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Abstract: In advanced cirrhosis, the TNFα-mediated intestinal inflammation and bacteria dysbiosis
are involved in the development of inflammation and vasoconstriction-related renal dysfunction.
In colitis and acute kidney injury models, activation of SIRT1 attenuates the TNFα-mediated in-
testinal and renal abnormalities. This study explores the impacts of intestinal SIRT1 deficiency and
TNFα-mediated intestinal abnormalities on the development of cirrhosis-related renal dysfunction.
Systemic and renal hemodynamics, intestinal dysbiosis [cirrhosis dysbiosis ratio (CDR) as marker of
dysbiosis], and direct renal vasoconstrictive response (renal vascular resistance (RVR) and glomerular
filtration rate (GFR)) to cumulative doses of TNFα were measured in bile duct ligated (BDL)-cirrhotic
ascitic mice. In SIRT1IEC-KO-BDL-ascitic mice, the worsening of intestinal dysbiosis exacerbates
intestinal inflammation/barrier dysfunction, the upregulation of the expressions of intestinal/renal
TNFα-related pathogenic signals, higher TNFα-induced increase in RVR, and decrease in GFR in
perfused kidney. In intestinal SIRT1 knockout groups, the positive correlations were identified
between intestinal SIRT1 activity and CDR. Particularly, the negative correlations were identified
between CDR and RVR, with the positive correlation between CDR and GFR. In mice with advanced
cirrhosis, the expression of intestinal SIRT1 is involved in the linkage between intestinal dysbio-
sis and vasoconstriction/hypoperfusion-related renal dysfunction through the crosstalk between
intestinal/renal TNFα-related pathogenic inflammatory signals.

Keywords: cirrhotic ascites; tumor necrosis factor-α (TNFα); NAD-dependent deacetylase sirtuin-1
(SIRT1); intestinal barrier dysfunction; intestinal dysbiosis; renal dysfunction
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1. Introduction

Renal failure is a challenge in cirrhotic patients because the likelihood of mortality
occurring increases with worsening renal function [1]. One of the most severe forms of renal
dysfunction in advanced cirrhosis is hepatorenal syndrome (HRS), which is accompanied by
systemic, intestinal, renal inflammation as well as renal vasoconstriction [2–5]. At present,
the search for new potential agents to treat patients with cirrhotic HRS whose responses to
standard treatments are poor is ongoing [6,7].

In advanced cirrhosis, persistent increased circulating tumor necrosis factor-α (TNFα)-
related bacterial translocation and systemic (hepatic, intestinal, renal) inflammation are
involved in the development of intestinal/renal dysfunction and HRS [3,5]. In cirrhotic
patients at diagnosis and resolution of the infection, the development of renal impairment
is associated with significantly high plasma and ascitic fluid TNFα levels [8]. Agents
with anti-TNFα effects can prevent the development of systemic inflammation and renal
dysfunction in cirrhotic rats with portal hypertension [9,10].

In healthy rats, the infusion of high doses of TNFα lowers blood pressure, glomeru-
lar filtration rate and renal blood flow as well as directly induces renal vasoconstric-
tion and increases renal vascular resistance [11,12]. Advanced cirrhotic patients with
HRS are characterized by marked renal vasoconstriction, reduced renal blood flow and
perfusion [2,4]. Increased circulating TNFα is involved in the pathogenesis of HRS, and
higher plasma TNFα levels were observed in cirrhotic patients with HRS than in those with-
out HRS [2,3,9,10,13]. TNFα inhibitors, such as pentoxifylline, can prevent and improve
HRS in advanced cirrhotic patients [9,10].

In cirrhotic rats with ascites, anti-TNFα monoclonal antibody administration directly
suppresses intestinal inflammation, reduces intestinal barrier dysfunction, and decreases
the incidence of bacterial translocation [14,15]. Increased renal TNFα expression indicates
the priming of cirrhotic kidneys by chronic intestinal inflammation, barrier dysfunction,
and bacterial translocation [5,16]. Chronic intestinal decontamination with rifaximin, non-
absorbed gut-directed antibiotic, decreases the severity of acute kidney injury and HRS
by reducing serum TNFα levels in patients with advanced cirrhosis [16]. However, side
effects, such as nausea, vomiting, flatulence and abdominal pain, high cost, resistance, and
the hepatotoxicity of anti-TNFα antibody limit the application of agents with anti-TNF
effects in advanced cirrhotic patients with circulatory and renal dysfunction. Therefore,
for cirrhotic patients with HRS, the identification of the upstream origin of systemic and
local TNFα, to simultaneously treat intestinal inflammation, intestinal barrier dysfunction,
intestinal dysbiosis, bacterial translocation, systemic inflammation and renal dysfunction
is urgently needed.

In rats with DDS-induced colitis, SIRT1 activator pretreatment corrects colonic dysbio-
sis and reduces systemic and colonic mucosa inflammation [17]. SIRT1 RNA and protein
expression are reduced in whole intestinal biopsies and the lamina propria mononuclear
cells of patients with inflammatory bowel disease (IBD) [18]. In patients with IBD, treat-
ment with infliximab, a chimeric monoclonal antibody against TNFα, restores the intestinal
mucosal expression of SIRT1 [18]. Mice with intestinal deletion of SIRT1 (SIRT1IEC-KO)
had abnormal activation of the TNFα pathway, gut dysbiosis and severe intestinal inflam-
mation [19]. Pharmacological activation of intestinal SIRT1 attenuates TNFα-mediated
intestinal barrier dysfunction, inflammation, and dysbiosis [20,21]. In Toxoplasma gondii-
infected mice, pretreatment with SIRT1 activator significantly suppresses TNFα levels in
the ileum, mesenteric lymph nodes and spleen, preventing intestinal barrier dysfunction,
reducing bacterial translocation and improving intestinal dysbiosis [21].

A recent study reported an increased risk of chronic kidney disease (CKD) in cases
with inflammatory bowel disease [22]. In CKD, the suppression of intestinal bacteria
dysbiosis significantly attenuates the severity of renal dysfunction [23]. In acute kidney
injury model, anti-TNFα, antioxidant activities and acute pharmacologic activation of SIRT1
induces reno-vasodilatation, increases renal blood flow (RBF) and decreases RVR [24–26].
In diabetic nephropathy animals, chronic pharmacological activation of SIRT1 improved
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renal dysfunction by decreasing plasma and renal TNFα [27]. Systemic sirtuin 1 (SIRT1)
activation reduces portal pressure by downregulating hepatic TNFα expression, inhibiting
hepatic inflammation, and suppressing intrahepatic vasoconstriction [28]. Nonetheless, the
contribution of the crosstalk between intestinal and renal TNF and SIRT1 signals in the
severe renal dysfunction of cirrhosis has not yet been explored.

Accordingly, this study comprehensively explores the impacts of intestinal SIRT1 defi-
ciency on TNFα-mediated intestinal inflammation, intestinal barrier dysfunction, intestinal
bacterial dysbiosis, bacterial translocation on the development of severe renal dysfunction
in cirrhotic mice with ascites.

2. Results
2.1. Intestinal SIRT1 Deficiency Aggravates Severity of Renal Dysfunction in
SIRT1IEC-KO-BDL-Cirrhotic Mice with Ascites

Compared to WT-sham mice, the WT-BDL mice showed typical cirrhotic livers, ascites,
upregulated hepatic TNFα-TNFR1 signals, significant circulatory dysfunction (reduced
MAP, decreased CO and CI), elevated serum ALT, bilirubin and creatinine levels and
hyponatremia, decreased urine output and decreased body weight (Figure 1 and Table 1).
In SIRT1IEC-KO BDL-cirrhotic mice with ascites, the deletion of intestinal SIRT1 expression
(Figure 1B and Table 1) aggravated the abovementioned abnormalities observed in WT-BDL
mice (Figure 1 and Table 1). However, the serum ALT level and hepatic TNFR2 signals were
not different between WT-BDL and SIRT1IEC-KO BDL mice. Notably, the greater increase in
jaundice was not associated with a greater increase in serum ALT level in SIRT1IEC-KO-BDL
mice compared to those in WT-BDL mice. The heart rate was not different among the four
groups (Table 1).
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Figure 1. Intestinal SIRT1 deficiency aggravates hepatic fibrosis and renal dysfunction in bile duct ligated (BDL) cirrhotic
mice with ascites. (A) Sirius red staining (+) (arrowhead) of mice liver section (20×, the scale bar is 100 µm); (B) intestinal
SIRT1 levels; (C) hepatic levels of TNFα, TNFR1 and TNFR2 genes; (D) serum levels of ALT, (E) total bilirubin, (F) creatinine
and (G) sodium; (H) urine output among groups. * vs. WT-sham mice; # vs. WT-BDL mice.
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Table 1. Hemodynamic parameters of mice in different groups.

WT-BDL (n = 7) SIRT1IEC-KO-BDL
(n = 7)

WT-Sham (n = 7) SIRT1IEC-KO-Sham
(n = 7)

Body weight
(gram) 27.9 ± 2.4 * 27.4 ± 3.2 30.8 ± 2.7 29.8 ± 4.6

Mean arterial
blood pressure
(MAP, mmHg)

92 ± 8 * 91 ± 10 119 ± 14 112 ± 7 #

Heart rate
(beats/min) 458 ± 44 461 ± 32 422 ± 51 430 ± 55

cardiac output
(CO, mL/min) 7.4 ± 0.2 * 4.5 ± 0.2 # 11.2 ± 0.3 10.9 ± 0.4 #

cardiac index (CI,
mL.min/100 g) 26.5 ± 1.7 * 16.7 ± 1.5 # 36.3 ± 2.2 35.9 ± 2.9 #

LPS binding
protein (LBP)

(ng/mL)
27.8 ± 1.2 * 34.7 ± 0.9 9.3 ± 0.6 12.4 ± 1.1

Culture % rate of
MLN 43% * 71% # 0 14%

* p < 0.05 vs. WT-sham group; # p < 0.05 vs. WT-BDL group; CI = CO/BW. MLN: mesenteric lymph nodes.

2.2. Genetic Deletion of Intestinal SIRT1 Exacerbates TNFα-Mediated Intestinal Inflammation and
Barrier Dysfunction in SIRT1IEC KO—BDL Mice

In WT-BDL mice with a higher intestinal TNFα level, higher ileal mucosal injury
score, more fecal albumin loss, and worsening Evans blue-assessed barrier dysfunction
were observed compared to WT-sham mice. Additionally, the upregulation of intestinal
lipocalin-2, TNFR1, TNFR2, p-MLCK was associated with the downregulation of intestinal
SIRT1, catalase, CuZnSOD, MnSOD, occludin, ZO-1 and E-cadherin expressions in WT-
BDL mice (Figure 2). Compared to WT-BDL mice, intestinal deletion of SIRT1 aggravates
the abovementioned intestinal abnormalities in SIRT1IEC KO-BDL-cirrhotic mice (Figure 2).
Nonetheless, the expression levels of intestinal TNFR2 and E-cadherin were not different
between WT-BDL and SIRT1IEC KO-BDL mice (Figure 2E).
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Figure 2. Intestinal SIRT1deficiency aggravates intestinal mucosal injury and barrier dysfunction in BDL-cirrhotic mice.
(A) Intestinal TNFα level, (B) representative images (20×, the scale bar is 100 µm) and bar graph of H-E staining for the
severity of ileal mucosal injury (arrowhead), (C) degree of fecal albumin loss, (D) degree of Evans blue-based intestinal
barrier dysfunction, (E) relative mRNA and (F) protein expression of various TNFα-related signals among groups. * vs.
WT-sham mice; # vs. WT-BDL mice.
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2.3. Intestinal SIRT1 Deficiency Aggravated Renal Dysfunction through the Upregulation of
TNFα-Activated Signals in SIRT1IEC KO-BDL Mice

Compared to WT-sham mice, WT-BDL mice with severe renal dysfunction had higher
levels of urinary KIM-1 and NGAL, higher renal tubular injury score, tubular interstitial
fibrosis score, renal TNFα and TBARS levels, expressions of renal inflammatory (TNFR1
and TNFR2), and injury (NOX-2, KIM-1 and lipocalin-2) markers as well as lower renal
expressions of SIRT1, anti-oxidants (catalase, CuZnSOD and MnSOD) and barrier (ZO-1, oc-
cludin, E-cadherin) markers (Figure 3). In SIRT1IEC KO-BDL mice, the deletion of intestinal
SIRT1 expression (Figures 1B and 2, and Table 1) further aggravates the abovementioned
renal abnormalities of WT-BDL mice (Figure 3).
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Figure 3. Intestinal SIRT1 deficiency increased renal TNFα-related inflammatory and oxidative stress-related markers.
(A) Representative image and bar graphs of Sirius red staining (+) (arrowhead) of mice renal section (20×, the scale bar is
100 µm); (B) renal TNFα and (C) TBARS levels, (D) representative images and bar graphs of various renal TNFα-related
beneficial and pathogenic proteins and (F) genes; (E) representative H-E staining image and bar graphs of mice renal section
(20×, the scale bar is 100 µm) for the severity of renal injury (arrowhead); urinary levels of (G) KIM-1 and (H) NGAL among
groups. TBARS: thiobarbituric acid-reacting substances. * vs. WT-sham mice; # vs. WT-BDL mice.

2.4. Direct Evidence for the Aggravation of TNFa-Induced Renal Dysfunction in SIRT1IEC KO

BDL-Cirrhotic Mice due to the Deficiency of Intestinal SIRT1

In the in situ renal perfusion study of WT-BDL mice, the lower basal MAP, GFR,
RBF and the higher RVR were noted compared to those of WT-sham mice (Figure 4).
Notably, the magnitude (percentage change) of the TNFα-induced decrease in MAP was
not different between the four groups (WT-BDL-cirrhotic and SIRT1IEC-KO-BDL-cirrhotic
mice) (Figure 4A). A higher degree of TNFα-induced increase in the RVR and the decrease
in GFR and RBF were observed among SIRT1IEC KO-BDL-cirrhotic ascitic mice than in WT-
BDL-cirrhotic ascitic mice (Figure 4B–D). However, the degree of TNFα-induced changes
in GFR, RVR and RBF did not differ between WT-sham and SIRT1IEC KO-sham mice.
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2.5. Genetic Deletion of Intestinal SIRT1 Aggravates the Intestinal Bacterial Dysbiosis in
SIRT1IEC KO-Mice

The Shannon and Faith’s Phylogenetic Diversity (PD) index, and evenness index were
significantly lower in the WT-BDL mice and SIRT1IEC KO-BDL mice than in the WT-sham
mice (Figure 5A and Supplement Figure S1A,B). These results indicate that the overall
microbial species diversity was lower in the WT-BDL mice and the SIRT1IEC KO-BDL mice
than in the WT-sham mice. The UniFrac principal coordinate analysis (PCoA) is shown in
Figure 5B. The WT-sham and WT-BDL groups were separated into different clusters (PER-
MANOVA, p = 0.001, Q valve = 0.006). Likewise, the microbiota of the SIRT1IEC KO-BDL
group was clustered separately from that of WT BDL group (PERMANOVA, PERMANOVA,
p = 0.003, Q valve = 0.008).

Notably, the Taxa bar plot (Supplementary Figure S1D–H) of the 10 most abundant
taxa shows the same trends as the chord diagram. The chord diagram indicates that
the intestinal microbiota of the WT-BDL mice at the phylum level were characterized by
a decrease in anti-inflammatory Firmicutes bacteria and an increase in proinflammatory
Deferribacteres and Epsilobacteraeota bacteria compared to those in WT-sham mice (Figure 5C).
In SIRT1IEC KO-BDL mice, an increase in proinflammatory Bacteroidetes bacteria compared
to in WT-BDL mice was observed. The decreased in abundance of Firmicutes was associated
with an increase in proinflammatory Proteobacteria bacteria in SIRT1IEC KO-sham mice.

At the class and order levels, the intestinal microbiota of WT-BDL mice were character-
ized by a decrease in the abundance of anti-inflammatory bacteria Clostridia and Clostridiales
(belong to Firmicutes phylum) and the increased proinflammatory bacteria Campylobacte-
ria, Deferribacteres, Defferibacteres (belong to Deferribacteres phylum) compared WT-sham
mice (Supplement Figure S2). Compared to WT-BDL mice, a further increase in the abun-
dance of Bacteroidia, Bacteroidales (belong to Bacteroidetes phylum) and Defferibacterales was
observed in SIRT1IEC-KO-BDL mice. Notably, the presence of proinflammatory Gammapro-
teobacteria and Enterobacteriales (belong to proteobacteria phylum) bacteria in intestines of
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SIRT1IEC KO-sham mice was observed (Supplement Figure S2). At the family and genus
levels, in comparison with WT-sham mice feces, the absence of anti-inflammatory bacteria
[Lactbacillaceae (family)/Lactobacillus (genus)] was associated with increase in proinflam-
matory bacteria (Muribaculaceae (family, belong to Deferribacteres phylum), Mucispinillum
(genus, belong to Deferribacteres phylum), Helicobaraceae) in WT-BDL mice feces (Supple-
ment Figure S2). Notably, SIRT1IEC KO-BDL mice were characterized by the presence of
proinflammatory bacteria (Peptostrepococcaceae (family, belong to Clostridiaes order), Bac-
teroidaceae (family), Romboutsia (genus, belong to Peptostreptococcaceae family), Bacteroides
(genus), and Parabacteroides (genus), Muribaculaceae (family, belong to Deferribacteres phy-
lum)) compared to the lack of these in WT-BDL mice feces (Supplement Figure S2). In
comparison with WT-sham mice, SIRT1IEC KO-sham mice were characterized by higher
levels of intestinal Enterbacteriaceae and lower levels of Lactbacillaceae at the family level; as
well as the presence of Escherichia-shigella, and Parabacteroides, and Citrobacter at genus level
(Supplement Figure S2).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 20 
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2.6. Shifting to Proinflammatory Bacteria that have Biological Relevance for Intestinal Epithelial
Barrier Dysfunction in SIRT1IEC-KO-BDL Mice

In WT-sham mice, both the cladogram (Supplement Figure S3) and the linear dis-
criminant analysis (LDA) effect size method (LAD score > 3; Figures 6 and 7) revealed an
increase in beneficial bacteria (Clostridia, Clostridiales, Lachnospiraceae, Lactobacillale, Lacto-
bacillaceae (belong to Defirmicutes), short chain fatty acid producer Prevotellaceae (belong
to order bacteroidales), Ruminococcaceae UCG and Ruminococcus1 and Ruminiclostridium
6) that have involvement in the integrity of intestinal epithelial barrier. In contrast, the
intestinal microbiota of WT-BDL mice were characterized by an increase in pathogenic
bacteria (Rikenellaceae (belong to Bacteroidetes rhylum), Alistipes (belong to Rikenellaceae
family), Parasutterella (belong to Proteobacteria phylum), Defferibacterales, Deferribacteres,
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Deferribacteraceae, and Mucispirillum (belong to Deferribacteres phylum) that compromise
barrier function (Figures 6 and 7).
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Notably, SIRT1IEC KO-BDL mice were characterized by an increase in intestinal in-
flammatory bacteria (Bacteroides, Bacteroidaceae, Peptostreptococcaceae (belong to Clostridiales
order), Romboutsia (belong to family of Peptostreptococcaceae), Ruminococcaceae, Rumini-
clostridium 6, Blautai and Ruminiclostridium (belong to Clostridia class), Delatproteobacte-
ria, Desulfovibrio, Desulfavibrionales (belong to Deltaproteobacteria phylum), Streptococcaceae
(belong to Bacilli class), Streptococcus (belong to Streptococcaceae family and Bacilli class),
Actinobacteria, Eggerthellaceae, Coriobacteriales, Coriobacteria (belong to Actinobacteria phylum)
that compromise the barrier function (Figures 6 and 7).

In addition to preserving anti-inflammatory bacteria, including Verrucomicrobiales,
Verrucomicrobia, Verrucomicrobiales, Akkermansia, Akkermansiaceae, Erysipelptrichales,
Erysipelotrichaceae, Enterococcus, Enterococcaceae (belong to Firmicutes rhylum), the
microbiota of SIRT1IEC KO-sham mice were characterized by an increased abundance of
proinflammatory bacteria including Proteobacteria, Gammaproteobacteria, Betaproteobac-
teriales, Enterobacteriaceae, Delftia, Escherichia-shigella (belong to Proteobacteria phylum),
Patescibacteria, Saccharimonadia, Saccharimonadates, Saccharimonadaceae (belong to
Patescibacteria phylum), which compromise the barrier function (Figures 6 and 7).

2.7. Intestinal Bacterial Dysbiosis was Associated with the Upregulation of Renal Inflammatory
and Barrier-Disrupted Markers in SIRT1IEC-KO Mice

Compared to WT groups, a significant positive correlation was noted between
mRNA/protein levels of renal inflammatory mediators (lipocalin-2 and TNFR1) and the
abundance of barrier-disrupted pathogenic intestinal bacteria (Epsilonbacteraeota (phylum)
and Campylobacteria (class)) in KO groups (Figure 8A,B). In comparison with WT groups,
the negative correlation between mRNA/protein levels of renal inflammatory mediators
(lipocalin-2 and TNFR1) and the abundance of barrier-protected intestinal bacteria (Bacilli
(class), Saccharimonadia (class), Erysipelotrichia (class), Verrucomicrobia (class) was noted
in KO groups. Significantly, there was positive correlation between the mRNA/protein
levels of anti-inflammatory (catalase, MnSOD and CuZnSOD)/barrier (occludin and E-
adhesin) markers and the abundance of barrier-protected intestinal bacteria (Bacilli (class),
Erysipelotrichia (class), Verrucomicrobia (class)). Additionally, there was a negative correlation
between the mRNA/protein levels of anti-inflammatory (catalase, MnSOD, and CuZn-
SOD)/barrier (occludin and E-adhesin) markers and the abundance of barrier-disrupted
intestinal bacteria (Saccharimonadia (class), Episolbacteraeata, Campylobacteria) in KO groups.

This correlation analysis was performed to explore the crosstalk between the abundance
of intestinal bacteria (with inflammatory, anti-inflammatory, barrier-protected and barrier-
disrupted effects), protein/mRNA levels of intestinal/renal injured, anti-inflammatory,
barrier-protected, and barrier-disrupted markers. Notably, the trend of the correlation
between the abundance of intestinal microbiota across phylum, class and order levels, and
the levels of intestinal pathogenic/protective markers (Supplement Figure S4A,B) were
similar to those between intestinal microbiota and renal pathogenic/protective markers
(Figure 9A,B). Moreover, the significant correlations were noted between the levels of in-
testinal and renal protective (ZO-1, occludin, E-adhesin, catalase, MnSOD, and CuZn-SOD)
as well as pathogenic markers (TNFR1, TNFR2, MLKC, p-MLKC, lipocalin-2 and KIM-1)
(Figure 9A,B).
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Figure 8. Crosstalk between intestinal and renal pathogenic markers in bile duct ligation (BDL) mice. (A,B) Significant
correlation was noted between renal injury, renal inflammatory, anti-inflammatory, barrier markers and intestinal microbiota
in WT groups (WT-BDL and WT-sham) and KO groups (SIRT1IEC-KO-BDL and SIRT1IEC-KO-sham). “Green” lines represent
positive correlation between the abundance of pathogenic proteins and mRNA levels of corresponding pathogenic markers
whereas “red” lines indicate the negative correlation between the abundance of the bacteria with protein and mRNA levels
of corresponding pathogenic markers.
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2.8. Direct Link between Intestinal Bacterial Dysbiosis and Severe Renal Dysfunction in
SIRT1IEC-KO-BDL Mice

Compared to WT-sham mice, higher serum LPS binding protein (LBP) levels (Table 1),
higher MLN culture positive rates (Table 1), and lower cirrhosis dysbiosis ratios (CDR)
(Figure 10A) were observed in WT-BDL mice. Notably, the deletion of the intestinal SIRT1
gene aggravated the degree of increase in serum LBP level and MLN culture positive rate,
as well as the decrease in intestinal CDR in SIRT1IEC-KO-BDL mice compared to those in
WT-BDL mice. Figure 10B shows a positive correlation between data of the intestinal CDR
and SIRT1 activity of WT and KO mice. The correlation was stronger between KO than WT
groups, and significance was only noted between KO groups. Significantly, there was a
negative correlation between the level of intestinal SIRT1 activity and baseline RVR in KO
groups (Figure 10C). In the KO groups, the significant negative correlation between data of
the intestinal CDR and the data of RVR was parallel to the positive correlation between
the data of intestinal CDR and the data of the GFR (Figure 10D,F). In both the WT and KO
groups, the correlation between intestinal SIRT1 activity and the data of GFR did not reach
statistical significance (Figure 10E).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 20 
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(A) The data of CDR between groups; (B) correlation between intestinal SIRT1 activity and the CDR in WT and KO mice
groups; * vs. WT-sham mice; # vs. WT-BDL mice; (C) correlation between intestinal SIRT1 activity and the RVR (renal
vascular resistance) in WT and KO mice groups; (D) correlation between the CDR and the RVR in WT and KO mice
groups; (E) correlation between intestinal SIRT1 activity and the GFR (glomerular filtration rate) in WT and KO mice
groups; (F) correlation between the CDR and the GFR. WT mice groups include WT-BDL and WT-sham mice; KO mice
groups include the SITR1IEC-KO-sham and SITR1IEC-KO-BDL mice. Mn/CuZn-SOD: superoxide dismutase; p-MLCK/MLCK:
phosphorylated myosin light chain kinase; ZO-1: zonula occludens-1, TNFR1/TNFR2; tumor necrosis factor receptor 1 and
2; KIM; kidney injury marker.

3. Discussion

Pharmacologic and genetic depletion of systemic TNFα can suppress aging-associated
intestinal and systemic inflammation and normalize intestinal dysbiosis [19]. The preser-
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vation of the gut microbiota in older TNF−/− mice indicates the important pathogenic
roles of TNFα in age-related intestinal dysbiosis, systemic inflammation and intestinal
barrier dysfunction [29]. Increased abundance of Rikenellaceae family is associated with the
exacerbation of intestinal inflammation [30]. In cirrhotic patients, intestinal inflammation
and barrier dysfunction, overgrowth of the proinflammatory intestinal bacteria, such as
Enterobacteriaceae, Veillonellaceae, and Streptococcaceae) and decreased anti-inflammatory
Lachnospiraceae bacteria abundance are correlated with the severity of cirrhosis [29–32]. The
exogenous administration of Akkermansia attenuates metabolic endotoxemia-induced in-
flammation through restoration of the gut barrier [33]. In this study, the anti-inflammatory
intestinal bacteria, including Lachnospiraceae and Akkermansia, were dominant in sham mice,
whereas the proinflammatory intestinal bacteria, including Streptococcaceae and Rikenel-
laceae, were dominant in WT-BDL and SIRT1IEC KO-BDL mice with severe intestinal barrier
dysfunction. The cirrhosis dysbiosis ratio (CDR), which represents the balance between
proinflammatory and anti-inflammatory intestinal bacteria, is important for prediction of
cirrhosis-related intestinal and renal complications [31,32].

In particular, this study revealed a significant positive correlation between the CDR
and intestinal SIRT1 activity, between the CDR and glomerular filtration rate, as well as
a negative correlation between CDR and renal vascular resistance. This emphasizes the
involvement of intestinal proinflammatory and anti-inflammatory bacteria in the intestinal
and renal dysregulation of cirrhosis (Supplement Figure S5). TNFα causes intestinal tight
junction disruption and subsequent intestinal barrier dysfunction via myosin light chain
kinase (MLCK) activation [34,35]. The upregulation of intestinal TNFα-TNFR signals and
phosphorylation of intestinal MLCK is involved in the pathogenesis of intestinal barrier
dysfunction and disease progression in cirrhosis [36]. In SIRT1IEC-KO-BDL-cirrhotic mice,
the depleted intestinal SIRT1-related upregulation of TNFα-TNFR signals are associated
with the upregulation of intestinal p-MLCK expression and disruption of intestinal barrier
integrity. In the cirrhotic mice, there is a positive correlation between the expression levels
of intestinal p-MLCK and renal lipocalin-2 (inflammatory and renal injury marker) as well
as intestinal p-MLCK and renal KIM-1.

Upon inflammation and tissue damage, in addition to crosstalk in the intestine, acti-
vation of renal SIRT1 attenuates the detrimental effects of TNFα on renal mesangial and
tubular epithelial cells [19–21,24–27]. The deficiency of intestinal SIRT1 exacerbates TNFα-
mediated renal damage in mice with cholestasis [37]. In a nephropathy model, systemic
SIRT1 activation suppresses intestinal/renal TNFα expression and ameliorates renal dys-
function [27]. In this study, the elevation of serum bilirubin was associated with increased
creatinine level in SIRT1IEC-KO-BDL-cirrhotic mice compared to WT BDL-cirrhotic mice
(Figure 1E,F). In addition to supporting the previous observation regarding the crosstalk
between hepatic SIRT1 and TNFα [28], this study suggests a link between SIRT1−TNFα
crosstalk and intestinal SIRT1-related effects and renal dysfunction of cirrhosis.

In response to inflammation and tissue injury, TNFα directly induces the production
of lipocalin-2 from intestinal and renal epithelial cells [38]. Lipocalin-2 is an inflammatory
mediator for intestinal and renal inflammation and is positively correlated with inflam-
matory disease severity [38–40]. Serum lipocalin-2 are positively correlated with serum
levels of soluble TNFR and negatively correlated with glomerular filtration rate [40]. Re-
nal expression of lipocalin-2 is significantly increased in decompensated cirrhosis with
increased circulating TNFα and acute renal injury [40,41]. In this study, there was a posi-
tive correlation between the abundance of proinflammatory bacteria and intestinal/renal
lipocalin/TNFα/TNFR expression in the WT and KO groups (Supplement Figure S4A,B).
Accordingly, these observations reinforced the existence of inflamed and leaky intestine-
driven renal dysfunction in SIRT1IEC-KO-BDL-cirrhotic mice.

Chronic kidney disease (CKD) is characterized by the accumulation of metabolites of
proinflammatory gut bacteria. These can damage renal tubular cells by increasing cellular
oxidative stress and deteriorating renal function [42,43]. In CKD, the suppression of intesti-
nal bacteria dysbiosis by the consumption of a high-fiber diet significantly attenuates the
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disruption of the colonic epithelial tight junction and severity of renal dysfunction [23].
In patents with CKD, there is an increased abundance of proinflammatory enterobacteri-
aceae and Clostridiaceae bacteria and decreased abundance of anti-inflammatory butyrate-
producing bacteria (Lactobacillaceae and Prevotellaceae) [43]. In the present study, intestinal
inflammation and renal dysfunction in WT-BDL and SIRT1IEC-KO BDL-cirrhotic mice were
characterized by increased intestinal abundance of Enterobacteriaceae and Clostridiaceae as
well as decreased abundance of Lactobacillaceae and Prevotellaceae.

In the model of murine colitis, TNFR1 is highly expressed in intestinal epithelial cells
and mediates TNFα induced inflammatory cascades [42,44]. In the present study, the SIRT1-
related modulation of intestine TNFα expression primarily occurs through the upregulation
of TNFR1 expression in the cirrhotic intestine. Meanwhile, TNFR1 is highly expressed
in the renal proximal tubule and collecting duct, TNFR1 activation reduces renal blood
flow (RBF) and glomerular filtration rate (GFR) [45,46]. In patients with diabetic kidney
disease, serum TNFR levels are positively associated with estimated glomerular filtration
rate (eGFR) decline and disease severity [47,48]. In SIRT1IEC-KO BDL-cirrhotic mice the
detrimental renal effects of intestinal SIRT1 deficiency, including further decrease in RBF
and GFR, occurred through the simultaneous upregulation of intestinal and renal TNFα-
TNFR1 cascades (Supplement Figure S5). Additionally, there were significant positive
correlations between oxidative stress markers (intestinal and renal MnSOD, CuZn-SOD,
catalase), inflammation marker (intestinal and renal TNFR1/TNFR2), and intestinal/renal
dysfunction markers (p-MLCK, MLCK, lipocalin-2 and KIM).

Resveratrol has rapid metabolism and low bioavailability. After resveratrol was
ingested 77–80% of it was absorbed in the intestine and 49–60% of this is excreted in
the urine. After ingestion resveratrol also reaches the intestine via the hepatic portal
system. Decreased intestinal SIRT1 had been associated with intestinal and renal inflamma-
tion [18,19,24]. Anti-TNFα-related anti-inflammatory effects of SIRT1 activator resveratrol
had been reported in chondrogenic mesenchymal stem and tumor colon rectal cancer
cell system [49–51]. In experimental models of acute and chronic kidney injury, chronic
systemic SIRT1 activation with resveratrol significantly improves adriamycin-induced,
subtotal nephrectomy-induced and unilateral ureteral obstruction-induced renal dysfunc-
tion through the anti-inflammatory effects [24,52,53]. Through SIRT1 activation, resveratrol
treatment attenuated the intestinal inflammation and renal dysfunction in the noncirrhosis
model [17,20,21,24,49–53].

4. Conclusions

This study reinforced the concepts of increased TNFα-mediated renal oxidative stress
and inflammation as the main culprits for the deterioration of renal function in cirrhotic
patients. In cirrhotic ascitic mice, the well-expressed intestinal SIRT1 is crucial to prevent
TNFα-mediated activation of systemic, intestinal and renal oxidative stress, inflammation
and injured signals that contribute to the development of renal dysfunction. Agents that
can restore intestinal SIRT1 have the potential to improve the inflammation-derived TNFα-
mediated renal dysfunction in advanced cirrhosis. So, it is noteworthy to explore the effects
of the administration of a highly absorbed intestinal SIRT1 activator such as resveratrol
on the coexisting TNFα-mediated intestinal and renal pathogenic changes as well as renal
dysfunction in cirrhosis.

5. Materials and Methods
5.1. Animals

Animals used in this study were 10 weeks-old male mice with an intestinal epithelial
specific deletion (knockout, KO) of the SIRT1 gene (SIRT1IEC-KO) with a 99% C57BL/6J
genetic background. To generate SIRT1IEC-KO mice, SIRT1 flox/flox mice were crossed
with transgenic mice expressing Cre recombinase under the control of the villin promoter
(VillinCre−), which is expressed in intestinal epithelial cells (IEC) purchased from Charles
River Japan, Inc. (Yokohama, Japan). Wild type C57BL/6 mice were served as controls
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(WT). The experiments were approved by the animal ethical committee of Yang-Ming
medical university with approval of No. 1061232r and IACUC 2018-54. All the raising and
breeding of animals is undertaken in the laboratory animal center of National Yang-Ming
University. All the experiments were performed in our laboratory. All efforts were made to
minimize animal suffering by administering inhalation anesthetics (isoflurane). At the end
of the experiments, the mice were euthanized with the inhalation anesthetic by overdose of
isoflurane.

5.2. Groupings

Common bile duct ligation (BDL) was undergone on ten week-old WT and SIRT1IEC-KO

mice to create severe renal dysfunction in advanced cirrhosis [54]. Six weeks after BDL,
∼=15% of BDL mice died. The presence of ascites was evaluated by ultrasound and 85%
of BDL mice displayed ascites at the time of sacrifice. This created 4 experimental groups
namely WT sham, WT-BDL, SIRT1IEC-KO-sham, and SIRT1IEC-KO-BDL mice (n = 7, in each
group) and were included for serial experiments.

5.3. Common Measurements between Two Sets of Mice

At the end point (week 6 after BDL) of the study, mouse was placed in a metabolic
cage and 24-h urine samples were collected over 5 consecutive days, and the average of
5-day daily urine output (mL/100 g BW) was calculated. The supernatant of collected
3-day urine samples was used for measuring of urinary concentration of creatinine, and
renal tubular epithelial damage markers (urinary levels of uKIM-1/creatinine (ng/mg u.cr)
and urinary levels of uNGAL/creatinine ratio (ng/g tissue).

5.4. Experiments in the First Set of four Groups of Mice
5.4.1. Systemic and Renal Hemodynamic Measurements

For the first set of 4 groups of mice (n = 7 in each group), cardiac output (CO), mean
arterial pressure (MAP), and heart rate (HR) were measured. CO was normalized to body
weight and represented as cardiac index (CI). Then, a midline incision was made in the
abdomen. Whole kidney blood flow (RABF, mL/min.100 g) of the left and right kidney
was measured. Renal vascular resistance (RVR) was calculated as the RABF divided by
the MAP. Finally, tissues (liver, intestine, and kidney), mesenteric lymph nodes (MLN),
stool and blood samples were collected for measurements of intestinal bacterial microbiota,
intestine TNFα level, and plasma LPS-binding protein [LBP, BT marker, using ToxinSensor
Chromogenic LAL Endotoxin Assay Kit (GenScript USA Inc., Piscataway, NJ, USA)].

5.4.2. Measurements of Intestinal Permeability and Intestinal Inflammation

Evan Blue (EB)-permeated intestinal permeability methods were used to assess the
degree of intestinal barrier dysfunction as previously described [55]. Additionally, intestinal
permeability was reassessed by measurement of albumin content in the mice feces using
ELISA kits (MyBioSource, Inc., San Diego, CA, USA). The data was normalized to the total
weight of feces. For measurement of intestinal inflammation, the terminal ileum lumen
was carefully cannulated, gently washed and embedded for staining with hematoxylene
and eosin (H&E). Injury was classified using a semiquantitative grading system as shown
in Supplement Table S1.

5.4.3. Measurements of Tissue Profiles

Proteins/mRNAs expressions of hepatic, intestine, renal inflammatory, oxidative stress,
antioxidant, intestinal and renal injury as well as barrier markers were measured with
appropriate antibodies/primers (Table 2). Tissue levels of SIRT1 activities were measured
with SIRT1 fluorometric Kit (Abcam, relative fluorescence unit, RFU). Hepatic and renal
collagen deposition and renal tubulointerstitial injury were measured with Sirius red and
periodic acid-Schiff (PAS) staining. The average of the results of samples from each mouse
were included for comparison.
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Table 2. Primer sequences used for various genes expression analysis by real-time qPCR.

Name of Gene Sequence of Sense Primer (5′-3′) Sequence of Anti-Sense Primer (3′-5′)

18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG
SIRT1 GCAACAGCATCTTGCCGAT GTGCTACTGGTCTCACTT

TNFR1 TGACCCTCTCCTCTACGGA CCATCCACCACAGCATACA
TNFR2 GACTGGCGAACTGCTT AACTGGGTGCTGTGGTCAAT
Nox-2 GGGAACTGGGCTGTGAATGA CAGTGCTGACCCAAGGAGTT
Nox-4 ACAGTCCTGGCTTACCTTCG TTCTGGGATCCTCATTCTGG

CuZnSOD (superoxide dismutase) GCGGTGAACCAGTTGTGTTGTC CCTCTGGACCCGTTACACTGAC
MnSOD (superoxide dismutase) ATGTTACAACTCAGGTCGCTCTTC CCTCTCAACGACCTCCGATAGT

Catalase CCGACCAGGGCATCAAAA GAGGCCATAATCCGGATCTTC
MLCK AAT GGT GTT GCT GGA GAT CGA GGT CTCAAAGTTACCACCGCTGCTG
ZO-1 CGGGACTGTTGGTATTGGCTAGA GGCCAGGGCCATAGTAAAGTTTG

Occludin TCCTATAAATCCACGCCGGTTC CTCAAAGTTACCACCGCTGCTG
E-cadherin TCA ACG ATC CTG ACC AGC AGT TCG- GGT GAA CCA TCA TCT GTG GCG ATG

KIM-1 TGGCACTGTGACATCCTCAGA GCAACGGACATGCCAACATA
IL-18 CTTTGGAAGCCTGCTATAATCC GGTCAAGAGGAAGTGATTTGGA

Lipocalin-2 TGGCCACTTGCACATTGTAG ATGTCACCTCCATCCTGGTC

TNFR, receptor of tumor necrosis factor; MLCK: myosin light chain kinase, Interleukin-18 (marker of renal tubular injury).

5.4.4. 16S rRNA Gene Sequencing Analysis for Intestinal Bacterial Microbiome

DNA extraction from fecal samples was conducted using a QIAamp Fast DNA Stool
Mini Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocols [18,20]. To
obtain further insights into the pathogenic effects of genetic deletion of intestinal SIRT1
on intestinal bacterial microbiome, we used metagenomic sequencing of the 16S rRNA
gene. The library for 16S rDNA amplicon sequencing was constructed based on the PCR-
amplified V3–V4 variable regions. Alpha diversity (Shannon diversity, Faiths PD index,
evenness index, and observed OTU) was calculated. The UniFrac principal coordinate
analysis (PCoA), which evaluates phylogenetic similarities between microbial communities,
was calculated for the beta-diversity.

5.4.5. Direct Correlation between Intestinal Dysbiosis and Renal Dysfunction of
Cirrhotic Mice

Correlation network between the abundance of significant bacteria and expression
levels of intestinal and renal pathogenic markers were visualized by generating two in-
teractive networks specific to the WT (WT-sham and WT-BDL mice) and KO (SIRT1IEC KO

sham and SIRT1IEC KO BDL mice) groups and analyzed using Cytoscape and CoNet. [56,57].
Additionally, the ratio of autochthonous (inhabiting a place or region from earliest time,
Lachnospiraceae + Ruminococcaceae + Veillonellaceae + Clostridialies XIV) to non-autochthonous
taxa (Bacteroidaceae + Enterobacteriaceae) was calculated as the cirrhosis dysbiosis ratio
(CDR). Notably, the abovementioned autochthonous taxa on the numerator of CDR are
bacteria that can reduce colonic inflammation and nourish colonocytes, compete with
pathogenic bacteria for nutrients, avoid intestinal barrier dysfunction and reduce bacterial
translocation [31,32]. It had been reported that low CDR is associated with endotoxemia,
infection, death and organ failures within 30 days in cirrhotic patients [31,32]. In our study,
the CDR of each mouse was calculated and correlated with the intestinal SIRT1 activity, the
RVR data and the GFR data of individual group.

5.5. Experiments in the Second set of Mice

In in situ renal perfusion study, the dose-response of MAP, GFR and RVR to the
incremental doses of TNFα (0.1, 0.3, and 0.5 ng/g/min) were measured in the second set
of 4 groups of mice (n = 7 in each group). Two consecutive 30-min urine (basal period)
and corresponding blood were collected for measuring plasma and urine concentrations
of inulin, PAH and hematocrit. Then, the value for inulin clearance was considered as
glomerular filtration rate (GFR) with formula of Uinulin/Pinulin*UV (Uinulin/Pinulin: urine
and plasma levels of inulin, UV: urine volume in the given time period), and the value
for PAH clearance was considered as renal plasma flow with formula of UPAH/PPAH*UV



Int. J. Mol. Sci. 2021, 22, 1233 16 of 19

(UPAH/PPAH: urine and plasma levels of PAH, UV: urine volume in the given time period).
Renal blood flow (RBF) was calculated from renal plasma flow and hematocrit values.
Renal vascular resistance (RVR) was calculated by dividing the value of MAP with the
value of RBF. The mean values obtained during the first two control collection periods
were considered as “basal values” while the mean of the values collected during the two
TNFα infusion periods was named as the “treatment value”. The differences in the values
between the basal and the treatment periods were considered as the responses to TNFα
treatment.

5.6. Statistical Analysis

Data were expressed as means ± S.D. Statistical significance for each group was
determined using unpaired Student’s t test, one-way ANOVA, Newman−Keuls test,
Mann−Whitney U-tests, or Wilcoxon signed rank test. Correlation analysis between
the representative microbial genera, intestinal, and renal injury markers were analyzed
with Pearson’s correlation coefficient and significant associations with p < 0.05 and r > 0.5
are shown.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/3/1233/s1.
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