Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated
Abstract
1. Introduction
2. Results
2.1. Immunohistochemistry
2.2. Electrophysiology
2.3. Optogenetic Restoration of Light Sensitivity in Cones
2.4. Restoration of Synaptic Transmission
3. Discussion
3.1. Morphological Condition of Cultured Human Retinas
3.2. Ion-Channel Makeup of Cones in Cultured Human Retinas
3.3. Reactivation of Cones
3.4. Optogenetic Vision Restoration in RP
4. Materials and Methods
4.1. Human Eyes
4.2. Culturing
4.3. Virus Transduction
4.4. Histology
4.5. Single Cell Electrophysiology
Light Stimuli
4.6. Multielectrode Recordings of GCs
Light Stimuli
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BC | bipolar cell |
CoD | Cause of death |
CVA | Cerebrovascular accident |
dLGN | dorsal lateral geniculate nucleus |
eNpHR | halorhodopsin |
EYFP | enhanced yellow fluorescent protein |
GCL | ganglion cell layer |
GC | ganglion cell |
HC | horizontal cell |
HXARR3 | human arrestin promotor |
INL | inner nuclear layer |
IPL | inner plexiform layer |
KA | kainic acid |
MEA | multielectrode array |
mGluR6 | metabotropic glutamate receptor |
NGS | normal goat serum |
NR | Not reported |
ONL | outer nuclear layer |
OPL | outer plexiform layer |
PBS | phosphate buffered saline |
PMT | Post-mortem time |
RP | retinitis pigmentosa |
SEM | standard error in the mean |
TH | tyrosine hydroxylases |
TTX | tetrodotoxin |
References
- Kumaran, N.; Moore, A.T.; Weleber, R.G.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. Brit. J. Ophthalmol. 2017, 101, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, J.W.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef]
- Niketeghad, S.; Pouratian, N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019, 16, 134–143. [Google Scholar] [CrossRef]
- Daiger, S.P.; Bowne, S.J.; Sullivan, L.S. Perspective on genes and mutations causing retinitis pigmentosa. Arch. Ophthalmol. 2007, 125, 151–158. [Google Scholar] [CrossRef]
- Berson, E.L. Retinitis pigmentosa. The Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 1993, 34, 1659–1676. [Google Scholar]
- Milam, A.H.; Li, Z.Y.; Fariss, R.N. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 1998, 17, 175–205. [Google Scholar]
- Li, Z.Y.; Kljavin, I.J.; Milam, A.H. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 1995, 15, 5429–5438. [Google Scholar] [CrossRef]
- Lin, B.; Masland, R.H.; Strettoi, E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp. Eye Res. 2009, 88, 589–599. [Google Scholar] [CrossRef]
- Santos, A.; Humayun, M.S.; de Juan, E., Jr.; Greenburg, R.J.; Marsh, M.J.; Klock, I.B.; Milam, A.H. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch. Ophthalmol. 1997, 115, 511–515. [Google Scholar] [CrossRef]
- Cotter, J.R.; Noell, W.K. Ultrastructure of remnant photoreceptors in advanced hereditary retinal degeneration. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1366–1375. [Google Scholar]
- Chaffiol, A.; Duebel, J. Mini-Review: Cell Type-Specific Optogenetic Vision Restoration Approaches. Adv. Exp. Med. Biol. 2018, 1074, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res. 2016, 53, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, M.; Rankin, M.; Mongy, M.; Patino, B.E.; Manusow, J.; Devenyi, R.G.; Markowitz, S.N. Rehabilitation of lost functional vision with the Argus II retinal prosthesis. Can. J. Ophthalmol. J. Can. D’Ophtalmol. 2018, 53, 14–22. [Google Scholar] [CrossRef]
- Watson, A.B. A formula for the mean human optical modulation transfer function as a function of pupil size. J. Vis. 2013, 13. [Google Scholar] [CrossRef]
- Sekirnjak, C.; Hottowy, P.; Sher, A.; Dabrowski, W.; Litke, A.M.; Chichilnisky, E.J. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J. Neurophysiol. 2006, 95, 3311–3327. [Google Scholar] [CrossRef]
- Shah, S.; Hines, A.; Zhou, D.; Greenberg, R.J.; Humayun, M.S.; Weiland, J.D. Electrical properties of retinal-electrode interface. J. Neural Eng. 2007, 4, S24–S29. [Google Scholar] [CrossRef]
- Wilke, R.G.H.; Moghadam, G.K.; Lovell, N.H.; Suaning, G.J.; Dokos, S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J. Neural Eng. 2011, 8. [Google Scholar] [CrossRef]
- Busskamp, V.; Duebel, J.; Balya, D.; Fradot, M.; Viney, T.J.; Siegert, S.; Groner, A.C.; Cabuy, E.; Forster, V.; Seeliger, M.; et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010, 329, 413–417. [Google Scholar] [CrossRef]
- Lagali, P.S.; Balya, D.; Awatramani, G.B.; Munch, T.A.; Kim, D.S.; Busskamp, V.; Cepko, C.L.; Roska, B. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 2008, 11, 667–675. [Google Scholar] [CrossRef]
- Doroudchi, M.M.; Greenberg, K.P.; Liu, J.W.; Silka, K.A.; Boyden, E.S.; Lockridge, J.A.; Arman, A.C.; Janani, R.; Boye, S.E.; Boye, S.L.; et al. Virally delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Mouse Models of Blindness. Mol. Ther. 2011, 19, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Mace, E.; Caplette, R.; Marre, O.; Sengupta, A.; Chaffiol, A.; Barbe, P.; Desrosiers, M.; Bamberg, E.; Sahel, J.A.; Picaud, S.; et al. Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice. Mol. Ther. 2015, 23, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; Eleftheriou, C.; Allen, A.E.; Milosavljevic, N.; Pienaar, A.; Bedford, R.; Davis, K.E.; Bishop, P.N.; Lucas, R.J. Restoration of Vision with Ectopic Expression of Human Rod Opsin. Curr. Biol. 2015, 25, 2111–2122. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, M.; Pielecka-Fortuna, J.; Lowel, S.; Kleinlogel, S. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015, 13, e1002143. [Google Scholar] [CrossRef] [PubMed]
- Gaub, B.M.; Berry, M.H.; Holt, A.E.; Isacoff, E.Y.; Flannery, J.G. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity. Mol. Ther. 2015, 23, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Bi, A.; Cui, J.; Ma, Y.P.; Olshevskaya, E.; Pu, M.; Dizhoor, A.M.; Pan, Z.H. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006, 50, 23–33. [Google Scholar] [CrossRef]
- Sengupta, A.; Chaffiol, A.; Mace, E.; Caplette, R.; Desrosiers, M.; Lampic, M.; Forster, V.; Marre, O.; Lin, J.Y.; Sahel, J.A.; et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. Embo Mol. Med. 2016, 8, 1248–1264. [Google Scholar] [CrossRef]
- Chaffiol, A.; Caplette, R.; Jaillard, C.; Brazhnikova, E.; Desrosiers, M.; Dubus, E.; Duhamel, L.; Mace, E.; Marre, O.; Benoit, P.; et al. A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina. Mol. Ther. 2017, 25, 2546–2560. [Google Scholar] [CrossRef]
- Ganjawala, T.H.; Lu, Q.; Fenner, M.D.; Abrams, G.W.; Pan, Z.H. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions. Mol. Ther. 2019, 27, 1195–1205. [Google Scholar] [CrossRef]
- Tomita, H.; Sugano, E.; Isago, H.; Hiroi, T.; Wang, Z.; Tamai, M. Visual Responses of Royal College of Surgeons Rats Transferred Modified Volvox Channelrhodopsin-2 Gene. Investig. Ophth Vis. Sci 2010, 51, 3465. [Google Scholar]
- Tomita, H.; Sugano, E.; Murayama, N.; Ozaki, T.; Nishiyama, F.; Tabata, K.; Takahashi, M.; Saito, T.; Tamai, M. Restoration of the Majority of the Visual Spectrum by Using Modified Volvox Channelrhodopsin-1. Mol. Ther. 2014, 22, 1434–1440. [Google Scholar] [CrossRef]
- Tomita, H.; Sugano, E.; Yawo, H.; Ishizuka, T.; Isago, H.; Narikawa, S.; Kugler, S.; Tamai, M. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Investig. Ophth. Vis. Sci. 2007, 48, 3821–3826. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S.R.; Barnard, A.R.; Hughes, S.; Tam, S.K.E.; Martin, C.; Singh, M.S.; Barnea-Cramer, A.O.; McClements, M.E.; During, M.J.; Peirson, S.N.; et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. Proc. Natl. Acad. Sci. USA 2017, 114, 11211–11216. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Koizumi, A.; Tanaka, N.; Panda, S.; Masland, R.H. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. USA 2008, 105, 16009–16014. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, S.; van Wyk, M.; Lehmann, K.; Lowel, S.; Feng, G.; Wassle, H. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J. Neurosci. 2010, 30, 8745–8758. [Google Scholar] [CrossRef]
- Dalkara, D.; Byrne, L.C.; Klimczak, R.R.; Visel, M.; Yin, L.; Merigan, W.H.; Flannery, J.G.; Schaffer, D.V. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 2013, 5, 189ra76. [Google Scholar] [CrossRef]
- Van Wyk, M.; Hulliger, E.C.; Girod, L.; Ebneter, A.; Kleinlogel, S. Present Molecular Limitations of ON-Bipolar Cell Targeted Gene Therapy. Front. Neurosci. 2017, 11, 161. [Google Scholar] [CrossRef]
- Hille, B. Ionic Channels of Excitable Membranes; Sinauer Associates Inc.: Sunderland, MA, USA, 1992. [Google Scholar]
- Maricq, A.V.; Korenbrot, J.I. Inward rectification in the inner segment of single retinal cone photoreceptors. J. Neurophysiol. 1990, 64, 1917–1928. [Google Scholar] [CrossRef]
- Barnes, S.; Hille, B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. Gen. Physiol. 1989, 94, 719–743. [Google Scholar] [CrossRef]
- Barrow, A.J.; Wu, S.M. Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J. Neurosci. 2009, 29, 5841–5853. [Google Scholar] [CrossRef]
- Verweij, J.; Kamermans, M.; Spekreijse, H. Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vis. Res. 1996, 36, 3943–3953. [Google Scholar] [CrossRef]
- Thoreson, W.B.; Babai, N.; Bartoletti, T.M. Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 2008, 28, 5691–5695. [Google Scholar] [CrossRef] [PubMed]
- Grove, J.C.R.; Hirano, A.A.; de Los Santos, J.; McHugh, C.F.; Purohit, S.; Field, G.D.; Brecha, N.C.; Barnes, S. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. PLoS Biol. 2019, 17, e3000200. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.; Hornstein, E.P.; Schnapf, J.L. Surround antagonism in macaque cone photoreceptors. J. Neurosci 2003, 23, 10249–10257. [Google Scholar] [CrossRef]
- Barnes, S.; Deschenes, M.C. Contribution of Ca and Ca-activated Cl channels to regenerative depolarization and membrane bistability of cone photoreceptors. J. Neurophysiol. 1992, 68, 745–755. [Google Scholar] [CrossRef]
- Fahrenfort, I.; Klooster, J.; Sjoerdsma, T.; Kamermans, M. The involvement of glutamate-gated channels in negative feedback from horizontal cells to cones. Prog. Brain Res. 2005, 147, 219–229. [Google Scholar] [CrossRef]
- Sheedlo, H.J.; Nelson, T.H.; Lin, N.; Rogers, T.A.; Roque, R.S.; Turner, J.E. RPE secreted proteins and antibody influence photoreceptor cell survival and maturation. Brain Res. Dev. Brain Res. 1998, 107, 57–69. [Google Scholar] [CrossRef]
- Fernandez-Bueno, I.; Fernandez-Sanchez, L.; Gayoso, M.J.; Garcia-Gutierrez, M.T.; Pastor, J.C.; Cuenca, N. Time course modifications in organotypic culture of human neuroretina. Exp. Eye Res. 2012, 104, 26–38. [Google Scholar] [CrossRef]
- Niyadurupola, N.; Sidaway, P.; Osborne, A.; Broadway, D.C.; Sanderson, J. The development of human organotypic retinal cultures (HORCs) to study retinal neurodegeneration. Br. J. Ophthalmol. 2011, 95, 720–726. [Google Scholar] [CrossRef][Green Version]
- Osborne, A.; Hopes, M.; Wright, P.; Broadway, D.C.; Sanderson, J. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp. Eye Res. 2016, 143, 28–38. [Google Scholar] [CrossRef]
- Jakobs, T.C.; Koizumi, A.; Masland, R.H. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J. Comp. Neurol. 2008, 510, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Wagner, F.; Lorenz, B.; Stieger, K. Organotypic Cultures of Adult Mouse Retina: Morphologic Changes and Gene Expression. Investig. Ophthalmol. Vis. Sci 2017, 58, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Enzsoly, A.; Szabo, K.; Szel, A.; Lukáts, A. Long term organotypic culture of the human retina. Investig. Ophthalmol. Vis. Sci 2014, 55, 2981. [Google Scholar]
- Van Hook, M.J.; Nawy, S.; Thoreson, W.B. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog. Retin Eye Res. 2019, 72, 100760. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, M.; Kawai, F.; Horiguchi, M.; Miyachi, E. Patch-clamp recording of human retinal photoreceptors and bipolar cells. Photochem. Photobiol. 2007, 83, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Kawai, F.; Horiguchi, M.; Suzuki, H.; Miyachi, E. Na+ action potentials in human photoreceptors. Neuron 2001, 30, 451–458. [Google Scholar] [CrossRef][Green Version]
- Babai, N.; Thoreson, W.B. Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina. J. Physiol 2009, 587, 2353–2364. [Google Scholar] [CrossRef]
- Grassmeyer, J.J.; Thoreson, W.B. Synaptic Ribbon Active Zones in Cone Photoreceptors Operate Independently from One Another. Front. Cell Neurosci. 2017, 11, 198. [Google Scholar] [CrossRef]
- Schneeweis, D.M.; Schnapf, J.L. The photovoltage of macaque cone photoreceptors: Adaptation, noise, and kinetics. J. Neurosci. 1999, 19, 1203–1216. [Google Scholar] [CrossRef]
- Taylor, W.R.; Morgans, C.W. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis. Neurosci. 1998, 15, 541–552. [Google Scholar] [CrossRef]
- Wu, S.M. Synaptic transmission from rods to bipolar cells in the tiger salamander retina. Proc. Natl. Acad. Sci. USA 1985, 82, 3944–3947. [Google Scholar] [CrossRef] [PubMed]
- Howlett, M.H.; Smith, R.G.; Kamermans, M. A novel mechanism of cone photoreceptor adaptation. PLoS Biol. 2017, 15, e2001210. [Google Scholar] [CrossRef] [PubMed]
- Yagi, T.; MacLeish, P.R. Ionic conductances of monkey solitary cone inner segments. J. Neurophysiol 1994, 71, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Kawai, F.; Horiguchi, M.; Ichinose, H.; Ohkuma, M.; Isobe, R.; Miyachi, E. Suppression by an h current of spontaneous Na+ action potentials in human cone and rod photoreceptors. Investig. Ophthalmol. Vis. Sci. 2005, 46, 390–397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Busskamp, V.; Picaud, S.; Sahel, J.A.; Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 2012, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef]
- Kamermans, M.; Fahrenfort, I.; Schultz, K.; Janssen-Bienhold, U.; Sjoerdsma, T.; Weiler, R. Hemichannel-mediated inhibition in the outer retina. Science 2001, 292, 1178–1180. [Google Scholar] [CrossRef]
- Vroman, R.; Klaassen, L.J.; Howlett, M.H.; Cenedese, V.; Klooster, J.; Sjoerdsma, T.; Kamermans, M. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft. PLoS Biol. 2014, 12, e1001864. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004, 16, 1661–1687. [Google Scholar] [CrossRef]
- Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed]
Associated Figure | Age (Years) | PMT (h) | CoD, Agonal State, Medical Conditions/Co-Morbidities (If Known) |
---|---|---|---|
Figure 1 and Figure 2 | 72 | 17 | Mental disorder |
60 | 29 | Pulmonary disease | |
Figure 3b and Figure 5d,e | 78 | 22 | Heart disease |
78 | 28 | CVA, malignancy | |
74 | 25 | CVA, malignancy | |
Figure 3c | 59 | 17 | Malignancy |
44 | 38 | Trauma capitis | |
59 | 29 | Heart disease | |
Figure 3d | 79 | 15 | Malignancy |
75 | 6 | Malignancy | |
41 | 8 | CVA | |
41 | 34 | Heart disease | |
Figure 4a | 60 | 29 | Pulmonary disease |
51 | 28 | Pulmonary disease | |
69 | 26 | Malignancy | |
Figure 4b | 51 | 28 | Heart disease |
47 | 31 | Malignancy | |
67 | 10 | Malignancy | |
Figure 5b,c | 58 | 19 | Mental disorder |
73 | 20 | Mental disorder | |
Figure 5g | 72 | 18 | NR |
Antibody | Dilution | Origin |
---|---|---|
cleaved caspase-3 rabbit mAb | 1:250 | Cell Signaling D-175 |
rabbit anti opsin red/green | 1:100 | Chemicon AB5405 |
rabbit anti opsin blue | 1:100 | Chemicon AB5407 |
rabbit anti rhodopsin | 1:100 | Chemicon AB9279 |
mouse monoclonal anti synaptophysin | 1:200 | Sigma-Aldrich Clone SVP-38 S5768 |
mouse anti ribeye | 1:500 | Transduction laboratories |
rabbit anti mGluR6 | 1:5000 | Gift from Dr. Vardi |
mouse anti Go-α | 1:1000 | Chemicon: MAB3073 |
mouse anti tyrosine hydroxlase | 1:200 | Chemicon: MAB31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamar, S.; Howlett, M.H.C.; Klooster, J.; de Graaff, W.; Csikós, T.; Rabelink, M.J.W.E.; Hoeben, R.C.; Kamermans, M. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. Int. J. Mol. Sci. 2020, 21, 522. https://doi.org/10.3390/ijms21020522
Kamar S, Howlett MHC, Klooster J, de Graaff W, Csikós T, Rabelink MJWE, Hoeben RC, Kamermans M. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. International Journal of Molecular Sciences. 2020; 21(2):522. https://doi.org/10.3390/ijms21020522
Chicago/Turabian StyleKamar, Sizar, Marcus H. C. Howlett, Jan Klooster, Wim de Graaff, Tamás Csikós, Martijn J. W. E. Rabelink, Rob C. Hoeben, and Maarten Kamermans. 2020. "Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated" International Journal of Molecular Sciences 21, no. 2: 522. https://doi.org/10.3390/ijms21020522
APA StyleKamar, S., Howlett, M. H. C., Klooster, J., de Graaff, W., Csikós, T., Rabelink, M. J. W. E., Hoeben, R. C., & Kamermans, M. (2020). Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. International Journal of Molecular Sciences, 21(2), 522. https://doi.org/10.3390/ijms21020522