The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine
Abstract
:1. Introduction
2. Results
2.1. NRG1-Positive Enteric Neurons under Physiological Condition
2.2. The Influence of BPA on the Number of NRG1-Positive Enteric Neurons
2.2.1. Caecum
2.2.2. Ascending Colon
2.2.3. Descending Colon
2.3. The Size of NRG1-Positive Enteric Neurons in the Large Intestine under Physiological Conditions and after Administration of BPA
2.4. The Influence of BPA on the Total Number of the Enteric Neurons
3. Discussion
4. Materials and Methods
4.1. Experimental Animals and Administration of BPA
4.2. Tissue Collection
4.3. Immunofluorescence Method
4.4. Cell Counting
4.5. Evaluation of Average Surface of NRG1-Positive Neurons
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holmes, W.E.; Sliwkowski, M.X.; Akita, R.W.; Henzel, W.J.; Lee, J.; Park, J.W.; Yansura, D.; Abadi, N.; Raab, H.; Lewis, G.D.; et al. Identification of Heregulin, a Specific Activator of p185erbB2. Science 1992, 256, 1205–1210. [Google Scholar] [CrossRef]
- Willem, M. Proteolytic processing of Neuregulin-1. Brain Res. Bull. 2016, 126, 178–182. [Google Scholar] [CrossRef]
- Barrenschee, M.; Lange, C.; Cossais, F.; Egberts, J.-H.; Becker, T.; Wedel, T.; Böttner, M. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front. Cell. Neurosci. 2015, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Wojtukiewicz, M.; Rybałtowski, M.; Sierko, E. Biologic basis of therapy targeted to EGFR. Nowotwory J. Oncol. 2008, 58, 260–271. (In Polish) [Google Scholar]
- Falls, D.L. Neuregulins: Functions, forms, and signaling strategies. Exp. Cell Res. 2003, 284, 14–30. [Google Scholar] [CrossRef]
- Law, A.J.; Weickert, C.S.; Hyde, T.; Kleinman, J.; Harrison, P. Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 2004, 127, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, K.E.; Falls, D.L. Neuregulin-1 proteins in rat brain and transfected cells are localized to lipid rafts. J. Neurochem. 2001, 77, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Noll, J.M.; Li, Y.; Distel, T.J.; Ford, G.D.; Ford, B.D. Neuroprotection by Exogenous and Endogenous Neuregulin-1 in Mouse Models of Focal Ischemic Stroke. J. Mol. Neurosci. 2019, 69, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Liu, D.; Liu, M.; Gao, M.; Chen, Z.; Xing, Z.; Zhang, X.; Yin, Y.; Luan, X. Molecular cloning and expression analysis of neuregulin 1 (Nrg1) in the hypothalamus of Huoyan goose during different stages of the egg-laying cycle. Gene 2016, 575, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Hill, D.F.; Creswick, K.E.; Costa, M.E.; Cornea, A.; Lioubin, M.N.; Plowman, G.D.; Ojeda, S.R. Neuregulins Signaling via a Glial erbB-2–erbB-4 Receptor Complex Contribute to the Neuroendocrine Control of Mammalian Sexual Development. J. Neurosci. 1999, 19, 9913–9927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, C.R.; Vartanian, T.; Miller, R.H. The ErbB4 Neuregulin Receptor Mediates Suppression of Oligodendrocyte Maturation. J. Neurosci. 2005, 25, 5757–5762. [Google Scholar] [CrossRef] [Green Version]
- Anton, E.S.; A Marchionni, M.; Lee, K.F.; Rakic, P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997, 124, 3501–3510. [Google Scholar] [PubMed]
- Huang, L.-L.; Liu, Z.-Y.; Huang, J.-H.; Luo, Z.-J. Expression pattern of neuregulin-1 type III during the development of the peripheral nervous system. Neural Regen. Res. 2015, 10, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Yamaai, T.; Garratt, A.; Riethmacher-Sonnenberg, E.; Kane, D.; E Theill, L.; Birchmeier, C. Isoform-specific expression and function of neuregulin. Development 1997, 124, 3575–3586. [Google Scholar] [PubMed]
- Rytel, L. The Influence of Bisphenol A (BPA) on Neuregulin 1-Like Immunoreactive Nerve Fibers in the Wall of Porcine Uterus. Int. J. Mol. Sci. 2018, 19, 2962. [Google Scholar] [CrossRef]
- Rytel, L.; Lozano, M.A.; Gonkowski, S. Neuregulin 1 (NRG-1) as a neuronal active substance in the porcine intrahepatic nerve fibers in physiological conditions and under the influence of bisphenol A (BPA). Ann. Anim. Sci. 2020. [Google Scholar] [CrossRef]
- Tang, C.S.-M.; Ngan, E.S.-W.; Tang, W.-K.; So, M.-T.; Cheng, G.; Miao, X.; Leon, T.Y.-Y.; Leung, B.M.-C.; Hui, K.-J.W.S.; Lui, V.H.-C.; et al. Mutations in the NRG1 gene are associated with Hirschsprung disease. Qual. Life Res. 2012, 131, 67–76. [Google Scholar] [CrossRef]
- Luzón-Toro, B.; Torroglosa, A.; Núñez-Torres, R.; Enguix-Riego, M.D.V.; Fernández, R.M.; De Agustín, J.C.; Antiñolo, G.; Borrego, S. Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients. PLoS ONE 2012, 7, e36524. [Google Scholar] [CrossRef] [Green Version]
- Gunadi; Kapoor, A.; Ling, A.Y.; Rochadi; Makhmudi, A.; Herini, E.S.; Sosa, M.X.; Chatterjee, S.; Chakravarti, A. Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J. Pediatr. Surg. 2014, 49, 1614–1618. [Google Scholar] [CrossRef] [Green Version]
- Gunadi; Budi, N.Y.P.; Sethi, R.; Fauzi, A.R.; Kalim, A.S.; Indrawan, T.; Iskandar, K.; Makhmudi, A.; Adrianto, I.; San, L.P. NRG1 variant effects in patients with Hirschsprung disease. BMC Pediatr. 2018, 18, 292. [Google Scholar] [CrossRef]
- Garcia-Barcelo, M.-M.; Tang, C.S.-M.; Ngan, E.S.-W.; Lui, V.C.-H.; Chen, Y.; So, M.-T.; Leon, T.Y.-Y.; Miao, X.-P.; Shum, C.K.-Y.; Liu, F.-Q.; et al. Genome-wide association study identifiesNRG1as a susceptibility locus for Hirschsprung’s disease. Proc. Natl. Acad. Sci. USA 2009, 106, 2694–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrenschee, M.; Cossais, F.; Böttner, M.; Egberts, J.-H.; Becker, T.; Wedel, T. Impaired Expression of Neuregulin 1 and Nicotinic Acetylcholine Receptor β4 Subunit in Diverticular Disease. Front. Cell. Neurosci. 2019, 13, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Li, B.; Xu, X.; Zhou, Z.; Wu, W.; Tang, J.; Qin, J.; Geng, Q.; Jiang, W.; Zhang, J.; et al. Aberrant high expression of NRG1 gene in Hirschsprung disease. J. Pediatr. Surg. 2012, 47, 1694–1698. [Google Scholar] [CrossRef]
- Yun, S.; Koh, J.; Nam, S.K.; Park, J.O.; Lee, S.M.; Lee, K.; Lee, K.S.; Ahn, S.-H.; Park, D.J.; Kim, H.-H.; et al. Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients. Gastric Cancer 2018, 21, 225–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.-E.; Kim, H.-J.; Shin, D.H.; Hwang, S.-H.; Kang, C.-D.; Oh, S.-O. Overexpression of NRG1 promotes progression of gastric cancer by regulating the self-renewal of cancer stem cells. J. Gastroenterol. 2015, 50, 645–656. [Google Scholar] [CrossRef]
- Zhao, W.-J. The expression and localization of neuregulin-1 (Nrg1) in the gastrointestinal system of the rhesus monkey. Folia Histochem. Cytobiol. 2013, 51, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Jardé, T.; Chan, W.H.; Rossello, F.J.; Kahlon, T.K.; Theocharous, M.; Arackal, T.K.; Flores, T.; Giraud, M.; Richards, E.; Chan, E.; et al. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020, 27, 646–662.e7. [Google Scholar] [CrossRef]
- Pu, J.; Tang, S.-T.; Tong, Q.; Wang, G.; Jia, H.; Jia, Q.; Li, K.; Li, D.; Yang, D.; Yang, J.; et al. Neuregulin 1 is involved in enteric nervous system development in zebrafish. J. Pediatr. Surg. 2017, 52, 1182–1187. [Google Scholar] [CrossRef]
- Fledrich, R.; Stassart, R.M.; Klink, A.; Rasch, L.M.; Prukop, T.; Haag, L.; Czesnik, D.; Kungl, T.; Abdelaal, T.A.M.; Keric, N.; et al. Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat. Med. 2014, 20, 1055–1061. [Google Scholar] [CrossRef]
- Viehover, A.; Miller, R.H.; Park, S.-K.; Fischbach, G.; Vartanian, T. Neuregulin: An Oligodendrocyte Growth Factor Absent in Active Multiple Sclerosis Lesions. Dev. Neurosci. 2001, 23, 377–386. [Google Scholar] [CrossRef]
- Mancuso, R.; Martínez-Muriana, A.; Leiva, T.; Gregorio, D.; Ariza, L.; Morell, M.; Esteban-Pérez, J.; García-Redondo, A.; Calvo, A.C.; Atencia-Cibreiro, G.; et al. Neuregulin-1 promotes functional improvement by enhancing collateral sprouting in SOD1G93A ALS mice and after partial muscle denervation. Neurobiol. Dis. 2016, 95, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Wolpowitz, D.; Mason, T.B.; Dietrich, P.; Mendelsohn, M.; Talmage, D.A.; Role, L.W. Cysteine-Rich Domain Isoforms of the Neuregulin-1 Gene Are Required for Maintenance of Peripheral Synapses. Neuron 2000, 25, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Paratore, C.; E Goerich, D.; Suter, U.; Wegner, M.; Sommer, L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 2001, 128, 3949–3961. [Google Scholar] [PubMed]
- Crone, S.A.; Negro, A.; Trumpp, A.; Giovannini, M.; Lee, K.-F. Colonic Epithelial Expression of ErbB2 Is Required for Postnatal Maintenance of the Enteric Nervous System. Neuron 2003, 37, 29–40. [Google Scholar] [CrossRef]
- Gui, H.; Tang, W.-K.; So, M.-T.; Proitsi, P.; Sham, P.C.; Tam, P.K.; Ngan, E.S.-W.; Cherny, S.S.; Garcia-Barceló, M.-M. RET and NRG1 interplay in Hirschsprung disease. Qual. Life Res. 2013, 132, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Wright, C.M.; Heuckeroth, R.O. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu. Rev. Physiol. 2019, 81, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Makowska, K. Chemically induced inflammation and nerve damage affect the distribution of vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) nervous structures in the descending colon of the domestic pig. Neurogastroenterol. Motil. 2018, 30, e13439. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.-J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Springer: New York, NY, USA, 2014; Volume 817, pp. 39–71. [Google Scholar] [CrossRef]
- Makowska, K.; Gonkowski, S. Age and Sex-Dependent Differences in the Neurochemical Characterization of Calcitonin Gene-Related Peptide-Like Immunoreactive (CGRP-LI) Nervous Structures in the Porcine Descending Colon. Int. J. Mol. Sci. 2019, 20, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasina, V.; Barbara, G.; Talamonti, L.; Stanghellini, V.; Corinaldesi, R.; Tonini, M.; De Ponti, F.; De Giorgio, R. Enteric neuroplasticity evoked by inflammation. Auton. Neurosci. 2006, 126, 264–272. [Google Scholar] [CrossRef]
- Mikołajewska, K.; Stragierowicz, J.; Gromadzinska, J. Bisphenol A—Application, sources of exposure and potential risks in infants, children and pregnant women. Int. J. Occup. Med. Environ. Health 2015, 28, 209–241. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Olson, M.R.; Su, R.; A Flaws, J.; Fazleabas, A.T. Bisphenol A impairs decidualization of human uterine stromal fibroblasts. Reprod. Toxicol. 2017, 73, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Aghajanova, L.; Giudice, L.C. Effect of bisphenol A on human endometrial stromal fibroblasts in vitro. Reprod. Biomed. Online 2010, 22, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Nah, W.H.; Park, M.J.; Gye, M.C. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin. Exp. Reprod. Med. 2011, 38, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rytel, L.; Gonkowski, S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int. J. Mol. Sci. 2020, 21, 4543. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Deshpande, S.B. Bisphenol A decreases the spontaneous contractions of rat uterus in vitro through a nitrergic mechanism. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.N.; Jung, E.-M.; Ahn, C.; Lee, J.-H.; Yoo, Y.-M.; Jeung, E.-B. Effects of Bisphenol A and 4-tert-Octylphenol on Embryo Implantation Failure in Mouse. Int. J. Environ. Res. Public Health 2018, 15, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, G.M.B.; Peterson, C.M.; Chen, Z.; Croughan, M.; Sundaram, R.; Stanford, J.; Varner, M.W.; Kennedy, A.; Giudice, L.; Fujimoto, V.Y.; et al. Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil. Steril. 2013, 100, 162–169.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.-F.; Bao-Zhang, G.; Shuai, H.-L.; Guan, B.; Luo, X.; Yan, R.-L. IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells. Arch. Biochem. Biophys. 2015, 573, 52–58. [Google Scholar] [CrossRef] [PubMed]
- MacLusky, N.J.; Hajszan, T.; Leranth, C. The Environmental Estrogen Bisphenol A Inhibits Estradiol-Induced Hippocampal Synaptogenesis. Environ. Health Perspect. 2005, 113, 675–679. [Google Scholar] [CrossRef]
- Hajszan, T.; Leranth, C. Bisphenol A interferes with synaptic remodeling. Front. Neuroendocr. 2010, 31, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, S.; Aoki, M.; Hosokawa, T.; Saito, T.; Masuma, R.; Komori, M.; Kurasaki, M. Bisphenol-A suppresses neurite extension due to inhibition of phosphorylation of mitogen-activated protein kinase in PC12 cells. Chem. Interact. 2011, 194, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Tai, F.; Song, Z.; Wu, R.; Zhang, X.; He, F. Pubertal exposure to bisphenol A disrupts behavior in adult C57BL/6J mice. Environ. Toxicol. Pharmacol. 2011, 31, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Muckle, G.; Arbuckle, T.; Bouchard, M.F.; Fraser, W.D.; Ouellet, E.; Séguin, J.R.; Oulhote, Y.; Webster, G.M.; Lanphear, B.P. Associations of Prenatal Urinary Bisphenol A Concentrations with Child Behaviors and Cognitive Abilities. Environ. Health Perspect. 2017, 125, 067008. [Google Scholar] [CrossRef]
- Wang, T.; Xie, C.; Yu, P.; Fang, F.; Zhu, J.; Cheng, J.; Gu, A.; Wang, J.; Xiao, H. Involvement of Insulin Signaling Disturbances in Bisphenol A-Induced Alzheimer’s Disease-like Neurotoxicity. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Ambreen, S.; Akhtar, T.; Hameed, N.; Ashfaq, I.; Sheikh, N. In Vivo Evaluation of Histopathological Alterations and Trace Metals Estimation of the Small Intestine in Bisphenol A-Intoxicated Rats. Can. J. Gastroenterol. Hepatol. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Feng, L.; Chen, S.; Zhang, L.; Qu, W.; Chen, Z. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice. Environ. Pollut. 2019, 254, 112960. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Z.; Ji, W. Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed. Pharmacother. 2019, 117, 109182. [Google Scholar] [CrossRef]
- Szymanska, K.; Makowska, K.; Gonkowski, S. The Influence of High and Low Doses of Bisphenol A (BPA) on the Enteric Nervous System of the Porcine Ileum. Int. J. Mol. Sci. 2018, 19, 917. [Google Scholar] [CrossRef] [Green Version]
- Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 2016, 7, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Thoene, M.A.; Godlewski, J.; Rytel, L.; Dzika, E.; Bejer-Olenska, E.; Wojtkiewicz, J. Alterations in porcine intrahepatic sympathetic nerves after bisphenol A administration. Folia Histochem. Cytobiol. 2018, 56, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Chapalamadugu, K.C.; Vandevoort, C.A.; Settles, M.L.; Robison, B.D.; Murdoch, G.K. Maternal Bisphenol a Exposure Impacts the Fetal Heart Transcriptome. PLoS ONE 2014, 9, e89096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wei, F.; Zhang, J.; Hao, L.; Jiang, J.; Dang, L.; Mei, D.; Fan, S.; Yu, Y.; Jiang, L. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch. Biochem. Biophys. 2017, 633, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Olea-Herrero, N.; Arenas, M.I.; Muñóz-Moreno, C.; Moreno-Gómez-Toledano, R.; González-Santander, M.; Arribas, I.; Bosch, R.J. Bisphenol-A Induces Podocytopathy with Proteinuria in Mice. J. Cell. Physiol. 2014, 229, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Abdelhaffez, A.; El-Aziz, E.A.A.; Aziz, M.A.A.; Ahmed, A.M. Lung injury induced by Bisphenol A: A food contaminant, is ameliorated by selenium supplementation. Pathophysiology 2017, 24, 81–89. [Google Scholar] [CrossRef]
- Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132–155. [Google Scholar] [CrossRef]
- Rubin, B.S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef]
- Sakamoto, H.; Yokota, H.; Kibe, R.; Sayama, Y.; Yuasa, A. Excretion of bisphenol A-glucuronide into the small intestine and deconjugation in the cecum of the rat. Biochim. Biophys. Acta 2002, 1573, 171–176. [Google Scholar] [CrossRef]
- Verma, N.; Rettenmeier, A.W.; Schmitz-Spanke, S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 2011, 11, 776–793. [Google Scholar] [CrossRef]
- Brown, D.R.; Timmermans, J.-P. Lessons from the porcine enteric nervous system. Neurogastroenterol. Motil. 2004, 16, 50–54. [Google Scholar] [CrossRef]
- Parathan, P.; Wang, Y.; Leembruggen, A.J.; Bornstein, J.C.; Foong, J.P. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev. Biol. 2020, 458, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Medina, I.; Jevans, B.; Boismoreau, F.; Chettouh, Z.; Enomoto, H.; Müller, T.; Birchmeier, C.; Burns, A.J.; Brunet, J.-F. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc. Natl. Acad. Sci. USA 2017, 114, 11980–11985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, L.; Nave, K.-A. Neuregulin-ERBB Signaling in the Nervous System and Neuropsychiatric Diseases. Neuron 2014, 83, 27–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riethmacher, D.; Sonnenberg-Riethmacher, E.; Brinkmann, V.; Yamaai, T.; Lewin, G.R.; Birchmeier, C. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nat. Cell Biol. 1997, 389, 725–730. [Google Scholar] [CrossRef]
- Sandrock, A.W., Jr.; Dryer, S.E.; Rosen, K.M.; Gozani, S.N.; Krämer, R.; Theill, L.E.; Fischbach, G.D. Maintenance of Acetylcholine Receptor Number by Neuregulins at the Neuromuscular Junction in Vivo. Science 1997, 276, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Arai, N.; Ström, A.; Rafter, J.J.; Gustafsson, J.-Å. Estrogen Receptor β mRNA in Colon Cancer Cells: Growth Effects of Estrogen and Genistein. Biochem. Biophys. Res. Commun. 2000, 270, 425–431. [Google Scholar] [CrossRef]
- Qin, B.; Dong, L.; Guo, X.; Jiang, J.; He, Y.; Wang, X.; Li, L.; Zhao, J. Expression of G protein-coupled estrogen receptor in irritable bowel syndrome and its clinical significance. Int. J. Clin. Exp. Pathol. 2014, 7, 2238–2246. [Google Scholar]
- Kawano, N.; Koji, T.; Hishikawa, Y.; Murase, K.; Murata, I.; Kohno, S. Identification and localization of estrogen receptor α- and β-positive cells in adult male and female mouse intestine at various estrogen levels. Histochem. Cell Biol. 2004, 121, 399–405. [Google Scholar] [CrossRef]
- Jacenik, D.; Beswick, E.J.; Krajewska, W.M.; Prossnitz, E.R. G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis. World J. Gastroenterol. 2019, 25, 4092–4104. [Google Scholar] [CrossRef]
- Flågeng, M.H.; A Larionov, A.; Geisler, J.; Knappskog, S.; Prestvik, W.S.; Bjørkøy, G.; Lilleng, P.K.; Dixon, J.M.; Miller, W.; E Lønning, P.; et al. Treatment with aromatase inhibitors stimulates the expression of epidermal growth factor receptor-1 and neuregulin 1 in ER positive/HER-2/neu non-amplified primary breast cancers. J. Steroid Biochem. Mol. Biol. 2017, 165, 228–235. [Google Scholar] [CrossRef]
- Van Agthoven, T.; Sieuwerts, A.M.; Meijer, D.; Gelder, M.E.M.-V.; A Van Agthoven, T.L.; Sarwari, R.; Sleijfer, S.; A Foekens, J.; Dorssers, L.C.J. Selective recruitment of breast cancer anti-estrogen resistance genes and relevance for breast cancer progression and tamoxifen therapy response. Endocr. Relat. Cancer 2010, 17, 215–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viberg, H.; Lee, I. A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice. Neurotoxicology 2012, 33, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xie, L.; Hong, X.; Ruan, Q.; Lu, H.; Zhang, Q.; Zhang, G.; Liu, X. Perinatal exposure to bisphenol-A inhibits synaptogenesis and affects the synaptic morphological development in offspring male mice. Chemosphere 2013, 91, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, P.; Huang, Q.; Chi, Y.; Dong, S.; Fan, J. Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. Chemosphere 2019, 229, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-H.; Baek, J.-H.; Lee, S.-Y.; Jang, C.-G. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse 2010, 64, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, J.T.; Rissman, E.F.; Connelly, J.J. The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm. Behav. 2011, 59, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Makowska, K.; Szymańska, K.; Palus, K.; Gonkowski, S.; Całka, J. Influence of bisfenol A on chemical coding of the nerve fibers of the cardiac apex in the domestic pig. Med. Weter. 2017, 73, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Liliana, R.; Slawomir, G.; Tomasz, J.; Joanna, W.; Andrzej, P. The Neurochemical Characterization of Parasympathetic Nerve Fibers in the Porcine Uterine Wall Under Physiological Conditions and After Exposure to Bisphenol A (BPA). Neurotox. Res. 2019, 35, 867–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoene, M.A.; Rytel, L.; Dzika, E.; Gonkowski, I.; Włodarczyk, A.; Wojtkiewicz, J. Immunohistochemical characteristics of porcine intrahepatic nerves under physiological conditions and after Bisphenol A administration. Folia Morphol. 2015, 77, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cao, J.; Zhu, Q.; Luan, C.; Chen, X.; Yi, X.; Ding, H.; Chen, J.; Cheng, J.; Xiao, H. Inhibition of voltage-gated sodium channels by bisphenol A in mouse dorsal root ganglion neurons. Brain Res. 2011, 1378, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qu, W.; Wang, K.; Chen, S.; Zhang, L.; Wu, D.; Chen, Z. Bisphenol A inhibits mucin 2 secretion in intestinal goblet cells through mitochondrial dysfunction and oxidative stress. Biomed. Pharmacother. 2019, 111, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, M.; Wu, C.; Zhou, C.; Zhang, J.; Zhu, Q.-X.; Shen, T. Bisphenol A promotes macrophage proinflammatory subtype polarization via upregulation of IRF5 expression in vitro. Toxicol. In Vitro 2019, 60, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Simmons, L.J.; Surles-Zeigler, M.; Li, Y.; Ford, G.D.; Newman, G.W.; Ford, B.D. Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J. Neuroinflamm. 2016, 13, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymanska, K.; Gonkowski, S. Bisphenol A—Induced changes in the enteric nervous system of the porcine duodenum. Neurotoxicology 2018, 66, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, K.; Tarafder, P.; Paul, G. Bisphenol A inhibits duodenal movementex vivoof rat through nitric oxide-mediated soluble guanylyl cyclase and α-adrenergic signaling pathways. J. Appl. Toxicol. 2015, 36, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Akaaboune, M.; Gajendran, N.; Valenzuela, I.M.-P.Y.; Wakefield, S.; Thurnheer, R.; Brenner, H.R. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin. J. Cell Biol. 2011, 195, 1171–1184. [Google Scholar] [CrossRef] [Green Version]
- Gumà, A.; Martínez-Redondo, V.; López-Soldado, I.; Cantó, C.; Zorzano, A. Emerging role of neuregulin as a modulator of muscle metabolism. Am. J. Physiol. Metab. 2010, 298, E742–E750. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.A.; Wagner, L.S.; Watson, N.V. The Effects of Bisphenol A Exposure at Different Developmental Time Points in an Androgen-Sensitive Neuromuscular System in Male Rats. Endocrinology 2016, 157, 2972–2977. [Google Scholar] [CrossRef]
- He, Z.; Paule, M.G.; A Ferguson, S. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21. Neurotoxicol. Teratol. 2012, 34, 331–337. [Google Scholar] [CrossRef]
- Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to 2,2-bis(4-hydroxyphenyl)propane. EFSA J. 2007, 5, 428. [CrossRef]
- EFSA Panel on Food Contact Materials. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Z.-H.; Zhang, J.; Huang, R.-P.; Yin, H.; Dang, Z. Human exposure of bisphenol A and its analogues: Understandings from human urinary excretion data and wastewater-based epidemiology. Environ. Sci. Pollut. Res. 2020, 27, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rutkowska, A.; Rachoń, D. Health risk of exposure to Bisphenol A (BPA). Roczniki Państwowego Zakładu Higieny 2015, 66, 5–11. (In Polish) [Google Scholar]
- Van Landuyt, K.; Nawrot, T.; Geebelen, B.; De Munck, J.; Snauwaert, J.; Yoshihara, K.; Scheers, H.; Godderis, L.; Hoet, P.; Van Meerbeek, B. How much do resin-based dental materials release? A meta-analytical approach. Dent. Mater. 2011, 27, 723–747. [Google Scholar] [CrossRef]
- Gonkowski, S.; Całka, J. Changes in the somatostatin (SOM)-like immunoreactivity within nervous structures of the porcine descending colon under various pathological factors. Exp. Mol. Pathol. 2010, 88, 416–423. [Google Scholar] [CrossRef]
Species | Localization | References |
---|---|---|
Human | Myenteric ganglia, in neuronal and glial cells, circular muscular layer in muscular cells and nerve fibers in the distal colon | [3] |
Mucosal layer and enteric ganglia in the colon | [21] | |
Myenteric ganglia located in the sigmoid colon | [22] | |
The whole colonic wall | [18,23] | |
The wall of stomach: in gastric glands under physiological condition, parietal cells in the gastric body, stromal cells of gastric pylorus and in tumor cells located in the stomach | [24,25] | |
Rhesus monkey | Esophagus: stratified squamous epithelial (SSE) cells bordering the lamina propria | [26] |
Stomach: Chief and parietal cells of gastric glands | ||
Small intestine: cells in the lamina propria and enteroendocrine cells | ||
Mouse | Mucosal layer of the small intestine | [27] |
Zebrafish | in the intestinal epithelium and muscularis externa layer serosa layer, or goblet cells | [28] |
Part of ENS | Type of Group | Part of Large Intestine | ||
---|---|---|---|---|
Caecum | Ascending Colon | Descending Colon | ||
Myenteric plexus | C group | 22.43 ± 0.16% | 26.45 ± 0.19% | 24.98 ± 0.39% |
Ex I group | 32.64 ± 0.17% a | 37.38 ± 0.10% a | 28.99 ± 0.31% a | |
Ex II group | 43.10 ± 0.15% a,d | 43.33 ± 0.28% a,d | 37.11 ± 0.12% a,d | |
Outer submucous plexus | C group | 19.63 ± 0.08% | 27.49 ± 0.19% | 21.16 ± 0.15% |
Ex I group | 24.77 ± 0.29% a | 38.75 ± 0.41% a | 27.62 ± 0.18% a | |
Ex II group | 30.62 ± 0.23% a,d | 42.62 ± 0.37% a,d | 39.64 ± 0.15% a,d | |
Inner submucous plexus | C group | 19.96 ± 0.24% | 22.73 ± 0.17% | 19.85 ± 0.28% |
Ex I group | 29.44 ± 0.33% a | 38.17 ± 0.34% a | 25.04 ± 0.30% a | |
Ex II group | 37.85 ± 0.32% a,d | 45.55 ± 0.18% a,d | 36.79 ± 0.23% a,d |
Part of ENS | Type of Group | Part of Large Intestine | ||
---|---|---|---|---|
Caecum | Ascending Colon | Descending Colon | ||
Myenteric plexus | C group | 92.05 ± 0.35 µm2 | 91.23 ± 0.27 µm2 | 90.68 ± 0.25 µm2 |
Ex I group | 96.00 ± 0.35 µm2 a | 96.98 ± 0.30 µm2 a | 95.02 ± 0.32 µm2 a | |
Ex II group | 103.38 ± 0.25 µm2 a,d | 101.98 ± 0.34 µm2 a,d | 104.77 ± 0.27 µm2 a,d | |
Outer submucous plexus | C group | 65.20 ± 0.32 µm2 | 64.27 ± 0.27 µm2 | 64.70 ± 0.25 µm2 |
Ex I group | 68.21 ± 0.22 µm2 a | 67.17 ± 0.17 µm2 a | 69.25 ± 0.27 µm2 a | |
Ex II group | 70.40 ± 0.18 µm2 a,d | 68.54 ± 0.21 µm2 a,e | 72.25 ± 0.27 µm2 a,d | |
Inner submucous plexus | C group | 59.25 ± 0.27 µm2 | 60.48 ± 0.22 µm2 | 58.03 ± 0.15 µm2 |
Ex I group | 61.94 ± 0.34 µm2 a | 63.44 ± 0.22 µm2 a | 60.44 ± 0.26 µm2 a | |
Ex II group | 66.23 ± 0.30 µm2 a,d | 67.13 ± 0.29 µm2 a,d | 65.33 ± 0.27 µm2 a,d |
Part of ENS | Type of Group | Part of Large Intestine | ||
---|---|---|---|---|
Caecum | Ascending Colon | Descending Colon | ||
Myenteric plexus | C group | 1086.00 ± 5.89 | 1077.20 ± 5.99 | 1088.80 ± 3.54 |
Ex I group | 1054.20 ± 5.95 b | 1051.20 ± 4.63 b | 1063.20 ± 5.61 b | |
Ex II group | 1006.60 ± 5.36 a,d | 996.20 ± 3.40 a,d | 1025.20 ± 5.95 a,d | |
Outer submucous plexus | C group | 888.20 ± 6.59 | 870.00 ± 4.24 | 879.20 ± 6.08 |
Ex I group | 865.80 ± 2.48 c | 868.60 ± 5.86 | 855.20 ± 4.07 c | |
Ex II group | 850.00 ± 6.75 d | 846.80 ± 6.89 c | 829.20 ± 5.08 a,e | |
Inner submucous plexus | C group | 761.60 ± 5.35 | 767.40 ± 4.68 | 787.40 ± 5.84 |
Ex I group | 717.80 ± 5.87 a | 701.00 ± 4.32 a | 731.60 ± 4.50 a | |
Ex II group | 690.00 ± 4.24 a,e | 680.00 ± 4.11 a,f | 706.00 ± 3.48 a,e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymańska, K.; Makowska, K.; Całka, J.; Gonkowski, S. The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine. Int. J. Mol. Sci. 2020, 21, 8743. https://doi.org/10.3390/ijms21228743
Szymańska K, Makowska K, Całka J, Gonkowski S. The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine. International Journal of Molecular Sciences. 2020; 21(22):8743. https://doi.org/10.3390/ijms21228743
Chicago/Turabian StyleSzymańska, Kamila, Krystyna Makowska, Jarosław Całka, and Sławomir Gonkowski. 2020. "The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine" International Journal of Molecular Sciences 21, no. 22: 8743. https://doi.org/10.3390/ijms21228743
APA StyleSzymańska, K., Makowska, K., Całka, J., & Gonkowski, S. (2020). The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine. International Journal of Molecular Sciences, 21(22), 8743. https://doi.org/10.3390/ijms21228743