Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging
Abstract
1. Introduction
2. Results and Discussion
2.1. Organic Synthesis and In Vitro Binding Studies
2.2. Automated Radiosynthesis and Characterization of [18F]9
2.3. In Vivo Studies of [18F]9 in Mice
3. Materials and Methods
3.1. Organic Chemistry
3.1.1. General
3.1.2. 7-(Furan-2-yl)-6-(pyrimidin-4-yl)pyrido[2,3-d]pyrimidine-2,4-(1H,3H)-dione (2)
3.1.3. Compounds 3–6
3.1.4. 2-Amino-5-bromo-6-(furan-2-yl)nicotinamide (7)
3.1.5. 6-Bromo-7-(furan-2-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (8)
3.1.6. 6-(2-Fluoropyridin-4-yl)-7-(furan-2-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (9)
3.1.7. 7-(Furan-2-yl)-6-(2-nitropyridin-4-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (10)
3.2. In Vitro Radioligand Binding Experiments
3.3. Radiochemistry
3.3.1. General
3.3.2. Radiosynthesis
3.4. In Vivo Studies in Mice
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors–An Update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001, 53, 527–552. [Google Scholar]
- Feoktistov, I.; Biaggioni, I. Adenosine A2B receptors. Pharmacol. Rev. 1997, 49, 381–402. [Google Scholar]
- Fredholm, B.B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 2001, 61, 443–448. [Google Scholar] [CrossRef]
- Daly, J.W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell Mol. Neurobiol. 1983, 3, 69–80. [Google Scholar] [CrossRef]
- Müller, C.E.; Baqi, Y.; Hinz, S.; Namasivayam, V. Medicinal chemistry of A2B adenosine receptors. In The Adenosine Receptors, Borea, P.A.; Varani, K., Gessi, S., Merighi, S., Vincenzi, F., Eds.; Humana Press: Totowa, NJ, USA, 2018; pp. 137–168. [Google Scholar]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Hasko, G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer 2013, 13, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.G.; Jacobson, K.A. A2B Adenosine Receptor and Cancer. Int. J. Mol. Sci. 2019, 18, 5139. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, C.; Palomo, I.; Fuentes, E. Role of adenosine A2B receptor overexpression in tumor progression. Life Sci. 2016, 166, 92–99. [Google Scholar] [CrossRef]
- Sorrentino, C.; Morello, S. Role of adenosine in tumor progression: Focus on A2B receptor as potential therapeutic target. J. Cancer Metastasis Treat. 2017, 3, 127–138. [Google Scholar] [CrossRef][Green Version]
- Hinz, S.; Navarro, G.; Borroto-Escuela, D.; Seibt, B.F.; Ammon, Y.C.; de Filippo, E.; Danish, A.; Lacher, S.K.; Cervinkova, B.; Rafehi, M.; et al. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 2018, 9, 13593–13611. [Google Scholar] [CrossRef] [PubMed]
- Petroni, D.; Giacomelli, C.; Taliani, S.; Barresi, E.; Robello, M.; Daniele, S.; Bartoli, A.; Burchielli, S.; Pardini, S.; Salvadori, P.A.; et al. Toward PET imaging of A2B adenosine receptors: A carbon-11 labeled triazinobenzimidazole tracer: Synthesis and imaging of a new A2B PET tracer. Nucl. Med. Biol. 2016, 43, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, M.; Hinz, S.; Deuther-Conrad, W.; Namasivayam, V.; Dukic-Stefanovic, S.; Teodoro, R.; Toussaint, M.; Kranz, M.; Juhl, C.; Steinbach, J.; et al. Radiosynthesis and in vivo evaluation of a fluorine-18 labeled pyrazine based radioligand for PET imaging of the adenosine A2B receptor. Bioorg. Med. Chem. 2018, 26, 4650–4663. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, P.; Esteve, C.; Gonzalez, J.; Fonquerna, S.; Aiguade, J.; Carranco, I.; Domenech, T.; Aparici, M.; Miralpeix, M.; Alberti, J.; et al. Discovery of LAS101057: A Potent, Selective, and Orally Efficacious A2B Adenosine Receptor Antagonist. ACS Med. Chem. Lett. 2011, 2, 213–218. [Google Scholar] [CrossRef]
- Eastwood, P.; Gonzalez, J.; Paredes, S.; Fonquerna, S.; Cardus, A.; Alonso, J.A.; Nueda, A.; Domenech, T.; Reinoso, R.F.; Vidal, B. Discovery of potent and selective bicyclic A2B adenosine receptor antagonists via bioisosteric amide replacement. Bioorg. Med. Chem. Lett. 2010, 20, 1634–1637. [Google Scholar] [CrossRef]
- Eastwood, P.; Gonzalez, J.; Paredes, S.; Nueda, A.; Domenech, T.; Alberti, J.; Vidal, B. Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A2B adenosine receptor antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 1697–1700. [Google Scholar] [CrossRef]
- Harada, H.; Asano, O.; Miyazawa, S.; Ueda, M.; Yasuda, M.; Yasuda, N. Aminopyridine Compounds and Use Thereof as Drugs. U.S. Patent 2004/006082, 1 August 2004. [Google Scholar]
- Troschütz, R.; Dennstedt, T. Synthesis of Substituted 2-Aminonicotinonitriles. Arch. Pharm. 1994, 327, 33–40. [Google Scholar] [CrossRef]
- Pham, S.M.; Chen, J.F.; Ansari, A.; Jadhavar, P.S.; Patil, V.S.; Khan, F.; Ramachandran, S.A.; Argaval, A.K.; Chakravarty, S. 1,8-Naphthyridinone Compounds and Uses Thereof. WO Patent 2019018583, 24 January 2019. [Google Scholar]
- Miyaura, N.; Suzuki, A. Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-Enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc. Chem. Comm. 1979, 866–867. [Google Scholar] [CrossRef]
- Miyaura, N.; Yamada, K.; Suzuki, A. New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20, 3437–3440. [Google Scholar] [CrossRef]
- Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(O)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes—A Direct Procedure for Arylboronic Esters. J. Org. Chem. 1995, 60, 7508–7510. [Google Scholar] [CrossRef]
- Khaledi, M.G. Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: Overview and perspective. J. Chromatogr. A 1997, 780, 3–40. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, P. Adenosine A2B Receptor: From Cell Biology to Human Diseases. Front. Chem. 2016, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Borrmann, T.; Hinz, S.; Bertarelli, D.C.; Li, W.; Florin, N.C.; Scheiff, A.B.; Müller, C.E. 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J. Med. Chem. 2009, 52, 3994–4006. [Google Scholar] [CrossRef]
- Alnouri, M.W.; Jepards, S.; Casari, A.; Schiedel, A.C.; Hinz, S.; Müller, C.E. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal. 2015, 11, 389–407. [Google Scholar] [CrossRef]
- Klotz, K.N.; Lohse, M.J.; Schwabe, U.; Cristalli, G.; Vittori, S.; Grifantini, M. 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)-a high affinity agonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1989, 340, 679–683. [Google Scholar] [CrossRef]
- Müller, C.E.; Maurinsh, J.; Sauer, R. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes-a new, selective antagonist radioligand for A2A adenosine receptors. Eur. J. Pharm. Sci. 2000, 10, 259–265. [Google Scholar] [CrossRef]
- Müller, C.E.; Diekmann, M.; Thorand, M.; Ozola, V. [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([3H]PSB-11), a novel high-affinity antagonist radioligand for human A3 adenosine receptors. Bioorg. Med. Chem. Lett. 2002, 12, 501–503. [Google Scholar] [CrossRef]






| Compound | Ki in nM a | Selectivity Ratio Ki(Ax)/Ki(A2B) | ||||||
|---|---|---|---|---|---|---|---|---|
| A2B | A2A | A1 | A3 | A2A/A2B | A1/A2B | A3/A2B | ||
| 1 | 4.24 ± 0.04 b | 55.0 ± 6.1 b | 19.0 ± 5.2 b | 796 ± 26 b | 13 | 4.5 | 188 | |
| 2 | 2.51 ± 1.1 | 98.8 ± 28.3 | > 1000 | > 1000 | 39 | > 400 | > 400 | |
| 1 ± 0 c | 181 ± 25 c | 1727 ± 617 c | 6267 ± 2322 c | |||||
| 9 | 2.51 ± 0.58 | 107 ± 15 | 149 ± 26 | 286 ± 10 | 43 | 59 | 114 | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindemann, M.; Moldovan, R.-P.; Hinz, S.; Deuther-Conrad, W.; Gündel, D.; Dukic-Stefanovic, S.; Toussaint, M.; Teodoro, R.; Juhl, C.; Steinbach, J.; et al. Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging. Int. J. Mol. Sci. 2020, 21, 3197. https://doi.org/10.3390/ijms21093197
Lindemann M, Moldovan R-P, Hinz S, Deuther-Conrad W, Gündel D, Dukic-Stefanovic S, Toussaint M, Teodoro R, Juhl C, Steinbach J, et al. Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging. International Journal of Molecular Sciences. 2020; 21(9):3197. https://doi.org/10.3390/ijms21093197
Chicago/Turabian StyleLindemann, Marcel, Rareş-Petru Moldovan, Sonja Hinz, Winnie Deuther-Conrad, Daniel Gündel, Sladjana Dukic-Stefanovic, Magali Toussaint, Rodrigo Teodoro, Cathleen Juhl, Jörg Steinbach, and et al. 2020. "Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging" International Journal of Molecular Sciences 21, no. 9: 3197. https://doi.org/10.3390/ijms21093197
APA StyleLindemann, M., Moldovan, R.-P., Hinz, S., Deuther-Conrad, W., Gündel, D., Dukic-Stefanovic, S., Toussaint, M., Teodoro, R., Juhl, C., Steinbach, J., Brust, P., Müller, C. E., & Wenzel, B. (2020). Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging. International Journal of Molecular Sciences, 21(9), 3197. https://doi.org/10.3390/ijms21093197

