for chromogranin A, that is observed in most (98%)
cases [12,139,140]. The expression of synaptophysin is less frequent albeit variable: 11—
100%, according to Li et al., 2014 and Yu et al., 2019 [109,140]. Insulinoma-associated pro-
tein 1 (INSM1) is absent [140] both from normal and pathological parathyroid tissues in-
cluding multiglandular parathyroid disease in primary hyperparathyroidism, secondary
hyperplasia, tertiary hyperparathyroidism, adenomas, atypical adenomas and carcino-
mas [140]. Neural cell adhesion molecule CD56 is another negative marker despite fre-
quent expression in neuroendocrine tumours in other locations [38,141-144].

CD56 is a membrane glycoprotein, representing a member of the immunoglobulin
superfamily. It is expressed on neural cells, NK and certain other types of lymphocytes,
muscle fibres as well as in different neoplasms [145]. Considering parathyroid pathology,
early reports indicated absence of CD56 in normal and neoplastic glands [123]. Few later
studies have been devoted to CD56 in parathyroid pathology. Although occasional ex-
pression by luminal membrane was noted [146], a recent study [38] confirmed the absence
of CD56 from parathyroid tissues and tumours (except perivascular nerve fibres). Thus,
in controversial cases, CD56 expression in a cervical neoplasm would favour non-para-
thyroid origin of the tumour. Follicular thyroid adenoma and carcinoma [147], primary
and metastatic neuroendocrine tumours [148-150], NK cell lymphomas [150], malignant
plasma cell dyscrasias, especially multiple myeloma [145]; and alveolar rhabdomyosar-
coma [151] represent just few examples of CD56-positive differential diagnoses. Notably,
pulmonary small cell carcinoma also express CD56 [149].

A positive result for chromogranin A should be combined with the data on PTH ex-
pression in the removed tissues/nodule [137] because other chromogranin A positive tu-
mours enter the differential diagnosis. Medullary thyroid carcinoma is positive for chro-
mogranin A [152], and this differential diagnosis can be especially difficult due to mani-
fold histological structure of medullary thyroid carcinoma. Medullary thyroid carcinoma
expresses calcitonin (80%) and carcinoembryonic antigen CEA in association with nega-
tivity for thyroglobulin. TTF-1 stain can be positive in up to 80%, and PAX-8 in 75% of
cases. Medullary thyroid carcinoma also frequently (90%) features calcitonin-containing
stromal deposits of amyloid, therefore positive reaction via Congo red stain and apple-
green birefringence under polarised light are of diagnostic significance. The amyloid de-
posits are metachromatic upon visualisation with crystal violet [152-154].

Paragangliomas co-express vimentin, chromogranin A and synaptophysin but lack
cytokeratins and calcitonin [154-156]. Expression of second-generation neuroendocrine
markers, e.g., ISL1 and INSM1, has been reported in abdominal (sympathetic) paragan-
gliomas [157]. In our experience, the expression of vimentin in paraganglioma is more
marked, extensive and homogeneous than in benign parathyroid disease. Paraganglioma
features Zellballen architecture with S100-positive sustentacular cells — a feature that is
not seen in parathyroid neoplasms. However, the sustentacular cells can be lost in metas-
tasis [154-157].

Pulmonary small cell carcinoma can metastasize to cervical lymph nodes, and the
differential diagnosis can be emphasized by hypercalcemia due to lung cancer [158,159],
either via bone metastases or paraneoplastic syndrome [160]. This high-grade tumour
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features a variable expression of neuroendocrine differentiation markers, including CD56,
chromogranin A, synaptophysin and insulinoma-associated protein 1 INSM1 [161,162]. In
our experience, chromogranin A and CD56 are the most informative markers in pulmo-
nary small cell carcinoma. Chromogranin A frequently shows perinuclear expression in
the form of tiny but bright perinuclear dots. Expression of CD56 is remarkable for its sta-
bility as it is retained even in crushed specimens. CD56 in small cell carcinoma tends to
be more intense than chromogranin A: the contrary to parathyroid gland. The prolifera-
tion fraction by Ki-67 is very high, usually 70-100% [162]. Nuclei show the diagnostic salt-
and-pepper structure of chromatin, and morphology reflects a high-grade malignancy
with extensive necrosis, Azzopardi phenomenon and high mitotic activity.

Regarding PTH, it is detectable immunohistochemically and almost always present
in parathyroid tumours and tissues [140,163] while being absent from thyroid gland [163].
Thyroid transcription factor TTF-1 and thyroglobulin are negative in parathyroid cells
[12], therefore these are valuable markers in the differential diagnostics between parathy-
roid and thyroid origin of a neoplasm/mass [12,109]. Of note, calcitonin can be positive in
parathyroid tumours [93] () compromising the differential diagnosis with medullary car-
cinoma.

3.8. Immunohistochemical Profile of Parathyroid Disease in MEN Syndromes: Menin

Multiglandular parathyroid disease is a typical component of certain multiple endo-
crine neoplasia (MEN) syndromes, namely, MEN 1, MEN 2A and MEN 4. Loss of menin
is characteristic for MEN I, and decreased expression of p27 — for MEN 4. However, menin
is a technologically “difficult” antigen similarly to parafibromin, and loss of p27 protein
is also seen in sporadic carcinomas [93].

3.9. Calcium-Sensing Receptor (CaSR) and the Associated Molecular Pathways

Most of parathyroid tumours present with hypercalcemia that is higher and therefore
more frequently symptomatic in patients affected by parathyroid carcinoma, compared to
benign disease. Non-functioning parathyroid carcinoma hypothetically exists but is ex-
ceptionally rare [9,10]. Although tumour weight is strongly associated with calcium and
PTH concentration in blood [164], abnormal feedback and/or disturbed sensitivity to
blood calcium levels could be expected in the neoplastic cells, and the dysfunction might
be more marked in carcinoma. Indeed, diminished calcium-sensing receptor expression
has been reported in parathyroid carcinoma but is rare in benign tumours [165]. Thus,
31% of carcinomas showed downregulation of CaSR, contrasting with adenomas and hy-
perplasia. In this study [166], only a single adenoma featured a “carcinoma-like” irregular
or absent CaSR staining pattern (1/104 in a mixed group of adenomas, primary multiglan-
dular disease, secondary hyperplasia and tertiary hyperparathyroidism) [166]. More re-
cently, global loss of CaSR has been reported in 5/10 carcinomas while all adenomas (21)
showed retained expression (p = 0.001), and only a single atypical adenoma (1/14) yielded
global loss of expression [66]. In contrast, Storvall et al. observed retained immunohisto-
chemical CaSR expression in all the evaluated parathyroid tumours, including 32 carcino-
mas, 44 atypical adenomas and 77 adenomas; just a single carcinoma and one atypical
adenoma presented weaker expression [165]. CaSR shows negative correlation with Ki-67
both in secondary hyperparathyroidism and adenoma [166-168].

Scaffold protein filamin A binds to calcium-sensing receptor and activates the mito-
gen-activated protein kinase MAPK pathway. Cytoplasmic expression of filamin A was
statistically significantly higher in carcinomas compared to atypical adenomas or adeno-
mas [165]. The expression of filamin A also correlated with the serum levels of calcium
and PTH, but was not associated with Ki-67 indicating that filamin A plays significant role
in calcium turnover but is not associated with the degree of anaplasia [165]. Indeed, Min-
gione et al., demonstrated that loss of filamin A reduces CaSR expression in protein and
mRNA levels; the CaSR-induced ERK phosphorylation also decreases [169].
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Filamin A levels are not associated with loss of parafibromin. Pathogenetically, this
finding points to different molecular pathways, suggesting diagnostically important con-
clusion: complex evaluation of both markers might have higher informativity. This hy-
pothesis was proved by Storvall et al., 2021: parafibromin-positive tumours featuring low
expression of filamin were likely to be benign [165].

Decreased expression of CaSR in secondary hyperparathyroidism has been demon-
strated in an animal model [170] and is associated with hypermethylation of the CaSR and
VDR genes [171]. The down-regulation of CaSR in nodular hyperplasia has been con-
firmed in human patients, diagnosed with secondary hyperparathyroidism [172]. Tertiary
hyperparathyroidism also is associated with lower levers of CaSR [173].

Orphan adhesion G protein-coupled receptor GPR64/ADGRG2 interacts with CaSR.
It is overexpressed in parathyroid tumours and attenuates CaSR-mediated signalling
[174].

3.10. Intratumoural Heterogeneity

Parathyroid tumours are characterised by remarkable biological heterogeneity, in-
volving proliferative activity (Ki-67) and cell cycle regulation (p21, cyclin D1), expression
of intermediary filaments (cytokeratin 19, vimentin) and different receptors, e.g., calcium
sensing receptor or vitamin D receptor [175]. In addition, technological variations lead to
significant intertumoural heterogeneity and differences among data obtained in various
studies. The detection of parafibromin is the classic example.

4. Tumour Microenvironment

In addition to the gland or tumour parenchyma, represented by the specialised glan-
dular or neoplastic cells themselves, the microenvironment should be accounted for. In
neoplasms, the tumour microenvironment is defined as all non-malignant elements pre-
sent in the tumour that maintain, support, or hinder tumour evolution, for instance, im-
mune and inflammatory cells (tumour-associated lymphocytes, macrophages, neutro-
phils), endothelial cells along with the cascade of angiogenesis, fibroblasts and myofibro-
blasts [121]. Many of these cell types and the involved molecular messengers can be de-
tected by immunohistochemistry.

Currently, only few studies have targeted the microenvironment of parathyroid tu-
mours although there are some direct or indirect reports on macrophages [176,177] that
were formerly known as a confounding factor in cytology [138,178], and angiogenesis
evaluated via morphology or radiological imaging [179,180]. Similarly, scant studies are
performed on systemic inflammatory reaction in patients diagnosed with parathyroid tu-
mours [181]. Tumour-infiltrating lymphocytes (TILs) and local immune landscape repre-
sent the best explored aspect of parathyroid microenvironment [176,177,182] as these data
provide a reliable basis to discuss the applicability of immune therapies [176,183,184].

Programmed death-ligand 1 (PD-L1) in parathyroid tumours has been studied by
several research groups [176,182]. On the basis of PD-L1 expression and the presence of
TILs, four types of tumour microenvironment have been defined [176]:

e immunotype (IT) Is. adaptive resistance: TILs are present, and PD-L1 is expressed;
e ITII's. immunologic ignorance: both TIL s and PD-L1 are absent;

. IT III s. intrinsic induction: TILs are absent, but PD-L1 is expressed;

. IT IV s. tolerance: TILs are present, but PD-L1 is negative.

The team of Silva-Figueroa et al., 2018 evaluated these immunophenotypes in para-
thyroid tumours. PD-L1 expression was mostly negative in parathyroid carcinoma, there-
fore types II and IV predominated (7/18; 38.9% each), followed by type I (3/18; 16.7%).
Type III was the least common (1/18; 5.6%) [176]. In a later study, most of parathyroid
carcinomas (between 18 and 20 cases out of 26 tumours, depending on the clone of pri-
mary antibody) and adenomas (19-25/37) also turned out to be negative [182]. The results
were consistent between the studies, but pointed out to technological heterogeneity. The
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intratumoural density of CD3+, CD8+, CD45+, and CD163+ immune cells in pancreatic
carcinoma correlated with disease-free survival [177]. Thus, the evaluation of tumour mi-
croenvironment can provide insights into prognosis and immunotherapeutic options
(anti-PD-L1 treatment, combination with radiotherapy, vaccines etc.) in accordance with
the identified ITs I-IV [176,177].

5. Conclusions

In conclusion, immunohistochemistry remains an indispensable tool in diagnostic
surgical pathology, including parathyroid tumours. In parathyroid pathology, immuno-
histochemistry has four main applications. First, parafibromin must be detected to iden-
tify the new WHO-defined entity, namely, parafibromin-deficient parathyroid neoplasm.
Loss of parafibromin indicates greater probability of malignant course and should trigger
search for inherited or somatic mutations in CDC73 gene. Second, a set of markers are
down-regulated (e.g., APC, p27 protein, calcium-sensing receptor CaSR) or up-regulated
(e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to
benign parathyroid disease and thus can be helpful increasing the suspicion of malig-
nancy and prompting the search for the definitive criteria for carcinoma. These criteria are
based on morphology: unequivocal invasion or metastasis. Third, upon necessity, im-
munohistochemistry can be used to find out the histogenesis of a cervical or intrathyroidal
mass, or distant metastasis. The differential diagnosis between parathyroid and thyroid
tumours, paraganglioma, haematological or metastatic tumours can be clarified via PTH,
chromogranin A, TTF-1, calcitonin, LCA, CD56 and vimentin, among others. Finally, im-
munohistochemistry is a useful tool in pathogenetic studies due to its ability to highlight
both the presence and the tissue location of certain proteins. The challenges include tech-
nological difficulties (especially, regarding parafibromin stain) and variabilities that
might contribute to some of the highlighted controversies. The future developments in-
clude both diagnostic and research targets. For practical diagnostics, tumour heterogene-
ity and technological variations have to be accounted for, finally yielding standardized
protocols for staining and evaluation of a unified diagnostic set of immunohistochemical
markers. Higher affinity antibodies for parafibromin and menin would be highly desired.
Considering pathogenesis of parathyroid tumours, molecular features and tumour micro-
environment represent attractive targets.
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