Solid Phase Extraction and Determination of Tetracycline Using Gold Nanoparticles Stabilized in a Polymethacrylate Matrix
Abstract
1. Introduction
2. Results and Discussion
2.1. Spectrophotometric TC Determination Using PMM
2.2. TC Determination by Its Intrinsic Fluorescence Using PMM and PMM-Au0
| Extractant | Equation | Color | R | AR, mg/L | LOD, mg/L |
|---|---|---|---|---|---|
| PMM | ∆E = 1150c | Blue (Figure 4b) | 0.995 | 0.0025–0.1000 | 0.001 |
| ∆E = 74c + 158 | Yellow-Green (Figure 4c) | 0.994 | 0.25–2.00 | 0.21 | |
| PMM-Au0 | ΔE = 10,571c | Blue (Figure 5) | 0.992 | 0.001–0.010 | 0.0005 |
| ∆E = 469c + 142 | Yellow-Green (Figure 5) | 0.994 | 0.025–0.100 | 0.012 |

2.3. TC Determination Procedure
3. Materials and Methods
3.1. Preparation of the PMM
3.2. Preparation of Solutions
3.3. Preparation of Gold Nanoparticles in PMM
3.4. Experimental Methodology
3.5. Instrumentation and Operating Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saenjum, C.; Pattapong, N.; Aunsakol, T.; Pattananandecha, T.; Apichai, S.; Murakami, H.; Grudpan, K.; Teshima, N. High sensitivity spectrophotometric determination of tetracycline with zirconium chelation by employing simultaneous injection effective mixing analysis (SIEMA): Tetracycline residue in honey. J. Food Compos. Anal. 2022, 105, 104215. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Goncharova, L.A.; Kobylinskaya, N.G.; Diaz-Garcia, M.E.; Zaitsev, V.N. Solid-phase luminescence determination of tetracycline in bottled water using chemically modified silica. J. Anal. Chem. 2017, 72, 724–733. [Google Scholar] [CrossRef]
- Cherkashina, K.D.; Pochivalov, A.S.; Shakirova, F.M.; Shishov, A.Y.; Bulatov, A.V. Microextraction of tetracyclines from milk to deep eutectic solvents for the subsequent determination by high-performance liquid chromatography-tandem mass spectrometry. J. Anal. Chem. 2022, 77, 334–341. [Google Scholar] [CrossRef]
- Qi, M.; Tu, C.; Dai, Y.; Wang, W.; Wang, A.; Chen, J. A simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water sample. Anal. Methods 2018, 10, 3402–3407. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, L 15, 1–72. [Google Scholar]
- Khatami, A.; Dabbagh, A.; Moghaddam, M.R.; Dini Talatappeh, H.; Mohammadimehr, M. Simultaneous extraction of polycyclic aromatic hydrocarbons and tetracycline antibiotics from honey samples using dispersive solid phase extraction combined with dispersive liquid-liquid microextraction before their determination with HPLC-DAD. J. Food Compos. Anal. 2024, 131, 106179. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Zhu, J.-H.; Zhao, J.; Yang, X.-S.; Liu, Y.-S.; Cheng, T.; Chen, Y.; Sun, S.-Y.; Wang, L.-L. Self-assembled Fe3O4–COOH hydrogen-bonded organic framework composites for magnetic solid-phase extraction of tetracycline in food samples coupled with HPLC determination. Talanta 2024, 280, 126746. [Google Scholar] [CrossRef] [PubMed]
- Gab-Allah, M.A.; Getachew Lijalem, Y.; Yu, H.; Dong Kyu Lim, D.K.; Ahn, S.; Choi, K.; Kim, B. Accurate determination of four tetracycline residues in chicken meat by isotope dilution-liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2023, 1691, 463818. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Shams, G.-R.; Pourrastegar, M.; Pourshaban-Shahrestani, A. Application of salting-out assisted liquid-liquid extraction for the determination of oxytetracycline, tetracycline, tilmicosin, and tylosin in cow milk by liquid chromatography with photodiode array detection. MethodsX 2024, 12, 102616. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, F.; Almugbel, R.; Maher, H.M.; Alodaib, F.M.; Alzoman, N.Z. Determination of tetracycline, oxytetracycline and chlortetracycline residues in seafood products of Saudi Arabia using high performance liquid chromatography—Photo diode array detection. Saudi Pharm. J. 2023, 31, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Ri, H.-C.; Piao, J.; Cai, L.; Jin, X.; Piao, X.; Jin, X.; Jon, C.-S.; Liu, L.; Zhao, J.; Shang, H.-B.; et al. A reciprocating magnetic field assisted on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry determination of trace tetracyclines in water. Anal. Chim. Acta 2021, 1182, 338957. [Google Scholar] [CrossRef]
- Khaled, O.; Ryad, L.; Eissa, F. Determination of tetracycline residues in potatoes and soil by LC-MS/MS: Method development, validation, and risk assessment. Food Chem. 2024, 461, 140841. [Google Scholar] [CrossRef]
- Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M.T.; Song, Y. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 2015, 72, 320–325. [Google Scholar] [CrossRef]
- Rong, M.; Huang, Y.; Lin, C.; Lai, L.; Wu, Y.; Niu, L. Recent advances in optical sensing for tetracycline antibiotics. TrAC Trends Anal. Chem. 2024, 178, 117839. [Google Scholar] [CrossRef]
- Hassan, A.M.; Kelani, K.M.; Hegazy, M.A.; Nadim, A.H.; Tantawy, M.A. A probe of new molecularly imprinted solid-phase extraction coupled with HPLC-DAD and atomic absorption spectrophotometry for quantification of tetracycline HCl, metronidazole and bismuth subcitrate in combination with their official impurities: Application in dosage form and human plasma. J. Chromatogr. B 2024, 1234, 124032. [Google Scholar]
- Thanasarakhan, W.; Kruanetr, S.; Deming, R.L.; Liawruangrath, B.; Wangkarn, S.; Liawruangrath, S. Sequential injection spectrophotometric determination of tetracycline antibiotics in pharmaceutical preparations and their residues in honey and milk samples using yttrium (III) and cationic surfactant. Talanta 2011, 84, 1401–1409. [Google Scholar] [CrossRef]
- Mili, K.; Hsine, Z.; Chevalier, Y.; Ledoux, G.; Mlika, R. Application of thiol capped ZnS quantum dots as a fluorescence probe for determination of tetracycline residues. Solid State Commun. 2023, 360, 115040. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Lee, T.-W.; Li, X.-Y.; Chen, C. Repurposing of waste ammonium sulfate as S,N-doped carbon quantum dots: A sensitive and selective fluorescent probe for the determination of tetracycline. J. Taiwan Inst. Chem. Eng. 2024, 154, 105128. [Google Scholar] [CrossRef]
- Hong, C.; Huang, Y.L.; Li, L.; Zou, J.Y.; Wang, E.L.; Zhang, L.; Liu, Y.W.; You, S.-Y. A fluorescent Zn(II) metal−organic framework sensor for quantitative tetracycline determination. J. Mol. Struct. 2024, 1299, 137113. [Google Scholar] [CrossRef]
- Yan, W.; Wang, X.; Gao, X.; Zhao, L. A smart fluorescent colorimetric dual-response sensing for the determination of tetracycline antibiotics. J. Photochem. Photobiol. A Chem. 2024, 447, 115217. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, S.; Xu, Z.; Lv, T.; Liu, X.; Wang, L.; Liu, B. Fluorescence determination of the total amount of tetracyclines by a flavonol-based supramolecular sensor. Talanta 2024, 266, 124982. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.Q.; Liu, J.; Wang, J.P. Evolution of a natural TetR protein and development of a Fe3O4 assisted semi-homogeneous fluorescent method for determination of tetracyclines in milk. Anal. Chim. Acta 2023, 1276, 341609. [Google Scholar] [CrossRef]
- Udalova, A.Y.; Dmitrienko, S.G.; Apyari, V.V. Sorption of tetracycline antibiotics on hyper-crosslinked polystyrene from aqueous and aqueous-organic media. Russ. J. Phys. Chem. A 2015, 89, 1082–1086. [Google Scholar] [CrossRef]
- Perez, M.; Pellerano, R.G.; Pezza, L.; Pezza, H.R. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta 2018, 182, 1–21. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Saranchina, N.V.; Kambarova, E.A.; Urazov, E.V.; Gavrilenko, M.A. Colorimetric and fluorescent sensing of rhodamine using polymethacrylate matrix. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117106. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Saranchina, N.V.; Gavrilenko, M.A. Colorimetric sensor based on silver nanoparticle—Embedded polymethacrylate matrix. Adv. Mater. Res. 2014, 1040, 923–927. [Google Scholar] [CrossRef]
- Carlotti, B.; Fuoco, D.; Elisei, F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys. Chem. Chem. Phys. 2010, 12, 15580–15591. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, S.; Li, Z.; Li, S.; Zhao, Y. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles. Opt. Spectrosc. 2014, 117, 250–255. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, R.; Li, Z.; Shuang, S.; Zhai, Y.; Dong, C. Label-free colorimetric detection of tetracycline using gold nanoparticles with different surface charge. Talanta 2024, 266, 125077. [Google Scholar] [CrossRef] [PubMed]
- Ponhong, K.; Nilnit, T.; Lee, C.Y.; Kusakunniran, W.; Saeteard, P.; Supharoek, S.-A. A facile smartphone-based digital image colorimetric sensor for the determination of tetracyclines in water using natural phenolic compounds induced to grow gold nanoparticles. RSC Adv. 2025, 15, 8411–8423. [Google Scholar] [CrossRef]
- Jin, L.; Amaya-Mazo, X.; Apel, M.E.; Sankisa, S.S.; Johnson, E.; Zbyszynska, M.A.; Han, A. Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation. Biophys. Chem. 2007, 128, 185–196. [Google Scholar] [CrossRef]
- González-Garrido, L.D.; Guzmán-Hernández, D.S.; Rojas-Hernández, A.; Rodríguez-Barrientos, D.; Juárez-Gómez, J.; Ramírez-Silva, M.T. Tetracycline speciation study in aqueous medium. J. Mex. Chem. Soc. 2025, 69, 78–87. [Google Scholar] [CrossRef]
- Gorodilova, A.I.; Lebedeva, E.L.; Petrova, J.S.; Neudachina, L.K. Study of sorption of chlortetracycline hydrochloride and its subsequent determination by capillary zone Electrophoresis. J. Anal. Chem. 2023, 78, 1659–1664. [Google Scholar] [CrossRef]
- Mohammed-Ali, M.A.-J. Stability study of tetracycline drug in acidic and alkaline solutions by colorimetric method. J. Chem. Pharm. Res. 2012, 4, 1319–1326. [Google Scholar]
- Schmitt, M.O.; Schneider, S. Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+. Phys. Chem. Chem. Phys. 2000, 3, 1989–1995. [Google Scholar] [CrossRef]
- Zeng, Z.; Mizukami, S.; Fujita, K.; Kikuchi, K. An enzyme-responsive metal-enhanced near-infrared fluorescence sensor based on functionalized gold nanoparticles. Chem. Sci. 2015, 6, 4934–4939. [Google Scholar] [CrossRef]
- Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Song, J.; Song, G.; Pang, Y. Metal-enhanced fluorescence of dyes with quadrupole surface plasmon resonance of silver nanoparticles. Nanoscale Adv. 2022, 4, 2794–2802. [Google Scholar] [CrossRef] [PubMed]
- Gartia, M.R.; Eichorst, J.P.; Clegg, R.M.; Liu, G.L. Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl. Phys. Lett. 2012, 101, 023118. [Google Scholar] [CrossRef]
- Austin, L.A.; Kang, B.; El-Sayed, M.A. Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review. Nano Today 2015, 10, 542–558. [Google Scholar] [CrossRef]
- Roumyantseva, T.B.; Dement’eva, O.V.; Protsenko, I.E.; Zaitseva, A.V.; Sukhov, V.M.; Rudoy, V.M. Plasmonic enhancement of dye fluorescence in polymer/metal nanocomposites. Colloid J. 2019, 81, 733–740. [Google Scholar] [CrossRef]
- Saranchina, N.V.; Bazhenova, O.A.; Bragina, S.K.; Semin, V.O.; Gavrilenko, N.A.; Volgina, T.N.; Gavrilenko, M.A. Stabilization of gold nanoparticles in a transparent polymer while maintaining the capabilities of a colorimetric glucose sensor. Opt. Mater. 2024, 157, 116150. [Google Scholar] [CrossRef]





| Ionic Form of TC | pH of TC Solution | Absorption Maximum λ, nm | |
|---|---|---|---|
| Water Solution | PMM | ||
| AnTC (1) | 0.5 | 430 | |
| H4TC+ (2) | 1.8–7.0 | 355 | 365 |
| H3TC (2) | |||
| H2TC− (3) | 7.0–9.6 | 380 | 385 |
| HTC2− (4) | 9.6–12.9 | 390 | |
| TC3− (4) | |||
| pH | 0.5 | 1.8 | 2.2 | 3.2 | 4.2 | 5.9 | 6.4 | 7.0 | 8.2 | 8.6 | 8.9 | 9.1 | 9.3 | 9.7 | 11.0 | 12.9 |
| D, mL/g | 102 | 129 | 45 | 25 | 5 | 116 | 118 | 143 | 183 | 194 | 511 | 588 | 578 | 554 | 159 | 81 |
| Extraction Time, min | Equation | AR, mg/L | LOD, mg/L | r |
|---|---|---|---|---|
| 15 | ΔA = 0.17c | 0.5–5.0 | 0.30 | 0.9917 |
| S = 7.13c | 0.2–5.0 | 0.10 | 0.9925 | |
| 30 | ΔA = 0.28c | 0.3–3.0 | 0.10 | 0.9970 |
| S = 11.31c | 0.1–3.0 | 0.05 | 0.9838 | |
| 60 | ΔA = 0.33c | 0.1–2.0 | 0.06 | 0.9970 |
| S = 13.42c | 0.05–2.0 | 0.03 | 0.9935 | |
| 90 | ΔA = 0.38c | 0.05–1.5 | 0.03 | 0.9927 |
| S = 17.21c | 0.03–1.5 | 0.01 | 0.9965 | |
| 120 | ΔA = 0.47c | 0.04–1.5 | 0.02 | 0.9938 |
| S = 20.29c | 0.02–1.5 | 0.01 | 0.9938 |
| Object | Extractant | Added, mg/L | Calibration Method | Analytical Signal | Found, mg/L | sr, % | Recovery, % |
|---|---|---|---|---|---|---|---|
| Wildflower Honey | PMM | 0 | Standard Solutions | ∆E | <LOD | - | - |
| 0.1 | (0.11 ± 0.03) | 10 | 106 | ||||
| Drinking Water | PMM -Au0 | 0 | Standard Solutions | <LOD | - | - | |
| 0.010 | 0.011 ± 0.002 | 17 | 112 | ||||
| 0.030 | 0.029 ± 0.003 | 7 | 98 | ||||
| Drinking Milk | 0 | Standard Additions | <LOD | - | − | ||
| 0.1 | (0.09 ± 0.03) | 14 | 92 | ||||
| Natural Drinking Water | PMM | 0 | Standard Additions | <LOD | - | - | |
| 0.050 | ΔA | 0.053 ± 0.007 | 6 | 106 | |||
| S | 0.053 ± 0.006 | 8 | 106 | ||||
| 0.100 | ΔA | 0.09 ± 0.04 | 19 | 91 | |||
| S | 0.095 ± 0.012 | 8 | 95 | ||||
| River Water | 0 | - | - | - | |||
| 0.050 | ΔA | 0.055 ± 0.017 | 13 | 110 | |||
| S | 0.046 ± 0.006 | 5 | 92 | ||||
| 0.100 | ΔA | 0.12 ± 0.04 | 16 | 116 | |||
| S | 0.095 ± 0.017 | 7 | 95 | ||||
| Human Urine | 0 | Standard Solutions | - | - | - | ||
| 15 | ΔA | 16 ± 6 | 15 | 109 | |||
| S | 15 ±4 | 10 | 99 | ||||
| ∆E | 16 ± 6 | 15 | 109 | ||||
| Standard Additions | ΔA | 17 ± 3 | 7 | 116 | |||
| S | 16.2 ± 2.2 | 5 | 108 | ||||
| 35 | Standard Solutions | ΔA | 37 ± 11 | 12 | 105 | ||
| S | 34 ±6 | 7 | 96 | ||||
| ∆E | 34 ± 9 | 10 | 97 | ||||
| Standard Additions | ΔA | 34 ± 9 | 10 | 97 | |||
| S | 37 ± 5 | 6 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saranchina, N.V.; Kuznetsova, D.E.; Gavrilenko, N.A.; Gavrilenko, M.A. Solid Phase Extraction and Determination of Tetracycline Using Gold Nanoparticles Stabilized in a Polymethacrylate Matrix. Molecules 2025, 30, 4458. https://doi.org/10.3390/molecules30224458
Saranchina NV, Kuznetsova DE, Gavrilenko NA, Gavrilenko MA. Solid Phase Extraction and Determination of Tetracycline Using Gold Nanoparticles Stabilized in a Polymethacrylate Matrix. Molecules. 2025; 30(22):4458. https://doi.org/10.3390/molecules30224458
Chicago/Turabian StyleSaranchina, Nadezhda V., Daria E. Kuznetsova, Nataliya A. Gavrilenko, and Mikhail A. Gavrilenko. 2025. "Solid Phase Extraction and Determination of Tetracycline Using Gold Nanoparticles Stabilized in a Polymethacrylate Matrix" Molecules 30, no. 22: 4458. https://doi.org/10.3390/molecules30224458
APA StyleSaranchina, N. V., Kuznetsova, D. E., Gavrilenko, N. A., & Gavrilenko, M. A. (2025). Solid Phase Extraction and Determination of Tetracycline Using Gold Nanoparticles Stabilized in a Polymethacrylate Matrix. Molecules, 30(22), 4458. https://doi.org/10.3390/molecules30224458

