Analytical Method for the Simultaneous Determination of Albendazole and Metabolites Using HPLC-PDA: A Validation Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selectivity
2.2. Specificity
2.3. Matrix Effect
2.4. Calibration Curve and Range
2.5. Accuracy and Precision
2.6. Carry-Over
2.7. Stability
2.8. Robustness
2.9. Method Application
3. Materials and Methods
3.1. Animals and Experimental Procedure
3.2. Chemicals and Reagents
3.3. Analytical Procedure
3.3.1. Preparation of Stock, Calibration, and Quality Control Working Solutions
3.3.2. Preparation of Analysis Samples
- Blank samples: biological matrix (1 mL) without ABZ, ABZSO, and ABZSO2.
- Zero samples: blank sample (0.9 mL) spiked with 0.1 mL of IS.
- Calibration standards, prepared by spiking 0.9 mL matrix with 0.1 mL of each calibration working solution. Thus, calibration sample concentrations were: 0.025, 0.05, 0.1, 0.5, 1, and 2 µg/mL for ABZ, ABZSO, and ABZSO2, and 1 µg/mL for IS.
- Quality control samples were prepared in plasma (0.9 mL) at concentrations of 0.025, 0.075, 0.7, and 1.5 µg/mL for ABZ, ABZSO, and ABZSO2, and 1 µg/mL for IS.
3.3.3. Extraction Method
3.3.4. HPLC System and Conditions
3.4. Validation of the Analytical Methodology
3.4.1. Selectivity
3.4.2. Specificity
3.4.3. Matrix Effect
3.4.4. Calibration Curve and Range
3.4.5. Accuracy and Precision
3.4.6. Carry-Over
3.4.7. Stability
3.4.8. Robustness
3.5. Method Application
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial Assessment of the Economic Burden of Major Parasitic Helminth Infections to the Ruminant Livestock Industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M.; Vidyashankar, A.N. An Inconvenient Truth: Global Worming and Anthelmintic Resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.R.; Aziz, N.A.A.; Blanchard, A.; Charlier, J.; Charvet, C.; Claerebout, E.; Geldhof, P.; Greer, A.W.; Hertzberg, H.; Hodgkinson, J.; et al. 100 Questions in Livestock Helminthology Research. Trends Parasitol. 2019, 35, 52–71. [Google Scholar] [CrossRef]
- Su, S.C.; Chang, C.L.; Chang, P.C.; Chou, S.S. Simultaneous Determination of Albendazole, Thiabendazole, Mebendazole and Their Metabolites in Livestock by High Performance Liquid Chromatography. J. Food Drug Anal. 2003, 11, 307–319. [Google Scholar] [CrossRef]
- Guan, F.; He, Z.; Tang, Y.; Gao, P.; Chen, L.; Guo, Y.; Xie, K. An Ultrahigh-Performance Liquid Chromatography-Fluorescence Detection (UHPLC-FLD) Method for Simultaneous Determination of Albendazole and Its Three Metabolites in Poultry Eggs. J. Food Compos. Anal. 2023, 115, 104959. [Google Scholar] [CrossRef]
- Ramírez, T.; Benítez-Bribiesca, L.; Ostrosky-Wegman, P.; Herrera, L.A. In Vitro Effects of Albendazole and Its Metabolites on the Cell Proliferation Kinetics and Micronuclei Frequency of Stimulated Human Lymphocytes. Arch. Med. Res. 2001, 32, 119–122. [Google Scholar] [CrossRef]
- Köhler, P. The Biochemical Basis of Anthelmintic Action and Resistance. Int. J. Parasitol. 2001, 31, 336–345. [Google Scholar] [CrossRef]
- Hennessy, D.R. The Disposition of Antiparasitic Drugs in Relation to the Development of Resistance by Parasites of Livestock. Acta Trop. 1994, 56, 125–141. [Google Scholar] [CrossRef]
- Garcia, H.H.; Lescano, A.G.; Gonzales, I.; Bustos, J.A.; Pretell, E.J.; Horton, J.; Saavedra, H.; Gonzalez, A.E.; Gilman, R.H. Cysticidal Efficacy of Combined Treatment with Praziquantel and Albendazole for Parenchymal Brain Cysticercosis. Clin. Infect. Dis. 2016, 62, 1375–1379. [Google Scholar] [CrossRef]
- Permana, A.D.; Wahyudin, E.; Ismail; Amir, M.N.; Raihan, M.; Anjani, Q.K.; Utomo, E.; Layadi, P.; Donnelly, R.F. New and Sensitive HPLC-UV Method for Concomitant Quantification of a Combination of Antifilariasis Drugs in Rat Plasma and Organs after Simultaneous Oral Administration. Anal. Methods 2021, 13, 933–945. [Google Scholar] [CrossRef]
- Ali, H.M.; Gamal, M.; Ghoneim, M.M.; Mohammed Abd Elhalim, L. Quantitative Analysis of Abamectin, Albendazole, Levamisole HCl and Closantel in Q-DRENCH Oral Suspension Using a Stability-Indicating HPLC-DAD Method. Molecules 2022, 27, 764. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.P.; Durgbanshi, A.; Bose, D.; Peris-Vicente, J.; Albiol-Chiva, J.; Esteve-Romero, J.; Carda-Broch, S. Determination of Albendazole and Ivermectin Residues in Cattle and Poultry-Derived Samples from India by Micellar Liquid Chromatography. J. Food Compos. Anal. 2021, 103, 104111. [Google Scholar] [CrossRef]
- Jedziniak, P.; Olejnik, M.; Rola, J.G.; Szprengier-Juszkiewicz, T. Anthelmintic Residues in Goat and Sheep Dairy Products. Bull. Vet. Inst. Pulawy 2015, 59, 515–518. [Google Scholar] [CrossRef]
- Aksit, D.; Yalinkilinc, H.S.; Sekkin, S.; Boyacioğlu, M.; Cirak, V.Y.; Ayaz, E.; Gokbulut, C. Comparative Pharmacokinetics and Bioavailability of Albendazole Sulfoxide in Sheep and Goats, and Dose-Dependent Plasma Disposition in Goats. BMC Vet. Res. 2015, 11, 1–11. [Google Scholar] [CrossRef]
- Bistoletti, M.; Alvarez, L.; Lanusse, C.; Moreno, L. Disposition Kinetics of Albendazole and Metabolites in Laying Hens. J. Vet. Pharmacol. Ther. 2013, 36, 161–168. [Google Scholar] [CrossRef]
- Gokbulut, C.; Bilgili, A.; Hanedan, B.; McKellar, Q.A. Comparative Plasma Disposition of Fenbendazole, Oxfendazole and Albendazole in Dogs. Vet. Parasitol. 2007, 148, 279–287. [Google Scholar] [CrossRef]
- Belaz, K.R.A.; Cass, Q.B.; Oliveira, R.V. Determination of Albendazole Metabolites by Direct Injection of Bovine Plasma and Multidimensional Achiral-Chiral High Performance Liquid Chromatography. Talanta 2008, 76, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Gokbulut, C.; Akar, F.; McKellar, Q.A. Plasma Disposition and Faecal Excretion of Oxfendazole, Fenbendazole and Albendazole Following Oral Administration to Donkeys. Vet. J. 2006, 172, 166–172. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Chen, B.; Ma, Y.; Li, Z.; Shou, X.; Wen, L.; Yuan, Y.; Gao, H.; Ruan, J.; et al. Pharmacokinetics and Tissue Distribution Study of Liposomal Albendazole in Naturally Echinococcus Granulosus Infected Sheep by a Validated UPLC-Q-TOF-MS Method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1141, 122016. [Google Scholar] [CrossRef]
- Permana, A.D.; Tekko, I.A.; McCarthy, H.O.; Donnelly, R.F. New HPLC–MS Method for Rapid and Simultaneous Quantification of Doxycycline, Diethylcarbamazine and Albendazole Metabolites in Rat Plasma and Organs after Concomitant Oral Administration. J. Pharm. Biomed. Anal. 2019, 170, 243–253. [Google Scholar] [CrossRef]
- Shaikh, B.; Rummel, N.; Reimschuessel, R. Determination of Albendazole and Its Major Metabolites in the Muscle Tissues of Atlantic Salmon, Tilapia, and Rainbow Trout by High Performance Liquid Chromatography with Fluorometric Detection. J. Agric. Food Chem. 2003, 51, 3254–3259. [Google Scholar] [CrossRef] [PubMed]
- Romvári, Z.; Fekete, J.; Kemény, S.; Pokol, G.; Gebefügi, I.; Kettrup, A. Determination of Two Metabolites of Albendazole, Albendazole-Sulfoxide and Albendazole-Sulfone in Cow’s Milk Using an HPLC Method–A Systematic Approach to Optimise Extraction Conditions. Chromatographia 1998, 48, 777–784. [Google Scholar] [CrossRef]
- Kitzman, D.; Cheng, K.J.; Fleckenstein, L. HPLC Assay for Albendazole and Metabolites in Human Plasma for Clinical Pharmacokinetic Studies. J. Pharm. Biomed. Anal. 2002, 30, 801–813. [Google Scholar] [CrossRef]
- Alvinerie, M.; Galtier, P. Simultaneous Determination of Albendazole and Its Principal Metabolites in Plasma by Normal Phase High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 1984, 2, 73–79. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency EMA/CHMP/ICH/172948/2019–ICH Guideline M10 on Bioanalytical Method Validation. EMA Guid. Doc. 2019, 44, 57.
- Alvarez, L.I.; Chiappetta, V.; Moriones, L.; Dominguez, P.; Cantón, C.; Lanusse, C.; Ceballos, L. Feeding Management and Albendazole Pharmacokinetics in Pigs. Animals 2023, 13, 474. [Google Scholar] [CrossRef]
- Li, Z.; Qin, X.; Wang, C.; Liu, W. Pharmacokinetics and Tissue Residues of Albendazole Sulphoxide and Its Metabolites in Donkey after Intramuscular Injection. Vet. Med. Sci. 2024, 10, e1393. [Google Scholar] [CrossRef]
Calibration Curve 1 | R2 | Calibration Curve 2 | R2 | Calibration Curve 3 | R2 | |
---|---|---|---|---|---|---|
ABZ | y = 0.7839 (±5.514·10−3) x + 0.0055 (±5.164·10−3) | 0.9995 | y = 0.9165 (±5.849·10−3) x + 0.0276 (±5.478·10−3) | 0.9995 | y = 0.9123 (±5.348·10−3) x + 0.0263 (±5.009·10−3) | 0.9991 |
ABZSO | Y = 1.4318 (±7.733·10−3) x + 0.0124 (±7.242·10−3) | 0.9997 | y = 1.3006 (±4.803·10−3) x − 0.0003 (±4.499·10−3) | 0.9998 | y = 1.2974 (±4.593·10−3) x + 0.0153 (±4.304·10−3) | 0.9999 |
ABZSO2 | y = 0.943 (±4.467·10−3) x + 0.0068 (±4.184·10−3) | 0.9998 | y = 1.3176 (±6.069·10−3) x + 0.0256 (±5.684·10−3) | 0.9998 | y = 1.3155 (±3.944·10−3) x + 0.0271 (±3.694·10−3) | 0.9999 |
LLOQ (µg/mL) | LOD (µg/mL) | ± SD) | |
---|---|---|---|
ABZ | 0.025 | 0.006 | 101.6 ± 0.7 |
ABZSO | 0.025 | 0.008 | 100.4 ± 1.3 |
ABZSO2 | 0.025 | 0.007 | 100.0 ± 1.4 |
ABZ | ABZSO | ABZSO2 | |
---|---|---|---|
Accuracy (%) | |||
Within-run | |||
QC1 | 82.8–105.9 | 85.3–117.7 | 94.8–114.1 |
QC2 | 98.0–112.7 | 96.2–111.0 | 93.3–104.6 |
QC3 | 98.1–100.5 | 95.3–103.7 | 94.3–102.9 |
QC4 | 99.4–104.1 | 98.7–101.9 | 97.6–100.3 |
Between-run | |||
QC1 | 91.5 | 100.0 | 107.4 |
QC2 | 107.5 | 106.1 | 98.1 |
QC3 | 99.0 | 100.7 | 99.5 |
QC4 | 101.1 | 100.4 | 99.4 |
Precision (%) | |||
Within-run | |||
QC1 | 3.4–11.7 | 2.8–10.3 | 4.2–10.7 |
QC2 | 2.7–4.2 | 3.1–7.0 | 2.8–5.5 |
QC3 | 1.2–5.1 | 1.7–3.6 | 1.2–3.3 |
QC4 | 1.5–5.8 | 0.8–4.8 | 0.4–1.5 |
Between-run | |||
QC1 | 14.5 | 15.1 | 10.6 |
QC2 | 7.3 | 8.5 | 7.4 |
QC3 | 3.2 | 4.6 | 4.4 |
QC4 | 4.0 | 3.1 | 1.7 |
Ta (°C) | Time | ABZ | ABZSO | ABZSO2 | ||||
---|---|---|---|---|---|---|---|---|
Precision (%) | Accuracy (%) | Precision (%) | Accuracy (%) | Precision (%) | Accuracy (%) | |||
QC2 | 25 | 24 h | 8.5 | 106.6 | 5.4 | 92.7 | 9.1 | 105.2 |
24 h after extraction | 8.8 | 109.3 | 6.2 | 98.4 | 0.8 | 114.4 | ||
4 | 24 h | 6.1 | 107.6 | 1.2 | 99.6 | 1.3 | 99.6 | |
24 h after extraction | 8.9 | 103.4 | 5.2 | 99.0 | 7.6 | 104.3 | ||
−20 | 72 h | 6.8 | 105.1 | 4.5 | 106.0 | 5.3 | 110.4 | |
1 week | 0.7 | 114.2 | 6.7 | 99.0 | 1.0 | 107.5 | ||
1 month | 2.7 | 113.2 | 4.5 | 100.4 | 2.2 | 110.4 | ||
4 months | 1.1 | 112.2 | 1.0 | 96.6 | 3.8 | 109.3 | ||
6 months | 3.5 | 108.5 | 3.6 | 95.4 | 2.9 | 108.2 | ||
QC4 | 25 | 24 h | 0.4 | 99.1 | 0.02 | 97.9 | 1.2 | 97.2 |
24 h after extraction | 0.3 | 99.9 | 1.8 | 100.2 | 1.7 | 99.1 | ||
4 | 24 h | 1.1 | 99.5 | 0.2 | 97.4 | 2.0 | 99.9 | |
24 h after extraction | 1.2 | 99.4 | 0.6 | 98.2 | 0.04 | 97.2 | ||
−20 | 72 h | 0.7 | 101.9 | 2.7 | 100.3 | 2.3 | 99.1 | |
1 week | 1.2 | 98.6 | 0.2 | 98.2 | 1.3 | 97.6 | ||
1 month | 2.3 | 100.4 | 0.3 | 98.2 | 1.5 | 98.4 | ||
4 months | 1.7 | 100.1 | 1.2 | 99.7 | 1.2 | 98.3 | ||
6 months | 0.2 | 99.6 | 0.3 | 99.1 | 1.2 | 99.3 |
Time (h) | ABZ (µg/mL) | ABZSO (µg/mL) | ABZSO2 (µg/mL) |
---|---|---|---|
0.25 | ND | 0.026 | ND |
0.5 | ND | 0.076 | 0.055 |
1 | ND | 0.335 | 0.108 |
1.5 | ND | 0.743 | 0.165 |
2 | ND | 1.3 | 0.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, E.M.; Romero, B.; Sahagún, A.M.; López, C.; Puente, R.d.l.; Rodríguez, J.M.; Fernández, N.; Diez, M.J.; Díez, R. Analytical Method for the Simultaneous Determination of Albendazole and Metabolites Using HPLC-PDA: A Validation Study. Molecules 2025, 30, 2039. https://doi.org/10.3390/molecules30092039
Vázquez EM, Romero B, Sahagún AM, López C, Puente Rdl, Rodríguez JM, Fernández N, Diez MJ, Díez R. Analytical Method for the Simultaneous Determination of Albendazole and Metabolites Using HPLC-PDA: A Validation Study. Molecules. 2025; 30(9):2039. https://doi.org/10.3390/molecules30092039
Chicago/Turabian StyleVázquez, E. Milena, Beatriz Romero, Ana M. Sahagún, Cristina López, Raúl de la Puente, José M. Rodríguez, Nélida Fernández, M. José Diez, and Raquel Díez. 2025. "Analytical Method for the Simultaneous Determination of Albendazole and Metabolites Using HPLC-PDA: A Validation Study" Molecules 30, no. 9: 2039. https://doi.org/10.3390/molecules30092039
APA StyleVázquez, E. M., Romero, B., Sahagún, A. M., López, C., Puente, R. d. l., Rodríguez, J. M., Fernández, N., Diez, M. J., & Díez, R. (2025). Analytical Method for the Simultaneous Determination of Albendazole and Metabolites Using HPLC-PDA: A Validation Study. Molecules, 30(9), 2039. https://doi.org/10.3390/molecules30092039