Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics
Abstract
:1. Introduction
2. Antibacterial Activity of Quaternised CS
3. Antifungal Activity of Quaternised CS
4. The Mechanism of Antimicrobial Action
4.1. Mechanism of Antibacterial Action
4.2. Mechanism of Antifungal Action
4.3. Mechanism of Anti-Biofilm Formation
5. Application in the Orthopedic Surgery Field
6. Perspectives and Areas for Future Research
Acknowledgements
- Conflict of InterestThe authors declare no conflict of interest.
References
- Rabea, E.I.; Badawy, M.E.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [Green Version]
- Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv 2010, 28, 142–150. [Google Scholar] [Green Version]
- Ignatova, M.; Starbova, K.; Markova, N.; Manolova, N.; Rashkov, I. Electrospun nano-fibre mats with antibacterial properties from quaternized chitosan and poly (vinyl alcohol). Carbohydr. Res 2006, 341, 2098–2107. [Google Scholar] [Green Version]
- Ignatova, M.; Manolova, N.; Rashkov, I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur. Polymer. J 2007, 43, 1112–1122. [Google Scholar] [Green Version]
- Sajomsang, W.; Gonil, P.; Tantayanon, S. Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization. Int. J. Biol. Macromol 2009, 44, 419–427. [Google Scholar] [Green Version]
- Peng, Z.X.; Wang, L.; Du, L.; Guo, S.R.; Wang, X.Q.; Tang, T.T. Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr. Polym 2010, 81, 275–283. [Google Scholar] [Green Version]
- Xu, T.; Xin, M.H.; Li, M.C.; Huang, H.L.; Zhou, S.Q.; Liu, J.Z. Synthesis, characterization and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr. Res 2011, 346, 2445–2450. [Google Scholar] [Green Version]
- Rúnarsson, Ö.V.; Holappa, J.; Nevalainen, T.; Hjálmarsdóttir, M.; Järvinen, T.; Loftsson, T.; Einarsson, J.M.; Jónsdóttir, S.; Valdimarsdóttir, M.; Másson, M. Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships. Eur. Polymer. J. 2007, 43, 2660–2671. [Google Scholar] [Green Version]
- Ye, X.L.; Li, X.G.; Yuan, L.J.; Ge, L.H.; Zhang, B.S.; Zhou, S.B. Interaction between houttuyfonate homologues with the cell membrane of gram-positive and gram-negative bacteria. Colloid Surf. A Physicochem. Eng. Asp 2007, 301, 412–418. [Google Scholar] [Green Version]
- Snyman, D.; Govender, T.; Kotzé, A.F. Low molecular weight quaternised chitosan (I): Synthesis and characterisation. Pharmazie 2003, 58, 705–708. [Google Scholar] [Green Version]
- Sajomsang, W. Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review. Carbohydr. Polym 2010, 80, 631–647. [Google Scholar] [Green Version]
- Mourya, V.K.; Inamdar, N.N. Trimethyl chitosan and its applications in drug delivery. J. Mater. Sci. Mater. Med 2009, 20, 1057–1079. [Google Scholar] [Green Version]
- Sajomsang, W.; Tantayanon, S.; Tangpasuthadol, V.; Daly, W.H. Quaternization of N-aryl chitosan derivatives: synthesis, characterization and antibacterial activity. Carbohydr. Res 2009, 344, 2502–2511. [Google Scholar] [Green Version]
- Sajomsang, W.; Tantayanon, S.; Tangpasuthadol, V.; Daly, W.H. Synthesis of methylated chitosan containing aromatic moieties: Chemoselectivity and effect on molecular weight. Carbohydr. Polym 2008, 72, 740–750. [Google Scholar] [Green Version]
- Masson, M.; Holappa, J.; Hjalmarsdottir, M.; Runarsson, O.V.; Nevalainen, T.; Jarvinen, T. Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr. Polym 2008, 74, 566–571. [Google Scholar] [Green Version]
- Wiarachai, O.; Thongchul, N.; Kiatkamjornwongd, S.; Hovene, V.P. Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf. B Biointerfaces 2012, 92, 121–129. [Google Scholar] [Green Version]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol 2010, 144, 51–63. [Google Scholar] [Green Version]
- Avadi, M.R.; Sadeghi, A.M.M.; Tahzibi, A.; Bayati, K.; Pouladzadeh, M.; Zohuriaan-Mehr, M.J.; Rafiee-Tehrani, M. Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. Eur. Polymer J 2004, 40, 1355–1361. [Google Scholar] [Green Version]
- Seong, H.S.; Whang, H.S.; Ko, S.W. Synthesis of a quaternary ammonium derivative of chito-oligosaccharide as antimicrobial agent for cellulosic fibers. J. Appl. Polym. Sci 2000, 76, 2009–2015. [Google Scholar] [Green Version]
- Kim, Y.H.; Nam, C.W.; Choi, J.W.; Jang, J. Durable antimicrobial treatment of cotton fabrics using N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acids. Appl. Polym. Sci 2003, 88, 1567–1572. [Google Scholar] [Green Version]
- Chi, W.L.; Qin, C.Q.; Zeng, L.T.; Li, W.; Wang, W.J. Microbiocidal activity of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. Appl. Polym. Sci 2007, 103, 3851–3856. [Google Scholar] [Green Version]
- Qin, C.Q.; Xiao, Q.; Li, H.R.; Fang, M.; Liu, Y.; Chen, X.Y.; Li, Q. Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms. Int. J. Biol. Macromol 2004, 34, 121–126. [Google Scholar] [Green Version]
- Xu, T.; Xin, M.; Li, M.; Huang, H.; Zhou, S. Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr. Polym 2010, 81, 931–936. [Google Scholar] [Green Version]
- Raafat, D.; Sahl, H.G. Chitosan and its antimicrobial potential-a critical literature survey. Microb. Biotechnol 2009, 2, 186–201. [Google Scholar] [Green Version]
- Kenawy, El-R.; Abdel-Hay, F.I.; El-Magd, A.A.; Mahmoud, Y. Biologically active polymers: Modification and anti-microbial activity of chitosan derivatives. J. Bioact. Compat. Polym. 2005, 20, 95–111. [Google Scholar] [Green Version]
- Park, Y.Y.; Kim, M.H.; Park, S.C.; Cheong, H.S.; Jang, M.K.; Nah, J.W.; Hahm, K.S. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J. Microbiol. Biotechnol 2008, 18, 1729–1734. [Google Scholar] [Green Version]
- EI Ghaouth, A.; Arul, J.; Asselin, A.; Benhamou, N. Antifungal activity of chitosan on post-harvest pathogens: Induction of morphological and cytological alterations in Rhizopus. stolonifer. Mycol. Res 1992, 96, 769–779. [Google Scholar] [Green Version]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Velázquez-del Valle, M.G.; Hernández-López, M.; Ait Barka, E.; Bospuez-Molina, E.; Wilson, C.L. Chitosan as a potential natural compound to control pre and post harvest diseases of horticultural commodities. Crop. Prot 2006, 25, 108–118. [Google Scholar] [Green Version]
- Bautista-Baños, S.; Hernández-López, M.; Bospuez-Molina, E.; Wilson, C.L. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop. Prot 2003, 22, 1087–1092. [Google Scholar] [Green Version]
- Bautista-Baños, S.; Hernández-López, M.; Bospuez-Molina, E. Growth inhibition of selected fungi by chitosan and plant extracts. Mex. J. Phytopathol 2004, 22, 178–186. [Google Scholar] [Green Version]
- Tayel, A.A.; Moussa, S.; El-Tras, W.F.; Knittel, D.; Opwis, K.; Scholl-meyer, E. Anticandidal action of fungal chitosan against Candida albicans. Int. J. Biol. Macromol 2010, 47, 454–457. [Google Scholar] [Green Version]
- Guo, Z.Y.; Xing, R.G.; Liu, S.; Zhong, Z.M.; Ji, X.; Wang, L.; Li, P.C. The influence of the cationic of quaternized chitosan on antifungal activity. Int. J. Food Microbiol 2007, 118, 214–217. [Google Scholar] [Green Version]
- Guo, Z.Y.; Xing, R.E.; Liu, S.; Zhong, Z.M.; Ji, X.; Wang, L.; Li, P.C. The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr. Polym 2008, 71, 694–697. [Google Scholar] [Green Version]
- De Oliveira Pedro, R.; Takaki, M.; Gorayeb, T.C.; Bianchi, V.L.; Thomeo, J.C.; Tiera, M.J.; de Oliveira Tiera, V.A. Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus. Microbiol. Res 2013, 168, 50–55. [Google Scholar] [Green Version]
- Sajomsang, W.; Gonil, P.; Saesoo, S.; Ovatlarnporn, C. Antifungal property of quaternized chitosan and its derivatives. Int. J. Biol. Macromol 2012, 50, 263–269. [Google Scholar] [Green Version]
- Xie, Y.J.; Liu, X.F.; Chen, Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr. Polym 2007, 69, 142–147. [Google Scholar] [Green Version]
- Kim, C.H.; Choi, J.W.; Chun, H.J.; Choi, K.S. Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym. Bull 1997, 38, 387–393. [Google Scholar] [Green Version]
- Leuba, S.; Stossel, P. Chitin in Nature and Technology; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Eaton, P.; Fernandes, J.C.; Pereira, E.; Pintado, M.E.; Malcata, F.X. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 2008, 108, 1128–1134. [Google Scholar] [Green Version]
- Jarmila, V.; Vavríková, E. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Curr. Pharm. Des 2011, 17, 3596–3607. [Google Scholar] [Green Version]
- Kenawy, El-R.; Abdel-Hay, F.I.; El-Raheem, A.; El-Shanshoury, R.; El-Newehy, M.H. Biologically active polymers: synthesis and antimicrobial activity of modified glycidyl methacrylate polymers having a quaternary ammonium and phosphonium groups. J. Control. Release 1998, 50, 145–152. [Google Scholar] [Green Version]
- Helander, I.M.; Wright, A.V.; Mattila-Sandholm, T.M. Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends Food Sci. Technol 1997, 8, 146–150. [Google Scholar] [Green Version]
- Kong, M.; Chen, X.G.; Liu, C.S.; Liu, C.G.; Meng, X.H.; Yu, L.J. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf. B Biointerfaces 2008, 65, 197–202. [Google Scholar] [Green Version]
- Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol 2001, 71, 235–244. [Google Scholar] [Green Version]
- Chung, Y.C.; Su, Y.P.; Chen, C.C.; Jia, G.; Wang, H.L.; Wu, J.C.G.; Lin, J.G. Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharmacol. Sin 2004, 25, 932–936. [Google Scholar] [Green Version]
- Raafat, D.; Bargen, K.V.; Haas, A.; Sahl, H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol 2008, 74, 3764–3773. [Google Scholar] [Green Version]
- Xing, K.; Chen, X.G.; Liu, C.S.; Cha, D.S.; Park, H.J. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int. J. Food Microbiol 2009, 132, 127–133. [Google Scholar] [Green Version]
- Xing, K.; Chen, X.G.; Kong, M.; Liu, C.S.; Cha, D.S.; Park, H.J. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr. Polym 2009, 76, 17–22. [Google Scholar] [Green Version]
- Muzzarelli, R.A.A.; Muzzarelli, C.; Tarsi, R.; Miliani, M.; Gabbanelli, F.; Cartolari, M. Fungistatic activity of modified chitosans against Saprolegnia. parasitica. Biomacromolecules 2001, 2, 165–169. [Google Scholar] [Green Version]
- Roller, S.; Covill, N. The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol 1999, 47, 67–77. [Google Scholar] [Green Version]
- Kuhn, D.M.; Ghannoum, M.A. Candida biofilms: Antifungal resistance and emerging therapeutic options. Curr. Opin. Investig. Drugs 2004, 5, 186–197. [Google Scholar] [Green Version]
- Savard, T.; Beaulieu, C.; Boucher, I.; Champagne, C.P. Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J. Food Prot 2002, 65, 828–833. [Google Scholar] [Green Version]
- Martinez, L.R.; Mihu, M.R.; Tar, M.; Cordero, R.J.; Han, G.; Friedman, A.J.; Friedman, J.M.; Nosanchuk, J.D. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J. Infect. Dis 2010, 201, 1436–1440. [Google Scholar] [Green Version]
- Li, M.Q.; Chen, X.G.; Liu, J.M.; Zhang, W.F.; Tang, X.X. Molecular weight-dependent antifungal activity and action mode of chitosan against Fulvia fulva (Cooke) Ciffrri. J. Appl. Polym. Sci 2011, 119, 3127–3135. [Google Scholar] [Green Version]
- Trampuz, A.; Osmon, D.R.; Hanssen, A.D.; Steckelberg, J.M.; Patel, R. Molecular and antibiofilm approaches to prosthetic joint infection. Clin. Orthop. Relat. Res 2003, 414, 69–88. [Google Scholar] [Green Version]
- Gu, J.; Li, H.; Li, M.; Vuong, C.; Otto, M.; Wen, Y.; Gao, Q. Bacterial insertion sequence IS256 as a potential molec-ular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J. Hosp. Infect 2005, 61, 342–348. [Google Scholar] [Green Version]
- Hoyle, B.D.; Costerton, J.W. Bacterial resistance to antibiotics: the role of biofilm. Prog. Drug Res 1991, 37, 91–105. [Google Scholar] [Green Version]
- Montanaro, L.; Campoccia, D.; Arciola, C.R. Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials 2007, 28, 5155–5168. [Google Scholar] [Green Version]
- Patel, R. Biofilm and antimicrobial resistance. Clin. Orthop. Relat. Res 2005, 437, 41–47. [Google Scholar] [Green Version]
- Mack, D.; Siemssen, N.; Laufs, R. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: Evidence for functional relation to intercellular adhesion. Infect. Immun 1992, 60, 2048–2057. [Google Scholar] [Green Version]
- Koskela, A.; Nilsdotter-Augustinsson, A.; Persson, L.; Söderquist, B. Prevalence of the ica operon and insertion sequence IS256 among Staphylococcus epidermidis prosthetic joint infection isolates. Eur. J. Clin. Microbiol. Infect. Dis 2009, 28, 655–660. [Google Scholar] [Green Version]
- Rohde, H.; Kalitzky, M.; Kröger, N.; Scherpe, S.; Horstkotte, M.A.; Knobloch, J.K.M.; Zander, A.R.; Mack, D. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J. Clin. Microbiol 2004, 42, 5614–5619. [Google Scholar] [Green Version]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Rizzi, S.; Donati, M.E.; Baldassarri, L.; Montanaro, L. Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials 2004, 25, 4117–4125. [Google Scholar] [Green Version]
- Gerke, C.; Kraft, A.; Süssmuth, R.; Schweitzer, O.; Götz, F. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem 1998, 273, 18586–18593. [Google Scholar] [Green Version]
- Heilmann, C.; Schweitzer, O.; Gerke, C.; Vanittanakom, N.; Mack, D.; Götz, F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol 1996, 20, 1083–1091. [Google Scholar] [Green Version]
- Tan, H.L.; Peng, Z.X.; Li, Q.T.; Xu, X.F.; Guo, S.R.; Tang, T.T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm for-mation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 2012, 33, 365–377. [Google Scholar] [Green Version]
- Peng, Z.X.; Tu, B.; Shen, Y.; Du, L.; Wang, L.; Guo, S.R.; Tang, T.T. Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob. Agents Chemother. 2011, 55, 860–866. [Google Scholar] [Green Version]
- Hendriks, J.G.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004, 25, 545–556. [Google Scholar] [Green Version]
- Leprêtre, S.; Chai, F.; Hornez, J.C.; Vermet, G.; Neut, C.; Descamps, M.; Hildebrand, H.F.; Martel, B. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 2009, 30, 6086–6093. [Google Scholar] [Green Version]
- Campoccia, D.; Montanaro, L.; Speziale, P.; Arciola, C.R. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 2010, 31, 6363–6377. [Google Scholar] [Green Version]
- Wahlig, H.; Dingeldein, E.; Buchholz, H.W.; Buchholz, M.; Bachmann, F. Pharmacokinetic study of gentamicin-loaded cement in total hip replacements: comparative effects of varying dosage. J. Bone Joint Surg. Br 1984, 66, 175–179. [Google Scholar] [Green Version]
- Nijhof, M.W.; Dhert, W.J.; Tilman, P.B.; Verbout, A.J.; Fleer, A. Release of tobramycin from tobramycin-containing bone cement in bone and serum of rabbits. J. Mater. Sci. Mater. Med 1997, 8, 799–802. [Google Scholar] [Green Version]
- Van de Belt, H.; Neut, D.; Schenk, W.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review. Acta. Orthop. Scand 2001, 72, 557–571. [Google Scholar] [Green Version]
- Bourne, R.B. Prophylactic use of antibiotic bone cement: An emerging standard-in the affirmative. J. Arthroplasty 2004, 19, 69–72. [Google Scholar] [Green Version]
- Shi, Z.L.; Neoh, K.G.; Kang, E.T.; Poh, C.; Wang, W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng. Part. A 2009, 15, 417–426. [Google Scholar] [Green Version]
- Montanaro, L.; Campoccia, D.; Arciol, C.R. Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview. Int. J. Artif. Organs 2008, 31, 771–776. [Google Scholar] [Green Version]
- Shi, Z.L.; Chua, P.H.; Neoh, K.G.; Kang, E.T.; Wang, W. Bioactive titanium implant surfaces with bacterial inhibition and osteoblast function enhancement properties. Int. J. Artif. Organs 2008, 31, 777–785. [Google Scholar] [Green Version]
- Chang, Y.H.; Goldberg, V.M.; Arnold, I.; Caplan, A.I. Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clin. Orthop. Relat. Res 2006, 452, 242–249. [Google Scholar] [Green Version]
- Ince, A.; Schütze, N.; Karl, N.; Löhr, J.F.; Eulert, J. Gentamicin negatively influenced osteogenic function in vitro. Int. Orthop 2007, 31, 223–228. [Google Scholar] [Green Version]
- Isefuku, S.; Joyner, C.J.; Simpson, A.H. Gentamicin may have an adverse effect on osteogenesis. J. Orthop. Trauma 2003, 17, 212–216. [Google Scholar] [Green Version]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res 2011, 29, 1070–1074. [Google Scholar] [Green Version]
- Duewelhenke, N.; Krut, O.; Eysel, P. Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrob. Agents Chemother 2007, 51, 54–63. [Google Scholar] [Green Version]
- Ince, A.; Schütze, N.; Hendrich, C.; Jakob, F.; Eulert, J.; Löhr, J.F. Effect of polyhexanide and gentamicin on human osteoblasts and endothelial cells. Swiss Med. Wkly 2007, 137, 139–145. [Google Scholar] [Green Version]
- Parker, R.A.; Clegg, P.D.; Taylor, S.E. The in vitro effects of antibiotics on cell viability and gene expression of equine bone marrow-derived mesenchymal stromal cells. Equine Vet. J 2012, 44, 355–360. [Google Scholar] [Green Version]
- Pountos, I.; Georgouli, T.; Bird, H.; Kontakis, G.; Giannoudis, P.V. The effect of antibiotics on bone healing: current evidence. Expert Opin. Drug Saf 2011, 10, 935–945. [Google Scholar] [Green Version]
- Tan, H.L.; Guo, S.R.; Yang, S.B.; XU, X.F.; Tang, T.T. Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement. Acta Biomater 2012, 8, 2166–2174. [Google Scholar] [Green Version]
- Shi, Z.L.; Neoha, K.G.; Kanga, E.T.; Wang, W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 2006, 27, 2440–2449. [Google Scholar] [Green Version]
- Okazaki, Y.; Gotoh, E.; Nishimori, M.; Katsuda, S.; Manabe, T.; Kobayashi, K. Osteocompatibility of stainless steel, Co-Cr-Mo, Ti-6Al-4V and Ti-15Zr-4Nb-4Ta alloy implants in rat bone tissue. Mater. Trans 2005, 46, 1610–1617. [Google Scholar] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog. Mater. Sci 2009, 54, 397–425. [Google Scholar] [Green Version]
- Weinlaender, M.; Kenney, E.B.; Lekovic, V.; Beumer, J.; Moy, P.K.; Lewis, S. Histomorphometry of bone apposition around three types of endosseous dental implants. Int. J. Oral Maxilofac. Implant 1992, 7, 491–496. [Google Scholar] [Green Version]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006, 27, 2331–2339. [Google Scholar] [Green Version]
- Widmer, A.F. New developments in diagnosis and treatment of infection in orthopedic implants. Clin. Infect. Dis 2001, 33, 94–106. [Google Scholar] [Green Version]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. B Appl. Biomater 2009, 91, 470–480. [Google Scholar] [Green Version]
- Vasilev, K.; Sah, V.; Anselme, K.; Ndi, C.; Mateescu, M.; Dollmann, B.; Martinek, P.; Ys, H.; Ploux, L.; Griesser, H.J. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett 2010, 10, 202–207. [Google Scholar] [Green Version]
- Subbiahdoss, G.; Grijpma, D.W.; van der Mei, H.C.; Busscher, H.J.; Kuijer, R. Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating. J. Biomed. Mater. Res. A 2010, 94, 533–538. [Google Scholar] [Green Version]
- Harris, L.G.; Tosatti, S.; Wieland, M.; Textor, M.; Richards, R.G. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004, 25, 4135–4148. [Google Scholar] [Green Version]
- Della Valle, C.; Visai, L.; Santin, M.; Cigada, A.; Candiani, G.; Pezzoli, D.; Arciola, C.R.; Imbriani, M.; Chiesa, R. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int. J. Artif. Organ. 2012, 35, 864–875. [Google Scholar] [Green Version]
- Hu, X.F.; Neoh, K.G.; Shi, Z.L.; Kang, E.T.; Poh, C.; Wang, W. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 2010, 31, 8854–8863. [Google Scholar] [Green Version]
- Chen, K.S.; Ku, Y.A.; Lee, C.H.; Lin, H.R.; Lin, F.H.; Chen, T.M. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm/gel/PP non-woven composite surface. Mat. Sci. Eng. C 2005, 25, 472–478. [Google Scholar] [Green Version]
- Chen, S.P.; Wu, G.Z.; Zeng, H.Y. Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydr. Polym 2005, 60, 33–38. [Google Scholar] [Green Version]
- Chen, S.P.; Wu, G.Z.; Long, D.W.; Liu, Y.D. Preparation, characterization and antibacterial activity of chitosan-Ca3V10O28 complex membrane. Carbohydr. Polym 2006, 64, 92–97. [Google Scholar] [Green Version]
- Fan, L.H.; Du, Y.M.; Zhang, B.Z.; Yang, J.H.; Zhou, J.P.; Kennedy, J.F. Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydr. Polym 2006, 65, 447–452. [Google Scholar] [Green Version]
- Wu, Y.B.; Yu, S.H.; Mi, F.L.; Wu, C.W.; Shyu, S.S.; Peng, C.K.; Chao, A.C. Preparation and characterization on mechanical and antibacterial properties of chitosan cellulose blends. Carbohydr. Polym 2004, 57, 435–440. [Google Scholar] [Green Version]
- Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck, T.N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. [Google Scholar] [Green Version]
- Alipour, S.M.; Nouri, M.; Mokhtari, J.; Bahrami, S.H. Electrospinning of poly(vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydr. Res 2009, 344, 2496–2501. [Google Scholar] [Green Version]
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tan, H.; Ma, R.; Lin, C.; Liu, Z.; Tang, T. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci. 2013, 14, 1854-1869. https://doi.org/10.3390/ijms14011854
Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. International Journal of Molecular Sciences. 2013; 14(1):1854-1869. https://doi.org/10.3390/ijms14011854
Chicago/Turabian StyleTan, Honglue, Rui Ma, Chucheng Lin, Ziwei Liu, and Tingting Tang. 2013. "Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics" International Journal of Molecular Sciences 14, no. 1: 1854-1869. https://doi.org/10.3390/ijms14011854
APA StyleTan, H., Ma, R., Lin, C., Liu, Z., & Tang, T. (2013). Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. International Journal of Molecular Sciences, 14(1), 1854-1869. https://doi.org/10.3390/ijms14011854