Next Article in Journal
Roco Proteins and the Parkinson’s Disease-Associated LRRK2
Next Article in Special Issue
Inhibitory Effect of Synthetic Flavone Derivatives on Pan-Aurora Kinases: Induction of G2/M Cell-Cycle Arrest and Apoptosis in HCT116 Human Colon Cancer Cells
Previous Article in Journal
Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C
Previous Article in Special Issue
Inhibitory and Inductive Effects of Opuntia ficus indica Extract and Its Flavonoid Constituents on Cytochrome P450s and UDP-Glucuronosyltransferases
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2018, 19(12), 4073; https://doi.org/10.3390/ijms19124073

Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide with Serum Albumin

1
Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, H-7624 Pécs, Hungary
2
János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
3
Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
4
Department of Pharmaceutical Chemistry, University of Pécs, Faculty of Pharmacy, Rókus utca 2, H-7624 Pécs, Hungary
5
Department of Organic and Pharmacological Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary
*
Author to whom correspondence should be addressed.
Received: 12 November 2018 / Revised: 10 December 2018 / Accepted: 14 December 2018 / Published: 17 December 2018
(This article belongs to the Special Issue Polyphenols: Nutrition, Physiology, Metabolism and Health Benefits)
  |  
PDF [2919 KB, uploaded 17 December 2018]
  |  

Abstract

Chrysin (5,7-dihydroxyflavone) is a flavonoid aglycone, which is found in nature and in several dietary supplements. During the biotransformation of chrysin, its conjugated metabolites chrysin-7-sulfate (C7S) and chrysin-7-glucuronide (C7G) are formed. Despite the fact that these conjugates appear in the circulation at much higher concentrations than chrysin, their interactions with serum albumin have not been reported. In this study, the complex formation of chrysin, C7S, and C7G with human (HSA) and bovine (BSA) serum albumins was investigated employing fluorescence spectroscopic, ultrafiltration, and modeling studies. Our major observations/conclusions are as follows: (1) Compared to chrysin, C7S binds with a threefold higher affinity to HSA, while C7G binds with a threefold lower affinity; (2) the albumin-binding of chrysin, C7S, and C7G did not show any large species differences regarding HSA and BSA; (3) tested flavonoids likely occupy Sudlow’s Site I in HSA; (4) C7S causes significant displacement of Sudlow’s Site I ligands, exerting an even stronger displacing ability than the parent compound chrysin. Considering the above-listed observations, the high intake of chrysin (e.g., through the consumption of dietary supplements with high chrysin contents) may interfere with the albumin-binding of several drugs, mainly due to the strong interaction of C7S with HSA. View Full-Text
Keywords: chrysin; chrysin-7-sulfate; chrysin-7-glucuronide; serum albumin; fluorescence spectroscopy; albumin–ligand complexes chrysin; chrysin-7-sulfate; chrysin-7-glucuronide; serum albumin; fluorescence spectroscopy; albumin–ligand complexes
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Mohos, V.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Lemli, B.; Kunsági-Máté, S.; Bognár, B.; Poór, M. Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide with Serum Albumin. Int. J. Mol. Sci. 2018, 19, 4073.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top