Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Values of Triticale Flours
2.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.3. Evaluation of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and DPPH Assay
2.4. Individual Phenolic Compounds of Triticale Samples
2.5. Mineral Content of Triticale Samples
2.6. Relationships Between Physicochemical Values of Triticale Samples
3. Discussion
4. Materials and Methods
4.1. Triticale Flour Samples Physicochemical Characteristics
4.2. FT-IR Analysis
4.3. Determination of Bioactive Compounds from Triticale Flours
4.4. Mineral Elements of Triticale Flours
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Alonso, V.; Pradal, I.; Wardhana, Y.R.; Cnockaert, M.; Wieme, A.D.; Vandamme, P.; De Vuyst, L. Microbial Ecology and Metabolite Dynamics of Backslopped Triticale Sourdough Productions and the Impact of Scale. Int. J. Food Microbiol. 2024, 408, 110445. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.d.M.; Bravo, F.I.; Carrillo, W. Potential Sources of Novel Foods to Procure Nutrients and Bioactive Compounds for Disease Prevention. Nutrients 2024, 16, 4130. [Google Scholar] [CrossRef] [PubMed]
- Faccini, N.; Morcia, C.; Terzi, V.; Rizza, F.; Badeck, F.-W. Triticale in Italy. Biology 2023, 12, 1308. [Google Scholar] [CrossRef] [PubMed]
- Ghendov-Mosanu, A.; Popa, N.; Paiu, S.; Boestean, O.; Bulgaru, V.; Leatamborg, S.; Lupascu, G.; Codină, G.G. Breadmaking Quality Parameters of Different Varieties of Triticale Cultivars. Foods 2024, 13, 1671. [Google Scholar] [CrossRef]
- Kaszuba, J.; Jaworska, G.; Krochmal-Marczak, B.; Kogut, B.; Kuźniar, P. Effect of bran addition on rheological properties of dough and quality of triticale bread. J. Food Process. Preserv. 2021, 45, e15093. [Google Scholar] [CrossRef]
- Nocente, F.; De Francesco, G.; Marconi, O.; Floridi, S.; Latini, A.; Cantale, C.; Cantale, C.; Galeffi, P.; Ammar, K.; Gazza, L. Malting and brewing process optimization of elite lines of triticale for beer production. Food Bioprocess Technol. 2024, 1–10. [Google Scholar] [CrossRef]
- Camerlengo, F.; Kiszonas, A.M. Genetic Factors Influencing Triticale Quality for Food. J. Cereal Sci. 2023, 113, 103744. [Google Scholar] [CrossRef]
- Kandrokov, K.R. Effects of triticale flour on the quality of honey cookies. Foods Raw Mater. 2023, 11, 215–222. [Google Scholar] [CrossRef]
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef]
- Chen, O.; Costa, S.M.; Carolo, K. Phenolic Acids. In Whole Grains and Their Bioactives; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 357–382. [Google Scholar]
- Xing, P.; Song, Z.; Li, X. Differences in the metabolite profiles of tender leaves of wheat barley, rye and triticale based on LC-MS. bioRxiv 2020. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Mazza, G. Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and 516 lignans. J. Funct. Foods 2009, 1, 57–64. [Google Scholar] [CrossRef]
- Kaszuba, J.; Kapusta, I.; Posadzka, Z. Content of Phenolic Acids in the Grain of Selected Polish Triticale Cultivars and Its Products. Molecules 2021, 26, 562. [Google Scholar] [CrossRef] [PubMed]
- Ursachi, F.V.; Codină, G.G.; Atudorei, D.; Paiu, S.; Rumeus, I.; Lyatamborg, S.; Lupashku, G.A.; Ghendov-Moşanu, A. Mineral variability of different triticale flours varieties cultivated in Republic of Moldova. In Proceedings of the Life Sciences Today for Tomorrow, Iași, Romania, 24–25 October 2024; pp. 51–52. [Google Scholar]
- Skovmand, B.; Fox, P.N.; Villareal, R.L. Triticale in Commercial Agriculture: Progress and Promise. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1984; Volume 37, pp. 1–45. [Google Scholar]
- Meng, X.; Li, T.; Zhao, J.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Effects of different bran pretreatments on rheological and functional properties of triticale whole-wheat flour. Food Bioprocess Technol. 2023, 16, 576–588. [Google Scholar] [CrossRef]
- Pribić, M.; Kamenko, I.; Despotović, S.; Mirosavljević, M.; Pejin, J. Modeling and Optimization of Triticale Wort Production Using an Artificial Neural Network and a Genetic Algorithm. Foods 2024, 13, 343. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, Á. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef]
- Banu, I.; Patraşcu, L.; Vasilean, I.; Horincar, G.; Aprodu, I. Impact of Germination and Fermentation on Rheological and Thermo-Mechanical Properties of Wheat and Triticale Flours. Appl. Sci. 2020, 10, 7635. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Liu, Y.; Liu, R.; Siriamornpun, S. Optimization of Heat–Moisture Treatment Conditions for High-Amylose Starch and Its Application in High-Resistant Starch Triticale Noodles. Foods 2024, 13, 2724. [Google Scholar] [CrossRef]
- Liu, M.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Effect of different enzymes on thermal and structural properties of gluten, gliadin, and glutenin in triticale whole-wheat dough. Int. J. Biol. Macromol. 2023, 253, 127384. [Google Scholar] [CrossRef]
- Arizmendi-Cotero, D.; Bernal-Estrada, M.A.; Dominguez-Lopez, A.; Díaz-Ramírez, M.; Ponce-García, N.; Villanueva-Carvajal, A. Endogenous enzymes of triticale used as natural sweeteners of wheat-triticale cookies. Cereal Chem. 2020, 97, 1075–1083. [Google Scholar] [CrossRef]
- Piazza, I.; Carnevali, P.; Faccini, N.; Baronchelli, M.; Terzi, V.; Morcia, C.; Ghizzoni, R.; Patrone, V.; Morelli, L.; Cervini, M.; et al. Combining Native and Malted Triticale Flours in Biscuits: Nutritional and Technological Implications. Foods 2023, 12, 3418. [Google Scholar] [CrossRef]
- Fraś, A.; Gołębiewska, K.; Gołębiewska, D.; Wiśniewska, M.; Gzowska, M.; Mańkowski, D.R. Utilisation of triticale (X Triticosecale Wittmack) and residual oat flour in breadmaking. Czech J. Food Sci. 2021, 39, 226–233. [Google Scholar] [CrossRef]
- Straumite, E.; Galoburda, R.; Tomsone, L.; Kruma, Z.; Gramatin, A.I.; Kronberga, A.; Sturite, I. Nutritional quality of triticale (×Triticosecale Wittm.) grown under different cropping systems. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 481–485. [Google Scholar] [CrossRef]
- Golea, C.M.; Codină, G.G.; Oroian, M. Prediction of Wheat Flours Composition Using Fourier Transform Infrared Spectrometry (FT-IR). Food Control 2023, 143, 109318. [Google Scholar] [CrossRef]
- Golea, C.M.; Stroe, S.-G.; Gâtlan, A.-M.; Codină, G.G. Physicochemical Characteristics and Microstructure of Ancient and Common Wheat Grains Cultivated in Romania. Plants 2023, 12, 2138. [Google Scholar] [CrossRef]
- Rachoń, L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A. Hulled Wheat Productivity and Quality in Modern Agriculture Against Conventional Wheat Species. Agriculture 2020, 10, 275. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Würschum, T. Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Sci. 2016, 56, 302–311. [Google Scholar] [CrossRef]
- Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol. 2013, 50, 1018–1023. [Google Scholar] [CrossRef]
- Arslan, F.N.; Akin, G.; Karuk Elmas, S.N.; Üner, B.; Yilmaz, I.; Janssen, H.-G.; Kenar, A. FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J. Consum. Prot. Food Saf. 2020, 15, 245–261. [Google Scholar] [CrossRef]
- Dong, X.; Sun, X. A case study of characteristic bands selection in near-infrared spectroscopy: Nondestructive detection of ash and moisture in wheat flour. J. Food Meas. Charact. 2013, 7, 141–148. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Horvat, D.; Viljevac Vuletić, M.; Kovačević Babić, M.; Buczek, J.; Szpunar-Krok, E. Antioxidant Potential and Phenolic Acid Profiles in Triticale Grain under Integrated and Conventional Cropping Systems. Agriculture 2023, 13, 1078. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S. Phenolic compounds of wheat their content, antioxidant capacity and bioaccessibility. MOJ Food Process Technol. 2016, 2, 85–89. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Arora, D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT Food Sci. Technol. 2015, 65, 1025–1030. [Google Scholar] [CrossRef]
- Lachman, J.; Musilová, J.; Kotíková, Z.; Hejtmánková, K.; Orsák, M.; Přibyl, J. Spring, einkorn and emmer wheat species—Potential rich sources of free ferulic acid and other phenolic compounds. Plant Soil Environ. 2012, 58, 347–353. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef]
- Alijošius, S.; Šasyte, V.; Mieželienė, A.; Alenčikienė, G.; Bliznikas, S.; Racevičiūtė-Stupelienė, A.; Nutautaitė, M.; Paleckaitis, M. Effect of triticale and non-starch polysaccharides (NSP) degrading enzymes on color and sensory characteristics of broiler meat. Vet. Med. Zoot. 2018, 76, 3–8. [Google Scholar]
- Weidner, S.; Amarowicz, R.; Karamać, M.; Dąbrowski, G. Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to pre-harvest sprouting. Eur. Food Res. Technol. 1999, 210, 109–113. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Total monomeric anthocyanin, total phenolic content and antioxidant activity of extracts from eggplant (Solanum melongena L.) peel using ultrasonic treatments. J. Food Process Eng. 2017, 40, 12312. [Google Scholar] [CrossRef]
- Simsek, S.; Budak, B.; Schwebach, C.S.; Ovando-Martínez, M. Historical vs. Modern Hard Red Spring Wheat: Analysis of the Chemical Composition. Cereal Chem. 2019, 96, 937–949. [Google Scholar] [CrossRef]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in Mineral Micronutrient Concentrations in Grain of Wheat Lines of Diverse Origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Golea, M.C.; ¸Sandru, M.D.; Codină, G.G. Mineral composition of flours produced from modern and ancient wheat varieties cultivated in Romania. Ukr. Food J. 2022, 11, 78–89. [Google Scholar] [CrossRef]
- Ertop, M.H.; Bektaş, M.; Atasoy, R. Effect of cereals milling on the contents of phytic acid and digestibility of minerals and protein. Ukr. Food J. 2020, 9, 136–147. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of Yield, Chemical Composition and Farinograph Properties of Common and Ancient Wheat Grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Method 520:2010; International Organization for Standardization (ISO 2010). Cereals and Pulses-Determination of the Mass of 1000 Grains. ISO: Geneva, Switzerland, 2010; p. 10.
- Method 7971-1:2009; International Organization for Standardization (ISO 2009). Determination of Bulk Density, Called Mass per Hectolitre-Part 1: Reference Method. ISO: Geneva, Switzerland, 2009; p. 8.
- Procopet, O.; Oroian, M. Amaranth Seed Polyphenol, Fatty Acid and Amino Acid Profile. Appl. Sci. 2022, 12, 2181. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Ash (%) | Protein (%) | Wet Gluten (%) | Fat (%) | Carbohydrates (%) | Test Weight (kg hL−1) | Thousand-Kernel Mass (g) |
---|---|---|---|---|---|---|---|---|
Fanica | 12.24 ± 0.01 f | 1.53 ± 0.00 a | 13.87 ± 0.06 b | 21.72 ± 0.16 c | 1.30 ± 0.02 b | 71.06 ± 0.05 e | 76.12 ± 0.10 c | 41.52 ± 0.03 e |
Ingen 93 | 12.03 ± 0.00 a | 1.78 ± 0.01 e | 14.56 ± 0.05 d | 18.68 ± 0.07 a | 1.34 ± 0.01 b | 70.29 ± 0.07 b | 73.42 ± 0.07 a | 38.24 ± 0.01 c |
Ingen 35 | 12.11 ± 0.01 c | 1.62 ± 0.01 c | 14.78 ± 0.08 e | 26.32 ± 0.12 e | 1.31 ± 0.01 b | 70.14 ± 0.04 a | 73.22 ± 0.05 a | 37.41 ± 0.05 b |
Ingen 33 | 12.08 ± 0.01 b | 1.72 ± 0.01 d | 14.57 ± 0.07 d | 27.45 ± 0.14 f | 1.33 ± 0.02 b | 70.30 ± 0.06 b | 73.14 ± 0.09 a | 37.11 ± 0.00 a |
Ingen 54 | 12.21 ± 0.01 e | 1.55 ± 0.01 b | 13.69 ± 0.02 b | 19.66 ± 0.06 b | 1.65 ± 0.02 d | 70.90 ± 0.05 d | 79.16 ± 0.05 d | 43.82 ± 0.04 f |
Ingen 40 | 12.16 ± 0.00 d | 1.71 ± 0.01 d | 13.08 ± 0.04 a | 18.51 ± 0.09 a | 1.44 ± 0.00 c | 71.61 ± 0.01 f | 74.62 ± 0.03 b | 39.68 ± 0.06 d |
Costel | 12.25 ± 0.01 f | 1.73 ± 0.00 d | 14.18 ± 0.05 c | 25.63 ± 0.07 d | 1.05 ± 0.01 a | 70.79 ± 0.01 c | 73.54 ± 0.08 a | 38.57 ± 0.03 c |
Triticale Varieties | T (°C) | Total Phenolic Content (mg GAE/kg) | Total Flavonoid Content (mg QE/kg) | DPPH (%) |
---|---|---|---|---|
Fanica | 20 | 268.7 ± 11.4 a | 144.1 ± 2.5 a,b | 30.48 ± 1.04 a |
40 | 331.4 ± 13.8 b | 177.8 ± 3.9 b,c | 39.46 ± 1.18 b | |
60 | 392.5 ± 10.3 c | 210.6 ± 7.9 c,d | 43.30 ± 1.01 c | |
Ingen 93 | 20 | 443.8 ± 11.7 d | 238.1 ± 9.8 d | 42.02 ± 0.95 c |
40 | 515.6 ± 12.0 e | 266.9 ± 10.1 e | 48.43 ± 0.91 d | |
60 | 596.8 ± 15.7 f | 308.9 ± 10.7 f | 49.71 ± 0.27 e | |
Ingen 35 | 20 | 227.0 ± 5.6 a | 117.6 ± 2.1 a | 45.87 ± 0.62 d |
40 | 341.5 ± 12.1 b | 176.8 ± 1.7 b | 49.71 ± 0.28 e | |
60 | 405.8 ± 14.5 c | 210.0 ± 3.4 c | 52.28 ± 0.57 e | |
Ingen 33 | 20 | 275.9 ± 9.3 a | 142.8 ± 1.9 a,b | 56.12 ± 0.82 f |
40 | 306.6 ± 11.8 b | 158.7 ± 4.1 b | 57.41 ± 0.57 f | |
60 | 361.1 ± 3.9 c | 186.9 ± 3.8 c | 63.82 ± 0.66 g | |
20 | 591.6 ± 13.1 f | 306.5 ± 6.2 f | 65.10 ± 0.59 g | |
Ingen 54 | 40 | 661.4 ± 8.6 g | 342.7 ± 5.4 g | 66.38 ± 0.14 g |
60 | 877.1 ± 14.6 j | 454.5 ± 4.9 i | 76.64 ± 0.81 i | |
Ingen 40 | 20 | 474.2 ± 13.5 d | 245.7 ± 3.6 d | 43.30 ± 0.93 c |
40 | 498.0 ± 1.6 d | 258.1 ± 4.9 e | 45.46 ± 0.71 b | |
60 | 511.8 ± 7.2 e | 265.2 ± 6.1 e | 54.84 ± 0.47 f | |
Costel | 20 | 727.7 ± 6.8 h | 396.3 ± 3.0 h | 65.10 ± 0.61 g |
40 | 748.9 ± 10.1 h | 407.9 ± 7.8 h | 67.66 ± 0.72 h | |
60 | 834.1 ± 11.5 i | 454.3 ± 8.1 i | 70.23 ± 0.49 h |
Varieties | Phenolic Compounds (mg/kg) | ||||||
---|---|---|---|---|---|---|---|
T (°C) | 4-Hydroxybenzoic Acid | Vanillic Acid | Caffeic Acid | Chlorogenic Acid | p-Coumaric Acid | Rosmarinic Acid | |
Fanica | 20 | - | - | - | - | 9.00 ± 0.15 a | 0.72 ± 0.06 d |
40 | 0.82 ± 0.01 b | - | - | - | 11.47 ± 0.21 c | 0.53 ± 0.08 c | |
60 | 1.20 ± 0.03 c | 0.79 ± 0.02 b,c | 0.15 ± 0.01 a | 0.17 ± 0.01 d | 11.26 ± 0.08 c | 0.97 ± 0.05 e | |
Ingen 93 | 20 | 0.45 ± 0.02 a | 1.38 ± 0.02 g | 0.21 ± 0.02 b | 0.16 ± 0.01 c,d | 12.28 ± 0.17 c | 0.51 ± 0.04 c |
40 | 2.68 ± 0.05 i | 1.04 ± 0.03 e | 0.37 ± 0.02 b,c | 0.12 ± 0.01 b,c | 11.78 ± 0.13 c | 0.53 ± 0.07 c | |
60 | 2.21 ± 0.03 g | 1.70 ± 0.01 h | 1.13 ± 0.02 f | 0.24 ± 0.01 e | 14.68 ± 0.18 e | 1.45 ± 0.05 g | |
Ingen 35 | 20 | 0.35 ± 0.01 a | 1.03 ± 0.03 e | 0.32 ± 0.03 b | 0.06 ± 0.01 a | 12.42 ± 0.15 c | 0.33 ± 0.03 b |
40 | 1.95 ± 0.02 f | 1.22 ± 0.02 f | 0.66 ± 0.03 d | 0.40 ± 0.02 g | 13.18 ± 0.02 d | 1.03 ± 0.04 e | |
60 | 3.22 ± 0.06 k | 1.25 ± 0.01 f | 1.72 ± 0.05 i | 0.40 ± 0.01 g | 14.22 ± 0.05 d | 2.60 ± 0.02 i | |
Ingen 33 | 20 | 1.98 ± 0.01 f | - | 0.23 ± 0.01 b | 0.16 ± 0.01 c,d | 10.86 ± 0.12 b | 0.13 ± 0.01 a |
40 | 3.00 ± 0.05 j | 0.76 ± 0.02 b | 0.58 ± 0.02 d | 0.14 ± 0.01 c | 14.56 ± 0.09 e | 0.53 ± 0.04 c | |
60 | 2.97 ± 0.03 j | 0.84 ± 0.03 c | 1.57 ± 0.05 h | 0.34 ± 0.01 f | 18.22 ± 0.27 g | 1.28 ± 0.07 f,g | |
20 | 1.68 ± 0.02 e | - | 0.26 ± 0.02 b | - | 15.12 ± 0.13 e | 1.20 ± 0.05 f | |
Ingen 54 | 40 | 2.57 ± 0.01 h,i | - | 0.15 ± 0.01 a | 0.10 ± 0.01 b | 13.51 ± 0.20 d | 0.70 ± 0.04 d |
60 | 2.84 ± 0.01 i | 0.72 ± 0.01 b | 1.95 ± 0.04 j | 0.10 ± 0.01 b | 11.87 ± 0.17 c | 2.25 ± 0.08 h | |
Ingen 40 | 20 | 1.09 ± 0.02 c | 0.98 ± 0.01 d | 0.17 ± 0.01 a | - | 11.91 ± 0.15 c | 0.23 ± 0.01 b |
40 | 1.10 ± 0.01 c | 1.00 ± 0.02 d,e | 0.27 ± 0.01 b | 0.08 ± 0.01 a,b | 12.48 ± 0.09 c | 0.37 ± 0.04 b | |
60 | 1.29 ± 0.04 d | 0.73 ± 0.01 b | 1.39 ± 0.03 g | 0.11 ± 0.01 b,c | 14.26 ± 0.11 e | 0.61 ± 0.02 c | |
Costel | 20 | 1.58 ± 0.03 e | 0.93 ± 0.02 d | 0.25 ± 0.02 b | 0.17 ± 0.01 d | 13.09 ± 0.24 d | 0.55 ± 0.03 c |
40 | 2.35 ± 0.05 h | - | 0.74 ± 0.02 d,e | - | 14.14 ± 0.16 d | 0.68 ± 0.03 d | |
60 | 2.25 ± 0.03 g | 0.70 ± 0.01 a,b | 2.27 ± 0.04 k | 0.08 ± 0.01 a,b | 16.35 ± 0.12 f | 2.67 ± 0.07 i |
Sample | Ca (mg/kg) | Zn (mg/kg) | Na (mg/kg) | Fe (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|---|
Ingen 33 | 217.9 ± 0.2 d | 11.68 ± 0.04 e | 28.19 ± 0.14 d | 30.26 ± 0.05 c | 4.04 ± 0.01 d |
Ingen 35 | 207.9 ± 0.5 c | 11.59 ± 0.03 d | 29.38 ± 0.14 e | 28.41 ± 0.10 b | 4.11 ± 0.05 d |
Ingen 93 | 224.6 ± 0.3 e | 11.60 ± 0.02 d | 26.71 ± 0.11 c | 29.75 ± 0.12 c | 4.52 ± 0.01 f |
Ingen 54 | 172.6 ± 0.4 a | 11.45 ± 0.00 c | 26.98 ± 0.13 c | 27.85 ± 0.07 b | 3.77 ± 0.03 c |
Ingen 40 | 204.5 ± 0.6 c | 11.22 ± 0.06 b | 19.42 ± 0.11 a | 26.02 ± 0.09 a | 3.61 ± 0.06 b |
Fanica | 188.4 ± 0.5 b | 11.18 ± 0.00 a | 30.49 ± 0.21 e | 31.08 ± 0.12 d | 4.32 ± 0.03 e |
Costel | 188.5 ± 0.6 b | 11.41 ± 0.04 c | 24.76 ± 0.09 b | 31.86 ± 0.11 e | 3.27 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codină, G.G.; Ursachi, F.; Dabija, A.; Paiu, S.; Rumeus, I.; Leatamborg, S.; Lupascu, G.; Stroe, S.-G.; Ghendov-Mosanu, A. Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova. Molecules 2025, 30, 1233. https://doi.org/10.3390/molecules30061233
Codină GG, Ursachi F, Dabija A, Paiu S, Rumeus I, Leatamborg S, Lupascu G, Stroe S-G, Ghendov-Mosanu A. Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova. Molecules. 2025; 30(6):1233. https://doi.org/10.3390/molecules30061233
Chicago/Turabian StyleCodină, Georgiana Gabriela, Florin Ursachi, Adriana Dabija, Sergiu Paiu, Iurie Rumeus, Svetlana Leatamborg, Galina Lupascu, Silviu-Gabriel Stroe, and Aliona Ghendov-Mosanu. 2025. "Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova" Molecules 30, no. 6: 1233. https://doi.org/10.3390/molecules30061233
APA StyleCodină, G. G., Ursachi, F., Dabija, A., Paiu, S., Rumeus, I., Leatamborg, S., Lupascu, G., Stroe, S.-G., & Ghendov-Mosanu, A. (2025). Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova. Molecules, 30(6), 1233. https://doi.org/10.3390/molecules30061233