High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands
Abstract
1. Introduction
2. Effective Hamiltonian Formalism
3. Assignment and Results
4. Experimental Details
4.1. Spectra Recorded at GSMA, Reims
4.1.1. 2 Band (1950–2100 )
4.1.2. Band (2100–2350 )
4.1.3. 2 Band (2250–2450 )
4.2. Spectra Recorded at SOLEIL Synchrotron
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FTIR | fourier transform infrared |
| MIRS | molecular infrared spectra (software) |
References
- IPCC. Climate Change 2022: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, 2022. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 12 March 2025).
- Rao, K.N.; Mathews, C. Molecular Spectroscopy: Modern Research; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Frenzel, P.; Bosse, U. Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiol. Ecol. 1996, 21, 25–36. [Google Scholar] [CrossRef]
- Papoušek, D.; Hsu, Y.; Chen, H.; Pracna, P.; Klee, S.; Winnewisser, M. Far Infrared Spectrum and Ground State Parameters of 12CH3F. J. Mol. Spectrosc. 1993, 159, 33–41. [Google Scholar] [CrossRef]
- Boucher, D.; Burie, J.; Bocquet, R.; Demaison, J. The ground state rotational constants of CH3F. J. Mol. Spectrosc. 1986, 116, 256–258. [Google Scholar] [CrossRef]
- Smith, W.; Mills, I. Vibration-rotation spectra of CH3F. J. Mol. Spectrosc. 1963, 11, 11–38. [Google Scholar] [CrossRef]
- Giguere, J.; Overend, J. The i.r. rotation–vibration spectrum of CH3F in the region of 3000 cm−1. Spectrochim. Acta A 1976, 32, 241–262. [Google Scholar] [CrossRef]
- Betrencourt, M. Rotation-vibration spectrum of CH3F in the range 2000–2100 cm−1. J. Mol. Spectrosc. 1973, 47, 275–285. [Google Scholar] [CrossRef]
- Faust, C.; Gold, L.; Bernheim, R. High-Resolution Spectroscopy of the 2ν3 Band of 12CH3F. J. Mol. Spectrosc. 1993, 158, 1–7. [Google Scholar] [CrossRef]
- Owens, A.; Yachmenev, A.; Küpper, J.; Yurchenko, S.N.; Thiel, W. The rotation–vibration spectrum of methyl fluoride from first principles. Phys. Chem. Chem. Phys. 2019, 21, 3496–3505. [Google Scholar] [CrossRef] [PubMed]
- Arimondo, E.; Inguscio, M. The rotation-vibration constants of the 12CH3F ν3 band. J. Mol. Spectrosc. 1979, 75, 81–86. [Google Scholar] [CrossRef]
- Papoušek, D.; Tesař, R.; Pracna, P.; Civiš, S.; Winnewisser, M.; Belov, S.; Tretyakov, M. High-resolution Fourier transform and submillimeter-wave study of the ν6 band of 12CH3F. J. Mol. Spectrosc. 1991, 147, 279–299. [Google Scholar] [CrossRef]
- Papoušek, D.; Tesař, R.; Pracna, P.; Kauppinen, J.; Belov, S.; Tretyakov, M. High-resolution Fourier transform and submillimeter-wave spectroscopy of the ν3 and 2ν3 ← ν3 bands of 13CH3F. J. Mol. Spectrosc. 1991, 146, 127–134. [Google Scholar] [CrossRef]
- Dunjko, V.; Nischan, M.; Clark, D.; Mantz, A.; Papousek, D. Absolute Line Intensities in the Bands ν2 and ν5 and the Transition Dipole Moments of CH3F. J. Mol. Spectrosc. 1993, 159, 24–32. [Google Scholar] [CrossRef]
- Lepère, M.; Blanquet, G.; Walrand, J.; Bouanich, J.P. Line Intensities in the ν6 Band of CH3F at 8.5 μm. J. Mol. Spectrosc. 1996, 180, 218–226. [Google Scholar] [CrossRef]
- Lepère, M.; Blanquet, G.; Walrand, J.; Tarrago, G. Absolute Absorption Intensities in the Fundamental ν2 and ν5 Bands of 12CH3F. J. Mol. Spectrosc. 1998, 189, 137–143. [Google Scholar] [CrossRef]
- Papoušek, D.; Pracna, P.; Winnewisser, M.; Klee, S.; Demaison, J. Simultaneous Rovibrational Analysis of the ν2, ν3, ν5, and ν6 Bands of CF. J. Mol. Spectrosc. 1999, 196, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.V.; Jacquemart, D.; Guinet, M.; Rey, M.; Nikitin, A.V. Line list for the ν3, ν3+ν6−ν6 and 2ν3−ν3 bands of methyl fluoride at 9.5 μm. J. Quant. Spectrosc. Radiat. Transf. 2025, 345, 109525. [Google Scholar] [CrossRef]
- Ziadi, H.; Rey, M.; Grouiez, B.; Nikitin, A.; Rotger, M.; Aroui, H. First line intensities of the ν3+ν6 band of methyl fluoride. J. Quant. Spectrosc. Radiat. Transf. 2026, 348, 109684. [Google Scholar] [CrossRef]
- Ziadi, H.; Fathallah, O.B.; Chouikha, I.B.; Tchana, F.K.; Landsheere, X.; Aroui, H. Line-by-line intensity measurements of methyl fluoride in the ν2 and ν5 bands. J. Quant. Spectrosc. Radiat. Transf. 2022, 286, 108218. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, E.R.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN 2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Delahaye, T.; Armante, R.; Scott, N.A.; Jacquinet-Husson, N.; Chédin, A.; Crépeau, L.; Crevoisier, C.; Douet, V.; Perrin, A.; Barbe, A.; et al. The 2020 edition of the GEISA spectroscopic database. J. Mol. Spectrosc. 2021, 380, 111510. [Google Scholar] [CrossRef]
- Nikitin, A.; Rey, M.; Champion, J.; Tyuterev, V. Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1034–1042. [Google Scholar] [CrossRef]
- Rey, M.; Nikitin, A.V.; Babikov, Y.L.; Tyuterev, V.G. TheoReTS—An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces. J. Mol. Spectrosc. 2016, 327, 138–158. [Google Scholar] [CrossRef]
- Nakagawa, J.; Suzuki, I.; Shimanouchi, T.; Fujiyama, T. Vibration-Rotation Spectrum of Methyl Fluoride II. Analysis of ν3 + ν6 Band. Bull. Chem. Soc. Jpn. 1974, 47, 1134–1138. [Google Scholar] [CrossRef]
- Nikitin, A.V.; Rey, M.; Tyuterev, V.G. Rotational and vibrational energy levels of methyl fluoride calculated from a new potential energy surface. J. Mol. Spectrosc. 2012, 274, 28–34. [Google Scholar] [CrossRef]
- Rey, M. Novel methodology for systematically constructing global effective models from ab initio based-surfaces: A new insight into high-resolution molecular spectra analysis. J. Chem. Phys. 2022, 156, 224103. [Google Scholar] [CrossRef] [PubMed]
- Rey, M.; Nikitin, A.V.; Tyuterev, V.G. Ab initio ro-vibrational Hamiltonian in irreducible tensor formalism: A method for computing energy levels from potential energy surfaces for symmetric-top molecules. Mol. Phys. 2010, 108, 2121–2135. [Google Scholar] [CrossRef]
- Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]







| Band | Range () | Path Length (m) | Pressures (mbar) | Resolution () |
|---|---|---|---|---|
| 2 | 1950–2100 | 3.2 | 0.09, 0.40 | 0.003 |
| 2100–2350 | 8.2 | 1.00, 3.00 | 0.003 | |
| 2 | 2300–2450 | 38.6 | 1.00, 2.56 | 0.003 |
| Region | Range () | Detector | Pressures (mbar) | Resolution () |
|---|---|---|---|---|
| Rotational FIR | 10–40 | Bolometer (1.6 K) | 0.07–0.17 | 0.001 |
| Rotational FIR | 40–100 | Bolometer (4 K) | 0.21–0.59 | 0.001 |
(cm−1) | Rotational Assignment | Vibrational Assignment | (cm−1) | Obs–Calc (10−3 cm−1) | Type | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lower State | Upper State | Lower | Upper | ||||||||||||||
| 79.0393 | 0 | 46 | 5 | 12 | 0 | 47 | 5 | 12 | 000000 | 000000 | 2449.780201 | −0.05 | Auto | ||||
| 79.0393 | 0 | 46 | 4 | 12 | 0 | 47 | 4 | 12 | 000000 | 000000 | 2449.780201 | −0.05 | Auto | ||||
| 79.0705 | 0 | 46 | E | 8 | 11 | 0 | 47 | E | 8 | 11 | 000000 | 000000 | 2351.326959 | 0.42 | Auto | ||
| 79.0981 | 0 | 46 | E | 7 | 10 | 0 | 47 | E | 7 | 10 | 000000 | 000000 | 2261.371357 | −0.09 | Auto | ||
| 79.1237 | 0 | 46 | 4 | 9 | 0 | 47 | 4 | 9 | 000000 | 000000 | 2179.930717 | 0.01 | Auto | ||||
| 79.1237 | 0 | 46 | 3 | 9 | 0 | 47 | 3 | 9 | 000000 | 000000 | 2179.930717 | 0.01 | Auto | ||||
| 79.1464 | 0 | 46 | E | 6 | 8 | 0 | 47 | E | 6 | 8 | 000000 | 000000 | 2107.020710 | −0.13 | Auto | ||
| 79.1666 | 0 | 46 | E | 5 | 7 | 0 | 47 | E | 5 | 7 | 000000 | 000000 | 2042.655358 | −0.12 | Auto | ||
| 79.1842 | 0 | 46 | 3 | 6 | 0 | 47 | 3 | 6 | 000000 | 000000 | 1986.847033 | −0.05 | Auto | ||||
| 79.1842 | 0 | 46 | 2 | 6 | 0 | 47 | 2 | 6 | 000000 | 000000 | 1986.847033 | −0.05 | Auto | ||||
| 79.1991 | 0 | 46 | E | 4 | 5 | 0 | 47 | E | 4 | 5 | 000000 | 000000 | 1939.606458 | 0.00 | Auto | ||
| 79.2112 | 0 | 46 | E | 3 | 4 | 0 | 47 | E | 3 | 4 | 000000 | 000000 | 1900.942707 | −0.05 | Auto | ||
| 79.2206 | 0 | 46 | 2 | 3 | 0 | 47 | 2 | 3 | 000000 | 000000 | 1870.863202 | −0.12 | Auto | ||||
| 79.2206 | 0 | 46 | 1 | 3 | 0 | 47 | 1 | 3 | 000000 | 000000 | 1870.863202 | −0.12 | Auto | ||||
| 79.2274 | 0 | 46 | E | 2 | 2 | 0 | 47 | E | 2 | 2 | 000000 | 000000 | 1849.373717 | −0.08 | Auto | ||
| 79.2315 | 0 | 46 | E | 1 | 1 | 0 | 47 | E | 1 | 1 | 000000 | 000000 | 1836.478376 | −0.04 | Auto | ||
| 79.2329 | 0 | 46 | 1 | 0 | 0 | 47 | 1 | 0 | 000000 | 000000 | 1832.179655 | 0.00 | Auto | ||||
| 2222.0819 | 0 | 8 | 1 | 0 | 3 | 8 | 2 | 1 | 000000 | 001001 | E | 61.318769 | −0.24 | Auto | |||
| 2222.1095 | 0 | 21 | E | 5 | 7 | 3 | 20 | E | 27 | 8 | 000000 | 001001 | E | 604.781092 | 0.34 | Auto | |
| 2222.1182 | 0 | 10 | 2 | 3 | 3 | 9 | 6 | 4 | 000000 | 001001 | E | 132.624744 | 0.32 | Auto | |||
| 2222.1182 | 0 | 10 | 1 | 3 | 3 | 9 | 5 | 4 | 000000 | 001001 | E | 132.624744 | 0.32 | Auto | |||
| 2222.1281 | 0 | 7 | E | 2 | 2 | 3 | 6 | E | 8 | 3 | 000000 | 001001 | E | 65.010605 | 0.20 | Auto | |
| 2222.1883 | 0 | 26 | 4 | 9 | 3 | 25 | 19 | 10 | 000000 | 001001 | E | 946.427107 | −1.02 | Auto | |||
| 2222.1883 | 0 | 26 | 3 | 9 | 3 | 25 | 17 | 10 | 000000 | 001001 | E | 946.427107 | −1.02 | Auto | |||
| 2222.3232 | 0 | 7 | 1 | 0 | 3 | 7 | 2 | 1 | 000000 | 001001 | E | 47.694176 | −0.15 | Auto | |||
| 2222.4037 | 0 | 2 | E | 1 | 1 | 3 | 3 | E | 3 | 0 | 000000 | 001001 | E | 9.440744 | −0.04 | Auto | |
| 2222.4489 | 0 | 28 | E | 2 | 2 | 3 | 28 | E | 8 | 3 | 000000 | 001001 | E | 707.604202 | 1.04 | Auto | |
| 2222.5344 | 0 | 6 | 1 | 0 | 3 | 6 | 2 | 1 | 000000 | 001001 | E | 35.771813 | −0.04 | Auto | |||
| 2222.5600 | 0 | 14 | E | 3 | 4 | 3 | 15 | E | 9 | 3 | 000000 | 001001 | E | 248.004363 | −0.22 | Manu | |
| 2222.7154 | 0 | 5 | 1 | 0 | 3 | 5 | 2 | 1 | 000000 | 001001 | E | 25.552018 | −0.01 | Auto | |||
| 2222.8004 | 0 | 19 | E | 4 | 5 | 3 | 20 | E | 11 | 4 | 000000 | 001001 | E | 431.464091 | −0.82 | Manu | |
| 2222.8663 | 0 | 4 | 1 | 0 | 3 | 4 | 2 | 1 | 000000 | 001001 | E | 17.035080 | 0.05 | Auto | |||
| 2222.9014 | 0 | 6 | E | 2 | 2 | 3 | 7 | E | 6 | 1 | 000000 | 001001 | E | 53.089063 | −0.25 | Auto | |
| 2222.9224 | 0 | 39 | E | 3 | 4 | 3 | 39 | E | 12 | 5 | 000000 | 001001 | E | 1392.808779 | −0.48 | Auto | |
| 2222.9537 | 0 | 18 | 3 | 6 | 3 | 17 | 12 | 7 | 000000 | 001001 | E | 446.695134 | −1.56 | Auto | |||
| 2222.9537 | 0 | 18 | 2 | 6 | 3 | 17 | 10 | 7 | 000000 | 001001 | E | 446.695134 | −1.23 | Auto | |||
| 2222.9537 | 0 | 10 | 2 | 3 | 3 | 11 | 5 | 2 | 000000 | 001001 | E | 132.624744 | 0.93 | Auto | |||
| 2222.9537 | 0 | 10 | 1 | 3 | 3 | 11 | 4 | 2 | 000000 | 001001 | E | 132.624744 | 0.93 | Auto | |||
| 2222.9871 | 0 | 3 | 1 | 0 | 3 | 3 | 2 | 1 | 000000 | 001001 | E | 10.221241 | 0.18 | Auto | |||
| Polyad | State | Vib. Energy (cm−1) | N | RMS (10−4 cm−1) | ||||
|---|---|---|---|---|---|---|---|---|
| Khan | TW | Khan | TW | Khan | TW | |||
| Ground state | GS | 0 | –/– | 70/16 | – | 849 | – | 3.55 |
| Dyad 1 | 1048.6 | 44/18 | –/– | 564 | – | 6.75 | – | |
| 1182.6 | 28/12 | –/– | 784 | – | 5.06 | – | ||
| Dyad 2 | 1459.3 | 34/6 | –/– | 231 | – | 8.34 | – | |
| 1467.8 | 37/13 | –/– | 1385 | – | 28.1 | – | ||
| Triad | 2081.3 | 27/11 | 45/19 | 119 | 1092 | 9.11 | 6.91 | |
| 2221.8 | 24/23 | 45/17 | 105 | 2532 | 9.42 | 6.85 | ||
| 2365.9 | –/– | 39/9 | – | 696 | – | 7.86 | ||
| 2359.4 | –/– | 37/13 | – | 135 | – | 8.99 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziadi, H.; Rey, M.; Voute, A.; Tison, J.; Grouiez, B.; Manceron, L.; Boudon, V.; Aroui, H.; Rotger, M. High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands. Molecules 2025, 30, 4389. https://doi.org/10.3390/molecules30224389
Ziadi H, Rey M, Voute A, Tison J, Grouiez B, Manceron L, Boudon V, Aroui H, Rotger M. High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands. Molecules. 2025; 30(22):4389. https://doi.org/10.3390/molecules30224389
Chicago/Turabian StyleZiadi, Hazem, Michaël Rey, Alexandre Voute, Jeanne Tison, Bruno Grouiez, Laurent Manceron, Vincent Boudon, Hassen Aroui, and Maud Rotger. 2025. "High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands" Molecules 30, no. 22: 4389. https://doi.org/10.3390/molecules30224389
APA StyleZiadi, H., Rey, M., Voute, A., Tison, J., Grouiez, B., Manceron, L., Boudon, V., Aroui, H., & Rotger, M. (2025). High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands. Molecules, 30(22), 4389. https://doi.org/10.3390/molecules30224389

