Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma
Abstract
1. Introduction
2. Etiology
2.1. Liver Diseases
2.2. The Mutations and the Molecular Aspects of HCC Driver Genes
3. HCC Management
4. Keratin 8/18 and Liver Diseases
4.1. K8/K18 Mutations Associated with Liver Diseases
4.2. K8/K18-Related Inclusion Body and K18 Apoptotic Fragment as Liver Disease Biomarkers
5. Keratin 8/18-Related Signaling Pathways
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APAP | acetaminophen |
APC | adenomatous polyposis coli |
BCLC | Barcelona clinical liver cancer |
CDK | cyclin-dependent kinase |
EMT | epithelial-mesenchymal transition |
G | globular |
HBV | hepatitis B virus |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
IHB | intracellular hyaline body |
K | keratin |
MDB | Mallory-Denk body |
PKB | protein kinase B |
PKC | protein kinase C |
PLC | primary liver cancer |
Rb | retinoblastoma |
SAPK | stress-activated protein kinase |
TACE | trans-arterial chemoembolization |
TERT | telomerase reverse transcriptase |
TERC | telomerase RNA component |
References
- IARC. Cancer Today. Available online: Gco.iarc.fr/today/home (accessed on 22 April 2021).
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lok, V.; Ngai, C.H.; Chu, C.; Patel, H.K.; Chandraseka, V.T.; Zhang, L.; Chen, P.; Wang, S.; Lao, X.-Q.; et al. Disease burden, risk factors, and recent trends of liver cancer: A global country-level Analysis. Liver Cancer 2021, 1–16. [Google Scholar] [CrossRef]
- Rowe, J.H.; Ghouri, Y.A.; Mian, I. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J. Carcinog. 2017, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [CrossRef]
- Toivola, D.M.; Boor, P.; Alam, C.; Strnad, P. Keratins in health and disease. Curr. Opin. Cell Biol. 2015, 32, 73–81. [Google Scholar] [CrossRef]
- Jacob, J.T.; Coulombe, P.A.; Kwan, R.; Omary, B. Types I and II Keratin Intermediate Filaments. Cold Spring Harb. Perspect. Biol. 2018, 10, a018275. [Google Scholar] [CrossRef]
- Pan, X.; Hobbs, R.P.; A Coulombe, P. The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr. Opin. Cell Biol. 2013, 25, 47–56. [Google Scholar] [CrossRef]
- Strnad, P.; Paschke, S.; Jang, K.-H.; Ku, N.-O. Keratins: Markers and modulators of liver disease. Curr. Opin. Gastroenterol. 2012, 28, 209–216. [Google Scholar] [CrossRef]
- Ku, N.-O.; Strnad, P.; Zhong, B.-H.; Tao, G.-Z.; Omary, M.B. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology. 2007, 46, 1639–1649. [Google Scholar] [CrossRef]
- Weng, Y.-R.; Cui, Y.; Fang, J.-Y. Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 2012, 10, 485–493. [Google Scholar] [CrossRef]
- Loschke, F.; Seltmann, K.; Bouameur, J.-E.; Magin, T.M. Regulation of keratin network organization. Curr. Opin. Cell Biol. 2015, 32, 56–64. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Neuveut, C.; Wei, Y.; Buendia, M.A. Mechanisms of HBV-related hepatocarcinogenesis. J. Hepatol. 2010, 52, 594–604. [Google Scholar] [CrossRef]
- Bartosch, B.; Thimme, R.; Blum, H.E.; Zoulim, F. Hepatitis C virus-induced hepatocarcinogenesis. J. Hepatol. 2009, 51, 810–820. [Google Scholar] [CrossRef]
- EASL. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Ashtari, S.; Pourhoseingholi, M.A.; Sharifian, A.; Zali, M.R. Hepatocellular carcinoma in Asia: Prevention strategy and plan-ning. World J. Hepatol. 2015, 7, 1708. [Google Scholar] [CrossRef]
- Chang, M.H.; You, S.-L.; Chen, C.-J.; Liu, C.-J.; Lai, M.-W.; Wu, T.-C.; Wu, S.-F.; Lee, C.-M.; Yang, S.-S.; Chu, H.-C.; et al. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology 2016, 151, 472–480. [Google Scholar] [CrossRef]
- Paterlini-Bréchot, P.; Saigo, K.; Murakami, Y.; Chami, M.; Gozuacik, D.; Mugnier, C.; Lagorce, D.; Bréchot, C. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 2003, 22, 3911–3916. [Google Scholar] [CrossRef]
- Lucey, M.R.; Mathurin, P.; Morgan, T.R. Alcoholic hepatitis. N. Engl. J. Med. 2009, 360, 2758–2769. [Google Scholar] [CrossRef]
- Mancebo, A.; González–Diéguez, M.L.; Cadahía, V.; Varela, M.; Pérez, R.; Navascués, C.A.; Sotorríos, N.G.; Martínez, M.; Rodrigo, L.; Rodríguez, M. Annual incidence of hepatocellular carcinoma among patients with alcoholic cirrhosis and identification of risk groups. Clin. Gastroenterol. Hepatol. 2013, 11, 95–101. [Google Scholar] [CrossRef]
- Lin, C.-W.; Mo, L.-R.; Chang, C.-Y.; Perng, D.-S.; Hsu, C.-C.; Lo, G.-H.; Chen, Y.-S.; Yen, Y.-C.; Hu, J.-T.; Yu, M.-L.; et al. Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cirrhosis. J. Hepatol. 2013, 58, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.; Lee, D.; Ma, Y. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017, 169, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Daddadifagagna, F.; Reaper, P.M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; von Zglinicki, T.; Saretzki, G.; Carter, N.P.; Jackson, S.P. A DNA damage checkpoint response in telomere-initiated senescence. Nat. Cell Biol. 2003, 426, 194–198. [Google Scholar] [CrossRef]
- Günes, C.; Rudolph, K.L. The role of telomeres in stem cells and cancer. Cell 2013, 152, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.T.; Young, N.S. Telomere Diseases. N. Engl. J. Med. 2009, 361, 2353–2365. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J. Reviewing the future of the P53 field. Cell Death Differ. 2018, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071–1080. [Google Scholar] [CrossRef]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nat. Cell Biol. 2000, 408, 307–310. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018, 25, 114–132. [Google Scholar] [CrossRef]
- Janic, A.; Valente, L.J.; Wakefield, M.J.; Di Stefano, L.; Milla, L.; Wilcox, S.; Yang, H.; Tai, L.; Vandenberg, C.J.; Kueh, A.J.; et al. DNA repair processes are critical mediators of p53-dependent tumor suppression. Nat. Med. 2018, 24, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Furuta, M.; Totoki, Y.; Tsunoda, T.; Kato, M.; Shiraishi, Y.; Tanaka, H.; Taniguchi, H.; Kawakami, Y.; Ueno, M.; et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 2016, 48, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 2019, 19, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.S.; Wang, J.Y.J. Targeting the RB-pathway in Cancer Therapy. Clin. Cancer Res. 2010, 16, 1094–1099. [Google Scholar] [CrossRef]
- Marshall, A.E.; Roes, M.V.; Passos, D.T.; Deweerd, M.C.; Chaikovsky, A.C.; Sage, J.; Howlett, C.J.; Dick, F.A. RB1 Deletion in Retinoblastoma Protein Pathway-Disrupted Cells Results in DNA Damage and Cancer Progression. Mol. Cell. Biol. 2019, 39, 39. [Google Scholar] [CrossRef]
- Hauer, M.; Gasser, S.M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 2017, 31, 2204–2221. [Google Scholar] [CrossRef]
- Hoeijmakers, J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef]
- Ribeiro-Silva, C.; Vermeulen, W.; Lans, H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair 2019, 77, 87–95. [Google Scholar] [CrossRef]
- Vasileiou, G.; Ekici, A.B.; Uebe, S.; Zweier, C.; Hoyer, J.; Engels, H.; Behrens, J.; Reis, A.; Hadjihannas, M.V. Chroma-tin-remodeling-factor ARID1B represses Wnt/β-catenin signaling. Am. J. Hum. Genet. 2015, 97, 445–456. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, H.-J.; Ma, N.; Bao, W.-D.; Wang, J.-J.; Chen, T.-W.; Zhang, E.-B.; Yuan, Y.-M.; Ni, Q.-Z.; Zhang, F.-K.; et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc. Natl. Acad. Sci. USA 2020, 117, 4770–4780. [Google Scholar] [CrossRef]
- Perugorria, M.J.; Olaizola, P.; Labiano, I.; Esparza-Baquer, A.; Marzioni, M.; Marin, J.J.G.; Bujanda, L.; Banales, J.M. Wnt–β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 121–136. [Google Scholar] [CrossRef]
- Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef]
- Kim, E.; Lisby, A.; Ma, C.; Lo, N.; Ehmer, U.; Hayer, K.E.; Furth, E.E.; Viatour, P. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Wang, W.; Smits, R.; Hao, H.; He, C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers 2019, 11, 926. [Google Scholar] [CrossRef]
- Monga, S.P. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 2015, 148, 1294–1310. [Google Scholar] [CrossRef]
- Waisberg, J.; Saba, G.T. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol. 2015, 7, 2631. [Google Scholar] [CrossRef]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Smith, S.F.; Collins, S.E.; Charest, P.G. Ras, PI3K and mTORC2–three’s a crowd? J. Cell Sci. 2020, 133. [Google Scholar] [CrossRef]
- Muñoz-Maldonado, C.; Zimmer, Y.; Medová, M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front. Oncol. 2019, 9, 1088. [Google Scholar] [CrossRef]
- Guijarro, L.; Sanmartin-Salinas, P.; Pérez-Cuevas, E.; Toledo-Lobo, M.; Monserrat, J.; Zoullas, S.; Sáez, M.; Álvarez-Mon, M.; Bujan, J.; Noguerales-Fraguas, F.; et al. Possible Role of IRS-4 in the Origin of Multifocal Hepatocellular Carcinoma. Cancers 2021, 13, 2560. [Google Scholar] [CrossRef]
- Bruix, J.; Reig, M.; Sherman, M. Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology 2016, 150, 835–853. [Google Scholar] [CrossRef]
- Forner, A.; Gilabert, M.; Bruix, J.; Raoul, J.-L. Treatment of intermediate-stage hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2014, 11, 525–535. [Google Scholar] [CrossRef]
- Bruix, J.; Han, K.-H.; Gores, G.; Llovet, J.M.; Mazzaferro, V.M. Liver cancer: Approaching a personalized care. J. Hepatol. 2015, 62, S144–S156. [Google Scholar] [CrossRef]
- Foerster, F.; Galle, P.R. Comparison of the current international guidelines on the management of HCC. JHEP Rep. 2019, 1, 114–119. [Google Scholar] [CrossRef]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 2008, 14, 5459–5465. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.-H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Ku, N.-O.; Omary, M.B. A disease-and phosphorylation-related nonmechanical function for keratin. J. Cell Biol. 2006, 174, 115–125. [Google Scholar] [CrossRef]
- Baribault, H.; Penner, J.; Iozzo, R.; Wilson-Heiner, M. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev. 1994, 8, 2964–2973. [Google Scholar] [CrossRef]
- Toivola, D.M.; Nieminen, M.I.; Hesse, M.; He, T.; Magin, T.M.; Omary, M.B.; Eriksson, J.E. Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology 2001, 34, 1174–1183. [Google Scholar] [CrossRef]
- Loranger, A.; Duclos, S.; Grenier, A.; Price, J.; Wilson-Heiner, M.; Baribault, H.; Marceau, N. Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am. J. Pathol. 1997, 151, 1673–1683. [Google Scholar] [PubMed]
- Gilbert, S.; Loranger, A.; Daigle, N.; Marceau, N. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 2001, 154, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.-Z.; Toivola, D.M.; Zhong, B.; Michie, S.A.; Resurreccion, E.Z.; Tamai, Y.; Taketo, M.M.; Omary, B. Keratin-8 null mice have different gallbladder and liver susceptibility to lithogenic diet-induced injury. J. Cell Sci. 2003, 116, 4629–4638. [Google Scholar] [CrossRef]
- Magin, T.M.; Schröder, R.; Leitgeb, S.; Wanninger, F.; Zatloukal, K.; Grund, C.; Melton, D.W. Lessons from Keratin 18 Knockout Mice: Formation of Novel Keratin Filaments, Secondary Loss of Keratin 7 and Accumulation of Liver-specific Keratin 8-Positive Aggregates. J. Cell Biol. 1998, 140, 1441–1451. [Google Scholar] [CrossRef]
- Bettermann, K.; Mehta, A.K.; Hofer, E.M.; Wohlrab, C.; Golob-Schwarzl, N.; Svendova, V.; Schimek, M.G.; Stumptner, C.; Thüringer, A.; Speicher, M.R. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steato-hepatitis-associated liver carcinogenesis. Oncotarget 2016, 7, 73309. [Google Scholar] [CrossRef]
- Baribault, H.; Price, J.; Miyai, K.; Oshima, R.G. Mid-gestational lethality in mice lacking keratin 8. Genes Dev. 1993, 7, 1191–1202. [Google Scholar] [CrossRef]
- Zatloukal, K.; French, S.W.; Stumptner, C.; Strnad, P.; Harada, M.; Toivola, D.M.; Cadrin, M.; Omary, M.B. From Mallory to Mallory–Denk bodies: What, how and why? Exp. Cell Res. 2007, 313, 2033–2049. [Google Scholar] [CrossRef]
- Lee, J.; Jang, K.-H.; Kim, H.; Lim, Y.; Kim, S.; Yoon, H.-N.; Chung, I.K.; Roth, J.; Ku, N.-O. Predisposition to apoptosis in keratin 8-null liver is related to inactivation of NF-κB and SAPKs but not decreased c-Flip. Biol. Open 2013, 2, 695–702. [Google Scholar] [CrossRef]
- Omary, B.; Ku, N.-O.; Toivola, D.M. Keratins: Guardians of the liver. Hepatology 2002, 35, 251–257. [Google Scholar] [CrossRef]
- Kucukoglu, O.; Guldiken, N.; Chen, Y.; Usachov, V.; El-Heliebi, A.; Haybaeck, J.; Denk, H.; Trautwein, C.; Strnad, P. High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin. Hepatology 2014, 60, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Guldiken, N.; Zhou, Q.; Kucukoglu, O.; Rehm, M.; Levada, K.; Gross, A.; Kwan, R.; James, L.P.; Trautwein, C.; Omary, M.B.; et al. Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with c-jun amino-terminal kinase activation and protein adduct formation. Hepatology 2015, 62, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-N.; Yoon, S.-Y.; Hong, J.-H.; Ku, N.-O. A mutation in keratin 18 that causes caspase-digestion resistance protects homozygous transgenic mice from hepatic apoptosis and injury. J. Cell Sci. 2017, 130, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Ku, N.-O.; Toivola, D.M.; Strnad, P.; Omary, M.B. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat. Cell Biol. 2010, 12, 876–885. [Google Scholar] [CrossRef]
- Ku, N.-O.; Michie, S.; Resurreccion, E.Z.; Broome, R.L.; Omary, B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. USA 2002, 99, 4373–4378. [Google Scholar] [CrossRef]
- Omary, M.B.; Ku, N.-O.; Tao, G.-Z.; Toivola, D.M.; Liao, J. ‘Heads and tails’ of intermediate filament phosphorylation: Multiple sites and functional insights. Trends Biochem. Sci. 2006, 31, 383–394. [Google Scholar] [CrossRef]
- Ku, N.-O.; Michie, S.; Oshima, R.G.; Omary, M.B. Chronic hepatitis, hepatocyte fragility, and increased soluble phospho-glycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 1995, 131, 1303–1314. [Google Scholar] [CrossRef]
- Ku, N.; Soetikno, R.M.; Omary, M.B. Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology 2003, 37, 1006–1014. [Google Scholar] [CrossRef]
- Strnad, P.; Tao, G.; Zhou, Q.; Harada, M.; Toivola, D.M.; Brunt, E.M.; Omary, M.B. Keratin Mutation Predisposes to Mouse Liver Fibrosis and Unmasks Differential Effects of the Carbon Tetrachloride and Thioacetamide Models. Gastroenterology 2008, 134, 1169–1179. [Google Scholar] [CrossRef]
- Weerasinghe, S.V.; Ku, N.-O.; Altshuler, P.J.; Kwan, R.; Omary, M.B. Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity. J. Cell Sci. 2014, 127, 1464–1475. [Google Scholar] [CrossRef]
- Coulombe, P.A.; Hutton, M.; Letal, A.; Hebert, A.; Paller, A.S.; Fuchs, E. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses. Cell 1991, 66, 1301–1311. [Google Scholar] [CrossRef]
- Strnad, P.; Zhou, Q.; Hanada, S.; Lazzeroni, L.C.; Zhong, B.H.; So, P.; Davern, T.J.; Lee, W.M.; Omary, B. Keratin Variants Predispose to Acute Liver Failure and Adverse Outcome: Race and Ethnic Associations. Gastroenterology 2010, 139, 828–835.e1-3. [Google Scholar] [CrossRef]
- Li, R.; Liao, X.-H.; Ye, J.-Z.; Li, M.-R.; Wu, Y.-Q.; Hu, X.; Zhong, B.-H. Association of keratin 8/18 variants with non-alcoholic fatty liver disease and insulin resistance in Chinese patients: A case-control study. World J. Gastroenterol. 2017, 23, 4047–4053. [Google Scholar] [CrossRef]
- Zhong, B.; Strnad, P.; Selmi, C.; Invernizzi, P.; Tao, G.-Z.; Caleffi, A.; Chen, M.; Bianchi, I.; Podda, M.; Pietrangelo, A.; et al. Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity. Hepatology 2009, 50, 546–554. [Google Scholar] [CrossRef]
- Ye, J.; Wu, Y.; Li, M.; Gong, X.; Zhong, B. Keratin 8 mutations were associated with susceptibility to chronic hepatitis B and related progression. J. Infect. Dis. 2019, 221, 464–473. [Google Scholar] [CrossRef]
- Ku, N.-O.; Gish, R.; Wright, T.L.; Omary, M.B. Keratin 8 Mutations in Patients with Cryptogenic Liver Disease. N. Engl. J. Med. 2001, 344, 1580–1587. [Google Scholar] [CrossRef]
- Ku, N.; Lim, J.K.; Krams, S.M.; Esquivel, C.O.; Keeffe, E.B.; Wright, T.L.; Parry, D.A.; Omary, B. Keratins as Susceptibility Genes for End-Stage Liver Disease. Gastroenterology 2005, 129, 885–893. [Google Scholar] [CrossRef]
- Strnad, P.; Lienau, T.C.; Tao, G.-Z.; Lazzeroni, L.C.; Stickel, F.; Schuppan, D.; Omary, M.B. Keratin variants associate with progression of fibrosis during chronic hepatitis C infection. Hepatology 2006, 43, 1354–1363. [Google Scholar] [CrossRef]
- Strnad, P.; Lienau, T.C.; Tao, G.-Z.; Ku, N.-O.; Magin, T.M.; Omary, M.B. Denaturing temperature selection may underestimate keratin mutation detection by DHPLC. Hum. Mutat. 2006, 27, 444–452. [Google Scholar] [CrossRef]
- Omary, M.B. Intermediate filament proteins of digestive organs: Physiology and pathophysiology. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G628–G634. [Google Scholar] [CrossRef]
- Zatloukal, K.; Stumptner, C.; Fuchsbichler, A.; Janig, E.; Denk, H. Intermediate Filament Protein Inclusions. Methods Cell Biol. 2004, 78, 205–228. [Google Scholar] [CrossRef]
- Cairns, N.J.; Lee, V.M.-Y.; Trojanowski, J.Q. The cytoskeleton in neurodegenerative diseases. J. Pathol. 2004, 204, 438–449. [Google Scholar] [CrossRef]
- Strnad, P.; Zatloukal, K.; Stumptner, C.; Kulaksiz, H.; Denk, H. Mallory–Denk-bodies: Lessons from keratin-containing hepatic inclusion bodies. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2008, 1782, 764–774. [Google Scholar] [CrossRef]
- Strnad, P.; Nuraldeen, R.; Guldiken, N.; Hartmann, D.; Mahajan, V.; Denk, H.; Haybaeck, J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2013; Volume 3, pp. 1393–1436. [Google Scholar]
- Aigelsreiter, A.; Neumann, J.; Pichler, M.; Halasz, J.; Zatloukal, K.; Berghold, A.; Douschan, P.; Rainer, F.; Stauber, R.; Haybaeck, J.; et al. Hepatocellular carcinomas with intracellular hyaline bodies have a poor prognosis. Liver Int. 2017, 37, 600–610. [Google Scholar] [CrossRef]
- Stumptner, C.; Omary, B.; Fickert, P.; Denk, H.; Zatloukal, K. Hepatocyte Cytokeratins Are Hyperphosphorylated at Multiple Sites in Human Alcoholic Hepatitis and in a Mallory Body Mouse Model. Am. J. Pathol. 2000, 156, 77–90. [Google Scholar] [CrossRef]
- Fortier, A.-M.; Riopel, K.; Desaulniers, M.; Cadrin, M. Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp. Mol. Pathol. 2010, 89, 117–125. [Google Scholar] [CrossRef]
- Guzman, R.E.; Solter, P.F. Characterization of Sublethal Microcystin-LR Exposure in Mice. Veter. Pathol. 2002, 39, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Nagao, Y.; Gaal, K.; Hu, B.; French, S. Mechanisms of Mallory Body Formation Induced by Okadaic Acid in Drug-Primed Mice. Exp. Mol. Pathol. 1998, 65, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Kwan, R.; Hanada, S.; Harada, M.; Strnad, P.; Li, D.H.; Omary, B. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation. FASEB J. 2012, 26, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Nan, L.; Dedes, J.; French, B.A.; Bardag-Gorce, F.; Li, J.; Wu, Y.; French, S.W. Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor. Exp. Mol. Pathol. 2006, 80, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Haybaeck, J.; Stumptner, C.; Thueringer, A.; Kolbe, T.; Magin, T.M.; Hesse, M.; Fickert, P.; Tsybrovskyy, O.; Müller, H.; Trauner, M.; et al. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. Lab. Investig. 2012, 92, 857–867. [Google Scholar] [CrossRef]
- Nakamichi, I.; Toivola, D.M.; Strnad, P.; Michie, S.A.; Oshima, R.G.; Baribault, H.; Omary, M.B. Keratin 8 overexpression promotes mouse Mallory body formation. J. Cell Biol. 2005, 171, 931–937. [Google Scholar] [CrossRef]
- Mahajan, V.; Klingstedt, T.; Simon, R.; Nilsson, K.P.R.; Thueringer, A.; Kashofer, K.; Haybaeck, J.; Denk, H.; Abuja, P.M.; Zatloukal, K. Cross β-Sheet Conformation of Keratin 8 Is a Specific Feature of Mallory–Denk Bodies Compared with Other Hepatocyte Inclusions. Gastroenterology 2011, 141, 1080–1090.e7. [Google Scholar] [CrossRef]
- Liu, H.; Gong, M.; French, B.A.; Liao, G.; Li, J.; Tillman, B.; French, S.W. Aberrant modulation of the BRCA1 and G1/S cell cycle pathways in alcoholic hepatitis patients with Mallory Denk Bodies revealed by RNA sequencing. Oncotarget 2015, 6, 42491–42503. [Google Scholar] [CrossRef]
- Liu, H.; French, B.A.; Nelson, T.; Li, J.; Tillman, B.; French, S.W. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present. Exp. Mol. Pathol. 2015, 99, 320–325. [Google Scholar] [CrossRef]
- Liu, Y.; Trnka, M.J.; Guan, S.; Kwon, D.; Kim, D.-H.; Chen, J.-J.; Greer, P.A.; Burlingame, A.L.; Correia, M.A. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol. Cell. Proteom. 2020, 19, 1968–1986. [Google Scholar] [CrossRef]
- Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.-S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12, 213–223. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Luedde, T. Apoptosis and necroptosis in the liver: A matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 738–752. [Google Scholar] [CrossRef]
- Caulín, C.; Salvesen, G.S.; Oshima, R.G. Caspase Cleavage of Keratin 18 and Reorganization of Intermediate Filaments during Epithelial Cell Apoptosis. J. Cell Biol. 1997, 138, 1379–1394. [Google Scholar] [CrossRef]
- Ku, N.-O.; Omary, M.B. Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. J. Biol. Chem. 2001, 276, 26792–26798. [Google Scholar] [CrossRef]
- Church, R.J.; Kullak-Ublick, G.A.; Aubrecht, J.; Bonkovsky, H.L.; Chalasani, N.; Fontana, R.J.; Goepfert, J.C.; Hackman, F.; King, N.M.; Kirby, S. Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: An international collabo-rative effort. Hepatology 2019, 69, 760–773. [Google Scholar] [CrossRef]
- Mueller, S.; Nahon, P.; Rausch, V.; Peccerella, T.; Silva, I.; Yagmur, E.; Straub, B.K.; Lackner, C.; Seitz, H.K.; Rufat, P.; et al. Caspase-cleaved keratin-18 fragments increase during alcohol withdrawal and predict liver-related death in patients with alcoholic liver disease. Hepatology 2017, 66, 96–107. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Alkhouri, N.; De Vito, R.; Alisi, A.; Lopez, R.; Nobili, V. Serum cytokeratin-18 fragment levels are useful bi-omarkers for nonalcoholic steatohepatitis in children. Am. J. Gastroenterol. 2013, 108, 1526–1531. [Google Scholar] [CrossRef]
- Joka, D.; Wahl, K.; Moeller, S.; Schlue, J.; Vaske, B.; Bahr, M.J.; Manns, M.P.; Schulze-Osthoff, K.; Bantel, H. Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology 2012, 55, 455–464. [Google Scholar] [CrossRef]
- Ku, N.-O.; Strnad, P.; Bantel, H.; Omary, B. Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology 2016, 64, 966–976. [Google Scholar] [CrossRef]
- Golob-Schwarzl, N.; Bettermann, K.; Mehta, A.K.; Kessler, S.M.; Unterluggauer, J.; Krassnig, S.; Kojima, K.; Chen, X.; Hoshida, Y.; Bardeesy, N.M. High keratin 8/18 ratio predicts aggressive hepatocellular cancer phenotype. Transl. Oncol. 2019, 12, 256–268. [Google Scholar] [CrossRef]
- Kim, S.; Coulombe, P.A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 2007, 21, 1581–1597. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, S.; Lim, Y.; Yoon, H.-N.; Ku, N.-O. Keratins regulate Hsp70-mediated nuclear localization of p38 mito-gen-activated protein kinase. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef]
- Ku, N.-O.; Fu, H.; Omary, B. Raf-1 activation disrupts its binding to keratins during cell stress. J. Cell Biol. 2004, 166, 479–485. [Google Scholar] [CrossRef]
- Bordeleau, F.; Galarneau, L.; Gilbert, S.; Loranger, A.; Marceau, N. Keratin 8/18 modulation of protein kinase C-mediated in-tegrin-dependent adhesion and migration of liver epithelial cells. Mol. Biol. Cell 2010, 21, 1698–1713. [Google Scholar] [CrossRef]
- Ku, N.-O.; Liao, J.; Omary, M. Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 1998, 17, 1892–1906. [Google Scholar] [CrossRef] [PubMed]
- Hermeking, H.; Benzinger, A. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 2006, 16, 183–192. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Stepulak, A.; Holmström, T.H.; Omary, M.B.; Eriksson, J.E. The intermediate filament protein keratin 8 is a novel cyto-plasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 2002, 277, 10767–10774. [Google Scholar] [CrossRef] [PubMed]
- Fogh, B.S.; Multhaupt, H.A.; Couchman, J.R. Protein Kinase C, Focal Adhesions and the Regulation of Cell Migration. J. Histochem. Cytochem. 2014, 62, 172–184. [Google Scholar] [CrossRef]
- Li, J.-J.; Xie, D. RACK1, a versatile hub in cancer. Oncogene 2014, 34, 1890–1898. [Google Scholar] [CrossRef]
- Cooke, M.; Magimaidas, A.; Casado-Medrano, V.; Kazanietz, M.G. Protein kinase C in cancer: The top five unanswered ques-tions. Mol. Carcinog. 2017, 56, 1531–1542. [Google Scholar] [CrossRef]
- Sanghvi-Shah, R.; Weber, G.F. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front. Cell Dev. Biol. 2017, 5, 81. [Google Scholar] [CrossRef]
- Osmanagic-Myers, S.; Wiche, G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: A novel mechanism to regulate protein kinase C activity. J. Biol. Chem. 2004, 279, 18701–18710. [Google Scholar] [CrossRef]
- Meng, X.; Franklin, D.A.; Dong, J.; Zhang, Y. MDM2–p53 pathway in hepatocellular carcinoma. Cancer Res. 2014, 74, 7161–7167. [Google Scholar] [CrossRef]
- Beg, A.A.; Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 1996, 274, 782–784. [Google Scholar] [CrossRef]
Pathway | Gene | Alteration | Ref. |
---|---|---|---|
Telomere maintenance | TERT promoter | Gain of function | [23,24] |
Cell cycle | TP53 | Loss of function | |
RB1 | Loss of function | ||
CDKN2A | Loss of function | ||
Chromatin remodeling | ARID2 | Loss of function | |
ARID1A/B | Loss of function | ||
Wnt pathway | CTNNB1 | Gain of function | |
AXIN1 | Loss of function | ||
Ras-PI3K pathway | PIK3CA | Gain of function | |
RPS6KA3 | Unclassified | ||
PTEN | Loss of function | ||
KRAS | Gain of function | ||
NRAS | Gain of function | ||
Oxidative stress | KEAP1 | Gain of function | |
NFE2L2 | Gain of function |
Drug | Targets | HCC Stage | Phase | Comparison | Primary Outcome | NCT Number ‡ |
---|---|---|---|---|---|---|
Atezolizumab + Lenvatinib | PD-L1 + VEGFRs, FGFRs, PDGFRβ, RET, and KIT | Advanced or metastatic | ΙΙΙ | Sorafenib | OS | NCT04770896 |
Toripalimab + Lenvatinib | PD-1 + VEGFRs, FGFRs, PDGFRβ, RET, and KIT | BCLC B or C stage | ΙΙ | – † | ORR | NCT04368078 |
SHR-1210 + Apatinib | PD-1 + VGFR-2 | Advanced | ΙΙΙ | Sorafenib | OS/PFS | NCT03764293 |
Durvalumab + Bevacizumab | PD-L1 + VEGF-A | High risk of recurrence | ΙΙΙ | Placebo | RFS | NCT03847428 |
Nivolumab + Ipilimumab | PD-1 + CTLA-4 | Advanced | ΙΙΙ | Sarafenib or Lenvatinib | OS | NCT04039607 |
Pembrolizumab + Bavituximab | PD-1 + PS | Advanced or metastatic | ΙΙ | – † | ORR | NCT03519997 |
Durvalumab + Tremelimumab | PD-1 + CTLA-4 | Advanced | ΙΙΙ | Sorafenib | OS | NCT03298451 |
Gene | Mouse Genotype | Keratin Filament | Liver | Ref. | |||
---|---|---|---|---|---|---|---|
Basal Phenotype | Fragility (Basal Conditions) | Phenotype (Stressed Conditions) | Induced Stresses | ||||
K8 | K8-/- (C57B1/6) | Absent | Embryonic lethality Liver hemorrhage | - | - | - | [68] |
K8-/- (FVB/n) | Absent | Mild hepatitis | ↑ | ↑, Decreased MDBs | Pentobarbital, MLR, high fat diet, Fas | [61,63,65,69,70,71] | |
K8 over-expression | Normal | MDBs | Normal | Increased MDBs | DDC, high fat diet | [69,72] | |
K8 G62C | Normal | Normal | Normal | ↑ | Fas, MLR, APAP | [60,73] | |
K8 S74A | Normal | Normal | Normal | ↑ | Fas | [60] | |
K8 R341H | Normal | Normal | Normal | ↑ | APAP | [73] | |
K18 | K18-/- | Absent | Mild hepatitis MDBs Steatohepatitis (Old mice) | ↑ | ↑ | Fas | [66,67,74] |
K18 over-expression | Normal | Normal | Normal | Decreased MDBs | DDC | [69] | |
K18 S30/31/49A | Normal | Normal | Normal | ↑ | STZ, Fas + PUGNAc | [75] | |
K18 S34A | Normal | Normal | Normal | Mitoticfeatures | PH | [76,77] | |
K18 S53A | Normal | Normal | Normal | ↑ | MLR | [10] | |
K18 R90C | Disrupted | Mild hepatitis | ↑ | ↑ | Fas, CCl4, TAA | [78,79,80] | |
K18 D238/397E (mouse K18expressed FVB/n) | Normal | Normal | Normal | ↑ | Fas | [81] | |
Normal | Normal | Normal | - | Fas | [74] | ||
K18 D238/397E (mouse K18 knocked out FVB/n) | Normal | Normal | Normal | ↓ | Fas, MLR | [74] |
Screened Gene | Ethnicity | No. of Variant Carriers/Total (%) | p Value | Ref. | |
---|---|---|---|---|---|
Liver Disease Cohort | Controls | ||||
AllK8/K18 exons | US | 58/467 (12.4%) | 13/349 (3.7%) | <0.0001 | [87,88] |
Germany | 19/329 (5.8%) | - | 0.001 | [89] | |
US | 45/344 (13.1%) | 9/268 (3.4%) a | 0.01 a | [83] | |
Italy | 17/201 (8.5%) | 4/200 (2%) | p < 0.004 | [85] | |
China | 10/200 (5%) | 1/173 (0.58%) | p = 0.015 | [84] | |
China | 21/540 (3.89%) | 1/173 (0.58%) | p = 0.03 | [86] | |
K8 exon 1 and 6 | Germany | 12/151 (7.9%) | - | - | [90] |
A Role of Signaling Protein | K8/K18-Associated Signaling Protein | K8/K18 Mutation | Effects of K8/K18 Mutation | Ref. |
---|---|---|---|---|
Cell cycle regulator | 14-3-3 | K8-/- K18-/- K18 R90C (disrupted filament) | Arrest in S-G2 phage (in vivo) ǂ | [62] |
K18 S34A (blocked pK18 S34, disturbed 14-3-3 binding) | Accumulation of mitotic figures (mitotic arrest) (in vivo) ǂ | [76] | ||
Transcription factor | p53 | - | ND # | [70] |
NF-kB | K8-/- | High susceptibility to Fas treatment Inhibited NF-kB translocation to the nucleus | [70] | |
Kinase | Stress-activated protein kinases (SAPKs, such as ERK, JNK, and p38) | K8 G62C * (natural mutation, inhibited pK8S74) K8 S74A(blocked pK8 S74) | High susceptibility to Fas treatment Higher activation of SAPK substrates (in vivo) ǂ | [60] |
K8 R148/149E, L159/161A (blocked p38 binding) K18 I150V * (natural mutation) | Dissociation of p38 Translocation of phosphorylated p38 to nucleus (in vitro) ʌ | [120] | ||
Protein kinase B (PKB also known as Akt) | K18 S30/31/49A (K18 glycosylation-deficient mutant) | Akt hyper-glycosylation Inhibition of Akt T308 phosphorylation (in vivo) ǂ | [75] | |
Raf | - | ND # | [121] | |
Protein kinase C (PKC) | K8-/- | Reduced migration of liver epithelial cells (in vitro) ʌ | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.; Ku, N.-O. Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 6401. https://doi.org/10.3390/ijms22126401
Lim Y, Ku N-O. Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2021; 22(12):6401. https://doi.org/10.3390/ijms22126401
Chicago/Turabian StyleLim, Younglan, and Nam-On Ku. 2021. "Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma" International Journal of Molecular Sciences 22, no. 12: 6401. https://doi.org/10.3390/ijms22126401
APA StyleLim, Y., & Ku, N.-O. (2021). Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 22(12), 6401. https://doi.org/10.3390/ijms22126401