The Impact of Production Technology on the Quality of Potato Spirit
Abstract
1. Introduction
- −
- preparation of potato mashes using pressure-thermal and pressureless starch release methods,
- −
- hydrolysis and fermentation of starch using two strategies, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), and an assessment of the chemical composition of the prepared sweet mashes,
- −
- fermentation of potato mashes using three selected distillery yeast strains,
- −
- assessment of process efficiency,
- −
- determination of the volatile compounds in the potato distillate samples.
2. Results and Discussion
2.1. Chemical Composition of Raw Material and Sweet Mashes
2.2. Analysis of Fermented Mashes
2.3. Fermentation Efficiency
2.4. Volatile Compounds in the Potato Distillates
2.4.1. Carbonyl Compounds
2.4.2. Esters
2.4.3. Methanol and Higher Alcohols
2.4.4. Acidity
3. Materials and Methods
3.1. Raw Material and Auxiliary Materials
- −
- LpHera—a preparation with α-amylase (EC 3.2.1.1) activity, applied at a dose of 0.50 mL/kg of starch,
- −
- Saczyme—a preparation with amyloglucosidase (EC 3.2.1.3) activity, applied at a dose of 0.72 mL/kg of starch [79].
- −
- Ethanol Red® (Fermentis Division of S.I. Lesaffre, Marcq-en-Baroeul Cedex, France),
- −
- SaftSpiritTM HG-1 (Fermentis Division of S.I. Lesaffre, Marcq-en-Baroeul Cedex, France),
- −
- Pinnacle Distillers Yeast (S) (AB Biotek, Peterborough, UK).
3.2. Preparation and Fermentation of Sweet Mashes
3.3. Distillation of Alcohol from Fermented Mashes
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PT | Pressure-thermal pretreatment |
| PLS | Pressureless starch liberation |
| SSF | Simultaneous Saccharification and fermentation |
| SHF | Separate hydrolysis and fermentation |
References
- Ward, A. ‘Aqua Vitae’ The Grocer’s Encyclopedia. Available online: https://khor.com/vodka#rec461739533 (accessed on 12 September 2025).
- Kuta, A.; Balcerek, M. New trends or return to traditional methods in the production of grain spirits? Acta Univ. Lodz. Folia Biol. Oecol. 2021, 17, 63–69. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008. OJ L 130, 17.5.2019, pp. 1–54. Available online: http://data.europa.eu/eli/reg/2019/787/oj (accessed on 12 June 2025).
- Regulation (EU) 2024/1143 of the European Parliament and of the Council of 11 April 2024 on Geographical Indications for Wine, Spirit Drinks and Agricultural Products, as Well as Traditional Specialities Guaranteed and Optional Quality Terms for Agricultural Products, Amending Regulations (EU) No 1308/2013, (EU) 2019/787 and (EU) 2019/1753 and Repealing Regulation (EU) No 1151/2012. OJ L, 2024/1143, 23.4.2024. Available online: http://data.europa.eu/eli/reg/2024/1143/oj (accessed on 20 June 2025).
- Zioíłkowska, A.; Jeleń, H. Differentiation of raw spirits of rye, corn and potato using chromatographic profiles of volatile compounds. J. Sci. Food Agric. 2012, 92, 2630–2637. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jeleń, H. Comprehensive two dimensional gas chromatography—Time of flight mass spectrometry (GC × GC-TOFMS) for the investigation of botanical origin of raw spirits. Food Chem. 2025, 465, 142004. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Ma, Z.; Chen, H.; Gao, H. Toward an understanding of potato starch structure, function, biosynthesis, and applications. Food Front. 2023, 4, 980–1000. [Google Scholar] [CrossRef]
- Wang, X.; Tian, S.; Lou, H.; Zhao, R. A reliable method for predicting bioethanol yield of different varieties of sweet potato by dry matter content. Grain Oil Sci. Technol. 2020, 3, 110–116. [Google Scholar] [CrossRef]
- Fanghua, W.U.; Guoming, W.U. Chinese Xiaoqu spirits fermented with rice and potato. China Brew. 2013, 32, 85–88. [Google Scholar]
- Weber, C.; Casagrande, T.; Candido, G.; Trierweiler, L.; Trierweiler, J. Alternative process for production of sweet potato distilled beverage. Braz. Arch. Biol. Technol. 2020, 63, e20190181. [Google Scholar] [CrossRef]
- Son, M.; Aboy, B.; Pastor, N.; Quiza, C.; Cardoso, E. Lambanog alternative production from catalyzed fermentation and distillation of sweet potato (Ipomoea batatas L.) with coconut (Cocos nucifera L.) SAP. ITMJ 2023, 5, 81–93. [Google Scholar] [CrossRef]
- Coelho, E.; Ballesteros, L.F.; Domingues, L.; Vilanova, M.; Teixeira, J.A. Production of a distilled spirit using cassava flour as raw material: Chemical characterization and sensory profile. Molecules 2020, 25, 3228. [Google Scholar] [CrossRef]
- Leonel, M.; Carmo, E.; Fernandes, A.; Soratto, R.; Ebúrneo, J.; Garcia, É.; Santos, T. Chemical composition of potato tubers: The effect of cultivars and growth conditions. J. Food Sci. Technol. 2017, 54, 2372–2378. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Vaitsi, O.; Mavromatis, A. Potatoes: A comparative study of the effect of cultivars and cultivation conditions and genetic modification on the physico-chemical properties of potato tubers in conjunction with multivariate analysis towards authenticity. Crit. Rev. Food Sci. Nutr. 2008, 48, 799–823. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, B.; Pszczolkowski, P. Dry matter and carbohydrates content in the tubers of very early potato varieties cultivated under coverage. Acta Sci. Pol. 2005, 4, 111–122. (In Polish) [Google Scholar]
- Dewhirst, R.A.; Fry, S.C. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochem. J. 2018, 475, 3451–3470. [Google Scholar] [CrossRef] [PubMed]
- Narwojsz, A.; Borowska, E.J.; Polak-Śliwińska, M.; Danowska-Oziewicz, M. Effect of different methods of thermal treatment on starch and bioactive compounds of potato. Plant Foods Hum. Nutr. 2020, 75, 298–304. [Google Scholar] [CrossRef]
- Balcerek, M.; Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Oleszczak, A.; Koń, M.; Patelski, A.M. Waste bread as raw material for ethanol production: Effect of mash preparation methods on fermentation efficiency. Appl. Sci. 2024, 14, 9565. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M.; Nowak, A.; Wojtczak, M.; Czyżowska, A.; Dziekońska-Kubczak, U.; Patelski, P. The effect of different starch liberation and saccharification methods on the microbial contaminations of distillery mashes, fermentation efficiency, and spirits quality. Molecules 2017, 22, 1647. [Google Scholar] [CrossRef]
- Baroň, M.; Fiala, J. Chasing after minerality, relationship to yeast nutritional stress and succinic acid production. Czech J. Food Sci. 2012, 30, 188–193. [Google Scholar] [CrossRef]
- Broda, M.; Grajek, W. Microbial contaminations during bioethanol production. Sci. Tech. Mag. Ferment. Fruit Veg. Ind. 2009, 7–8, 58–60. (In Polish) [Google Scholar]
- Klein, M.; Swinnen, S.; Thevelein, J.M.; Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities. Environ. Microbiol. 2017, 19, 878–893. [Google Scholar] [CrossRef]
- Strąk-Graczyk, E.; Balcerek, M.; Pielech-Przybylska, K.; Żyżelewicz, D. Simultaneous saccharification and fermentation of native rye, wheat and triticale starch. J. Sci. Food Agric. 2019, 99, 4904–4912. [Google Scholar] [CrossRef]
- Gronchi, N.; Favaro, L.; Cagnin, L.; Brojanigo, S.; Pizzocchero, V.; Basaglia, M.; Casella, S. Novel yeast strains for the efficient saccharification and fermentation of starchy by-products to bioethanol. Energies 2019, 12, 714. [Google Scholar] [CrossRef]
- Grajek, W.; Szymanowska, D. Stresy środowiskowe działające na drożdże Saccharomyces cerevisiae w procesie fermentacji alkoholowej. Biotechnologia 2008, 3, 46–63. (In Polish) [Google Scholar]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strak, E. Fermentation results and chemical composition of agricultural distillates obtained from rye and barley grains and the corresponding malts as a source of amylolytic enzymes and starch. Molecules 2016, 21, 1320. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, A.; Kawai, T.; Yamamoto, Y.; Izawa, S.; Kawai, T.; Yamamoto, Y.; Izawa, S. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013, 79, 1661–1667. [Google Scholar] [CrossRef]
- Hironaga, A.; Akinori, M. A Short review of second-generation isobutanol production by SHF and SSF. Appl. Biosci. 2024, 3, 296–309. [Google Scholar] [CrossRef]
- Sinai, L.; Rosenberg, A.; Smith, Y.; Segev, E.; Ben-Yehuda, S. The molecular timeline of a reviving bacterial spore. Mol. Cell 2015, 57, 695–707. [Google Scholar] [CrossRef]
- Christoph, N.; Bauer-Christoph, C. Flavour of spirit drinks: Raw materials, fermentation, distillation, and ageing. In Flavours and Fragrances, 2nd ed.; Berger, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–240. [Google Scholar] [CrossRef]
- Romano, P.; Capece, A.; Jespersen, L. Taxonomic and ecological diversity of food and beverage yeast. In Yeast in Food and Beverages; Querol, A., Graham, H.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 13–53. [Google Scholar]
- Li, E.; de Orduña, R.M. Evaluation of acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system. J. Ind. Microbiol. Biotechnol. 2011, 38, 1391–1398. [Google Scholar] [CrossRef]
- Biernacka, P.; Wardencki, W. Volatile composition of raw spirits of different botanical origin. J. Inst. Brew. 2012, 118, 393–400. [Google Scholar] [CrossRef]
- Jeleń, H.; Ziółkowska, A.; Kaczmarek, A. Identification of the botanical origin of raw spirits produced from rye, potato, and corn based on volatile compounds analysis using a SPME-MS method. J. Agric. Food Chem. 2010, 58, 12585–12591. [Google Scholar] [CrossRef]
- PN-A-79523:2002; Agricultural Distillate. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Portugal, C.B.; Paron de Silva, A.; Bortoletto, A.M.; Alcarde, A.R. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res. Int. 2017, 91, 18–25. [Google Scholar] [CrossRef]
- Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Waterhouse, A.; Sacks, G.; Jeffery, D. Understanding Wine Chemistry, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2016. [Google Scholar]
- International Agency for Research on Cancer. Acetaldehyde, in Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1999; Volume 71. [Google Scholar]
- Léauté, R. Distillation in alambic. Am. J. Enol. Vitic. 1990, 41, 90–103. [Google Scholar] [CrossRef]
- Walther, T.; François, J.M. Microbial production of propanol. Biotechnol. Adv. 2016, 34, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Son, E.; Chul, C. Sensory profiling of korean distilled soju—Using the CATA method. J. Korea Acad.-Ind. Cooper. Soc. 2023, 24, 211–223. [Google Scholar] [CrossRef]
- Wei, Y.; Zou, W.; Shen, C.H.; Yang, J.G. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef]
- Cheynier, V.; Schneider, R.; Salmon, J.; Fulcrand, H. Chemistry of Wine. In Comprehensive Natural Products II; Mander, L., Liu, H.W., Eds.; Elsevier: Oxford, UK, 2010; pp. 1119–1172. [Google Scholar]
- Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E. Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS, and sensory evaluation. J. Agric. Food Chem. 2004, 52, 5670–5676. [Google Scholar] [CrossRef]
- Da Porto, C.; Nicoli, M.C. A Study of the physico-chemical behavior of diacetyl in hydroalcoholic solution with and without added catechin and wood extract. LWT-Food Sci. Technol. 2002, 35, 466–471. [Google Scholar] [CrossRef]
- Li, P.; Song, W.; Wu, S.; Wang, Y.; Fan, Y.; Zhang, C. Research on engineering the Saccharomyces uvarum for constructing a high efficiency to degrade malic acid and low yield of diacetyl biosynthesis pathway. Foods 2024, 13, 3161. [Google Scholar] [CrossRef]
- Costa, G.P.; Queiroz, L.B.; Manfroi, V.; Rodrigues, R.C.; Hertz, P.F. Immobilization of alpha acetolactate decarboxylase in hybrid gelatin/alginate support for application to reduce diacetyl off-flavor in beer. Catalysts 2023, 13, 601. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M.; Dziekońska-Kubczak, U.; Pacholczyk-Sienicka, B.; Ciepielowski, G.; Albrecht, Ł.; Patelski, P. The role of Saccharomyces cerevisiae yeast and lactic acid bacteria in the formation of 2-propanol from acetone during fermentation of rye mashes obtained using thermal-pressure method of starch liberation. Molecules 2019, 24, 610. [Google Scholar] [CrossRef]
- Lee, M.K.-Y.; Paterson, A.; Piggott, J.R. Origins of flavour in whiskies and a revised flavour wheel. A review. J. Inst. Brew. 2001, 107, 287–313. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Sun, B.; Li, H.; Zheng, F.; Li, J.; Meng, N. Characterization of key aroma-active compounds in two types of peach spirits produced by distillation and pervaporation by means of the sensomics approach. Foods 2022, 11, 2598. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Blanco Gomis, D.; Mangas Alonso, J.J. Influence of distillation system, oak wood type, and aging time on composition of cider brandy in phenolic and furanic compounds. J. Agric. Food Chem. 2003, 51, 7969–7973. [Google Scholar] [CrossRef] [PubMed]
- Stanzer, D.; Hanousek Čiča, K.; Blesić, M.; Smajić Murtić, M.; Mrvčić, J.; Spaho, N. Alcoholic fermentation as a source of congeners in fruit spirits. Foods 2023, 12, 1951. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, J.; Wang, R.; Liu, X.; Peng, X.; Guo, S. Succession and diversity of microbial flora during the fermentation of douchi and their effects on the formation of characteristic aroma. Foods 2023, 12, 329. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Duan, C.; Lan, Y. Investigating the effects of distillation system, geographical origin, and aging time on aroma characteristics in brandy using an untargeted metabonomic approach. Foods 2024, 13, 1922. [Google Scholar] [CrossRef] [PubMed]
- Commission Delegated Regulation (EU) 2022/1303 of 25 April 2022 Amending Regulation (EU) 2019/787 of the European Parliament and of the Council as Regards the Definition of and Requirements for Ethyl Alcohol of Agricultural Origin. Available online: https://eur-lex.europa.eu/eli/reg_del/2022/1303/oj (accessed on 12 June 2025).
- Thibaud, F.; Shinkaruk, S.; Darriet, P. Quantitation, organoleptic contribution, and potential origin of diethyl acetals formed from various aldehydes in Cognac. J. Agric. Food Chem. 2019, 67, 2617–2625. [Google Scholar] [CrossRef]
- Różański, M.; Pielech-Przybylska, K.; Balcerek, M. Influence of alcohol content and storage conditions on the physicochemical stability of spirit drinks. Foods 2020, 9, 1264. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, J.; Wang, R.; Zhang, N.; Zheng, F. A review on flavor of Baijiu and other world-renowned distilled liquors. Food Chem. X 2023, 20, 100870. [Google Scholar] [CrossRef]
- Bajer, T.; Hill, M.; Ventura, K.; Bajerová, P. Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Sci. Rep. 2020, 10, 18965. [Google Scholar] [CrossRef]
- Bartkienė, E.; Juodeikiene, G.; Žadeikė, D.; Baliukonienė, V.; Bakutis, B.; Čižeikienė, D. Influence of microbial and chemical contaminants on the yield and quality of ethanol from wheat grains. J. Sci. Food Agric. 2018, 99, 2348–2355. [Google Scholar] [CrossRef]
- Quilter, M.; Hurley, J.; Lynch, F.; Murphy, M. The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J. Inst. Brew. 2003, 109, 34–40. [Google Scholar] [CrossRef]
- Li, M.; Xie, Y.; Chen, H.; Zhang, B. Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules. Food Chem. 2019, 272, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Ruan, S.; Zhao, Y.; Li, J.; Yang, C.; Cao, H. Multi-objective evaluation of freshly distilled brandy: Characterisation and distribution patterns of key odour-active compounds. Food Chem. X 2022, 14, 100276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ruan, S.; Yang, X.; Chen, Q.; Shi, K.; Lu, K.; He, L.; Liu, S.; Song, Y. Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit. Food Sci. Nutr. 2021, 9, 5914–5927. [Google Scholar] [CrossRef]
- Franitza, L.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two commercial rums by means of the sensomics approach. J. Agric. Food Chem. 2016, 64, 637–645. [Google Scholar] [CrossRef]
- González-Robles, I.W. Flavour Interactions Between the ‘Estery’ and ‘Mature/Woody’ Characters of Whisky, Bourbon & Tequila. Ph.D. Thesis, University of Nottingham, Loughborough, UK, 2018. [Google Scholar]
- Poisson, L.; Schieberle, P. Characterization of the key aroma compounds in an American bourbon whisky by quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2008, 56, 5820–5826. [Google Scholar] [CrossRef]
- Anthon, G.E.; Barrett, D.M. Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem. 2012, 132, 915–920. [Google Scholar] [CrossRef]
- Cabaroglu, T.; Yilmaztekin, M. Methanol and major volatile compounds of Turkish raki and effect of distillate source. J. Inst. Brew. 2011, 117, 98–105. [Google Scholar] [CrossRef]
- Russell, I. Understanding yeast fundamentals. In The Alcohol Textbook, 4th ed.; Jacques, K.A., Lyons, T.P., Kelsall, D.R., Eds.; Alltech Inc.: Nicholasville, KY, USA, 2003; pp. 85–120. [Google Scholar]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef]
- Carmeleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.P. Production of Scotch and Irish whiskies: Their history and evolution. In The Alcohol Textbook, 4th ed.; Jacques, K.A., Lyons, T.P., Kelsall, D.R., Eds.; Alltech Inc.: Nicholasville, KY, USA, 2003; pp. 193–206. [Google Scholar]
- Rodríguez Madrera, R.; Hevia, A.G.; Suárez Valles, B. Comparative study of two aging systems for cider brandy making. Changes in chemical composition. LWT 2013, 54, 513–520. [Google Scholar] [CrossRef]
- Aylott, R.I.; MacKenzie, W.M. Analytical strategies to confirm the generic authenticity of Scotch whisky. J. Inst. Brew. 2010, 116, 215–229. [Google Scholar] [CrossRef]
- Rodríguez Mendiola, I.; de la Serna, P. Los whiskies escoceses. Estudio analítico de sus componentes volátiles por cromatografía de gases. Alimentaria 2000, 316, 139–146. [Google Scholar]
- Xiang, X.F.; Lan, Y.B.; Gao, X.T.; Xie, H.; An, Z.Y.; Lv, Z.H.; Duan, C.Q.; Wu, G.F. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Res. Int. 2020, 137, 109388. [Google Scholar] [CrossRef]
- Patelski, A.M.; Pragłowski, K.; Pielech-Przybylska, K.; Balcerek, M.; Dziekońska-Kubczak, U. Evaluation of probiotic Saccharomyces boulardii yeast as a distillery strain. Appl. Sci. 2025, 15, 1392. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M.; Nowak, A.; Patelski, P.; Dziekońska-Kubczak, U. Influence of yeast on the yield of fermentation and volatile profile of ‘Węgierka Zwykła’ plum distillates. J. Inst. Brew. 2016, 122, 612–623. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Dziekońska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Pielech-Przybylska, K.; Balcerek, M. Nitric acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies 2018, 11, 2153. [Google Scholar] [CrossRef]
- PN-A-79528-7; Spirit (Ethyl Alcohol). Test Methods. Determination of Acidity. Polish Committee for Standardization: Warsaw, Poland, 2001.



| Method of Starch Liberation | System of Hydrolysis and Fermentation | Parameter | pH | Extract [°Blg] | Glucose [g/L] | Maltose [g/L] | Maltotriose [g/L] | Sum of Reducing Sugars, as Glucose [g/L] | Total Sugars, After Dextrin Hydrolysis as Glucose [g/L] | Dextrins [g/L] |
|---|---|---|---|---|---|---|---|---|---|---|
| Pressure-thermal (PT) | SHF | Mean | 5.02 b | 12.70 b | 74.89 a | 2.12 a | 0.28 a | 77.42 a | 89.15 a | 10.56 a |
| SD | 0.06 | 0.05 | 3.18 | 0.09 | 0.01 | 3.28 | 3.78 | 0.71 | ||
| SSF | Mean | 4.82 b | 12.40 b | 75.70 a | 2.04 a | 0.24 a | 78.11 a | 85.04 ab | 6.24 ab | |
| SD | 0.04 | 0.07 | 3.21 | 0.09 | 0.01 | 3.31 | 3.51 | 0.26 | ||
| Pressureless (PLS) | SHF | Mean | 5.91 a | 13.40 ab | 77.22 a | 1.06 b | 0.01 b | 78.35 a | 79.87 b | 1.38 c |
| SD | 0.04 | 0.06 | 3.28 | 0,04 | 0.00 | 3.32 | 3.38 | 0.06 | ||
| SSF | Mean | 5.96 a | 14.50 a | 76.96 a | 1.54 ab | 0.05 b | 78.64 a | 88.26 a | 8.67 ab | |
| SD | 0.06 | 0.08 | 3.27 | 0.07 | 0.00 | 3.34 | 3.40 | 0.37 |
| Method of Starch Liberation | System of Hydrolysis and Fermentation | Yeast | Parameter | Ethanol | Malto- Triose | Maltose | Glucose | Dextrins | Citric Acid | Succinic Acid | Formic Acid | Acetic Acid | Lactic Acid | Glycerol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Concentration [g/L] | ||||||||||||||
| Pressure-thermal (PT) | SHF | Ethanol Red | Mean | 37.67 bc | 0.271 a | 0.059 bc | 0.268 a | 0.778 b | 1.086 bc | 0.424 b | 0.722 bcd | 1.723 bc | 3.471 c | 4.457 cd |
| SD | 0.16 | 0.003 | 0.020 | 0.009 | 0.172 | 0.032 | 0.020 | 0.039 | 0.070 | 0.810 | 0.108 | |||
| SaftSpirit | Mean | 40.67 ab | 0.183 b | 0.066 bc | 0.089 bc | 0.104 d | 2.061 ab | 0.255 b | 0.633 cd | 0.463 d | n.d. | 3.773 d | ||
| SD | 2.33 | 0.016 | 0.009 | 0.004 | 0.020 | 0.059 | 0.014 | 0.089 | 0.036 | - | 0.211 | |||
| Pinnacle | Mean | 38.78 ab | 0.198 b | 0.065 bc | 0.079 bcd | 0.174 cd | 2.232 a | 0.236 b | 0.583 cd | 0.207 d | n.d. | 3.359 d | ||
| SD | 3.03 | 0.009 | 0.007 | 0.007 | 0.008 | 0.157 | 0.011 | 0.069 | 0.054 | - | 0.221 | |||
| SSF | Ethanol Red | Mean | 35.62 bc | 0.042 cd | 0.090 bc | 0.043 cd | 0.492 bcd | 1.138 bc | 0.582 ab | 0.526 cd | 3.059 a | 3.994 bc | 6.779 ab | |
| SD | 0.79 | 0.011 | 0.012 | 0.017 | 0.211 | 0.240 | 0.373 | 0.460 | 0.920 | 0.672 | 1.523 | |||
| SaftSpirit | Mean | 38.63 ab | 0.019 cde | 0.025 c | 0.020 cd | 0.495 bcd | 0.798 c | 0.338 b | 0.290 d | 1.119 cd | n.d. | 4.575 cd | ||
| SD | 2.53 | 0.002 | 0.032 | 0.001 | 0.037 | 0.100 | 0.013 | 0.014 | 0.077 | - | 0.306 | |||
| Pinnacle | Mean | 38.22 ab | 0.023 cde | 0.024 c | 0.017 cd | 0.574 bcd | 1.142 bc | 0.363 b | 0.332 d | 0.938 cd | n.d. | 3.907 cd | ||
| SD | 1.45 | 0.006 | 0.029 | 0.001 | 0.203 | 0.317 | 0.007 | 0.021 | 0.140 | - | 0.286 | |||
| Pressureless starch liberation (PLS) | SHF | Ethanol Red | Mean | 33.03 c | 0.010 de | 0.083 bc | 0.142 b | 0.686 bcd | 0.907 c | 0.947 a | 0.954 abcd | 2.263 ab | 5.567 a | 6.851 ab |
| SD | 1.10 | 0.001 | 0.008 | 0.012 | 0.106 | 0.468 | 0.076 | 0.116 | 0.037 | 0.023 | 0.256 | |||
| SaftSpirit | Mean | 39.93 ab | 0.008 e | 0.183 a | 0.033 cd | 0.700 bcd | 1.081 bc | 0.473 b | 1.516 a | 1.117 cd | 0.608 d | 5.932 abc | ||
| SD | 0.41 | 0.002 | 0.009 | 0.005 | 0.005 | 0.279 | 0.010 | 0.024 | 0.095 | 0.060 | 0.632 | |||
| Pinnacle | Mean | 38.41 ab | 0.011 de | 0.185 a | 0.050 cd | 0.804 b | 1.620 abc | 0.338 b | 1.044 abcd | 0.512 d | n.d. | 4.892 bcd | ||
| SD | 0.81 | 0.002 | 0.015 | 0.001 | 0.031 | 0.117 | 0.010 | 0.005 | 0.043 | - | 0.026 | |||
| SSF | Ethanol Red | Mean | 35.65 bc | 0.028 cde | 0.198 a | 0.336 a | 0.251 bcd | 0.653 c | 0.939 a | 1.479 ab | 2.647 ab | 4.952 ab | 7.271 a | |
| SD | 2.07 | 0.001 | 0.008 | 0.065 | 0.220 | 0.036 | 0.036 | 0.036 | 0.102 | 0.099 | 0.209 | |||
| SaftSpirit | Mean | 42.85 a | 0.027 cde | 0.137 ab | 0.008 de | 0.701 bc | 1.505 abc | 0.359 b | 1.302 abc | 0.593 d | n.d. | 5.216 bcd | ||
| SD | 0.33 | 0.001 | 0.009 | 0.004 | 0.053 | 0.007 | 0.016 | 0.425 | 0.036 | - | 0.034 | |||
| Pinnacle | Mean | 42.81 a | 0.045 c | 0.091 bc | 0.003 cd | 1.659 a | 1.111 bc | 0.297 b | 0.975 abcd | 0.365 d | n.d. | 4.820 bcd | ||
| SD | 1.07 | 0.017 | 0.042 | 0.003 | 0.299 | 0.523 | 0.015 | 0.197 | 0.171 | - | 0.272 | |||
| Method of Starch Liberation | System of Hydrolysis and Fermentation | Yeast | Concentration | Acetone | Acet- Aldehyde | Diacetyl | Acetoin | Hexanal | Furfural | Decanal | Acetaldehyde Diethyl Acetal |
|---|---|---|---|---|---|---|---|---|---|---|---|
| mg/L Alcohol 100% v/v | |||||||||||
| Pressure- thermal (PT) | SHF | Ethanol Red | Mean | n.d. | 94.71 bc | 7.92 ab | n.d. | n.d. | 9.59 abc | 10.66 c | 34.91 a |
| SD | - | 14.26 | 3.37 | - | - | 0.84 | 3.57 | 1.91 | |||
| SaftSpirit | Mean | 4.15 d | 230.55 ab | 34.79 a | 23.83 ab | n.d. | 7.71 bc | 8.80 c | 68.90 a | ||
| SD | 0.39 | 53.17 | 17.00 | 12.79 | 0.72 | 0.17 | 12.40 | ||||
| Pinnacle | Mean | 3.43 d | 117.24 bc | 17.10 ab | 5.77 ab | n.d. | 7.87 bc | 4.55 c | 41.36 a | ||
| SD | 1.00 | 19.76 | 8.58 | 2.81 | 1.15 | 0.21 | 12.15 | ||||
| SSF | Ethanol Red | Mean | 5.13 cd | 55.28 c | 8.99 ab | n.d. | n.d. | 10.86 ab | 15.54 bc | 19.19 a | |
| SD | 0.75 | 13.00 | 3.54 | - | - | 4.60 | 5.42 | 3.98 | |||
| SaftSpirit | Mean | 2.78 d | 71.28 bc | 15.68 ab | 2.10 ab | n.d. | 3.94 bc | 6.89 c | 22.47 a | ||
| SD | 0.25 | 11.85 | 2.94 | 1.60 | - | 0.23 | 2.33 | 4.60 | |||
| Pinnacle | Mean | 4.15 d | 151.00 abc | 17.58 ab | 12.70 ab | n.d. | 4.16 bc | 9.98 c | 50.28 a | ||
| SD | 1.57 | 38.41 | 0.08 | 1.70 | - | 0.85 | 1.23 | 15.32 | |||
| Pressureless starch liberation (PLS) | SHF | Ethanol Red | Mean | 14.30 abc | 227.96 ab | 14.02 ab | 84.14 a | 1.02 a | 4.72 bc | 14.09 bc | 72.04 a |
| SD | 1.30 | 46.33 | 12.82 | 66.92 | 1.44 | 1.13 | 3.63 | 12.92 | |||
| SaftSpirit | Mean | 15.04 ab | 84.68 bc | 6.80 ab | 5.96 ab | 1.49 a | 3.07 c | 33.41 a | 29.21 a | ||
| SD | 0.50 | 0.10 | 0.49 | 0.53 | 0.30 | 0.76 | 1.00 | 0.47 | |||
| Pinnacle | Mean | 17.99 a | 297.17 a | 11.79 ab | 11.51 ab | 1.78 a | 5.64 bc | 27.62 ab | 96.84 a | ||
| SD | 1.73 | 27.37 | 2.15 | 8.93 | 0.76 | 1.60 | 1.08 | 52.46 | |||
| SSF | Ethanol Red | Mean | 21.46 a | 133.05 abc | 4.07 b | 18.71 ab | 1.78 a | 15.38 a | 34.45 a | 48.15 a | |
| SD | 7.38 | 78.65 | 0.93 | 20.29 | 0.75 | 0.12 | 9.09 | 32.61 | |||
| SaftSpirit | Mean | 13.43 abc | 168.31 abc | 9.98 ab | 10.42 ab | 0.84 a | 6.20 bc | 12.92 c | 55.66 a | ||
| SD | 0.87 | 4.14 | 3.37 | 1.19 | 0.69 | 0.83 | 0.88 | 2.26 | |||
| Pinnacle | Mean | 8.70 bcd | 209.96 abc | 16.48 ab | 14.79 ab | 0.63 a | 5.70 bc | 12.88 c | 63.53 a | ||
| SD | 0.95 | 88.19 | 9.67 | 2.90 | 0.16 | 2.71 | 1.02 | 24.41 | |||
| Method of Mash Preparation | System of Hydrolysis and Fermentation | Yeast | Concentration | Ethyl Acetate | Ethyl Propionate | 3-Methylbutyl Acetate | Ethyl Hexanoate | Ethyl Octanoate | Ethyl Nonano- ate | Isobutyl Acetate | Ethyl Decanoate | Ethyl Formate |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mg/L Alcohol 100% v/v | ||||||||||||
| Pressure- thermal (PT) | SHF | Ethanol Red | Mean | 60.47 f | 0.32 bc | 0.51 e | 1.41 a | 3.69 d | 2.80 cd | 2.43 a | 5.67 bcd | 1.47 bc |
| SD | 4.07 | 0.46 | 0.22 | 0.75 | 0.41 | 0.12 | 0.38 | 0.06 | 0.46 | |||
| SaftSpirit | Mean | 81.69 cdef | 1.92 a | 1.76 de | 1.57 a | 3.61 d | n.d. | 1.86 abcd | 4.74 bcd | 4.02 ab | ||
| SD | 5.69 | 0.24 | 0.59 | 0.39 | 0.11 | - | 0.34 | 2.05 | 2.38 | |||
| Pinnacle | Mean | 76.5 def | 2.16 a | 1.36 de | 1.30 a | 3.51 d | n.d. | 1.48 bcde | 6.08 bcd | 5.40 a | ||
| SD | 3.80 | 0.31 | 0.12 | 0.02 | 0.61 | - | 0.02 | 1.83 | 0.88 | |||
| SSF | Ethanol Red | Mean | 134.18 abcde | n.d. | n.d. | 1.52 a | 3.78 d | 1.07 de | 1.60 bcde | 4.70 bcd | 6.18 a | |
| SD | 45.1 | - | - | 0.26 | 0.47 | 1.52 | 0.08 | 1.64 | 1.02 | |||
| SaftSpirit | Mean | 111.36 bcdef | 1.35 abc | 2.43 de | 0.96 a | 3.92 d | 5.10 a | 1.66 abcde | 8.33 abc | 4.44 ab | ||
| SD | 4.79 | 0.62 | 0.19 | 0.45 | 0.15 | 0.02 | 0.27 | 0.42 | 0.73 | |||
| Pinnacle | Mean | 114.58 bcdef | 1.52 ab | 3.24 cd | 1.22 a | 3.89 d | 4.84 ab | 2.16 ab | 9.21 ab | n.d. | ||
| SD | 15.86 | 0.72 | 0.53 | 0.05 | 0.41 | 0.29 | 0.14 | 1.23 | - | |||
| Pressureless starch liberation (PLS) | SHF | Ethanol Red | Mean | 91.83 cdef | n.d. | n.d. | 1.27 a | 10.86 a | 1.18 cde | 1.86 abcd | 3.00 d | n.d. |
| SD | 3.87 | 0.31 | 1.23 | 0.51 | 0.01 | 0.25 | - | |||||
| SaftSpirit | Mean | 140.13 abcd | n.d. | 5.12 bc | 1.70 a | 6.5 bc | 2.49 cd | 1.09 de | 7.70 abcd | n.d. | ||
| SD | 4.52 | - | 0.64 | 0.24 | 0.17 | 0.09 | 0.08 | 0.16 | - | |||
| Pinnacle | Mean | 169.09 ab | n.d. | 5.75 ab | 1.56 a | 8.04 b | 3.00 bc | 1.32 cde | 11.99 a | n.d. | ||
| SD | 31.53 | 1.83 | 0.19 | 1.26 | 0.01 | 0.09 | 2.66 | - | ||||
| SSF | Ethanol Red | Mean | 186.69 a | n.d. | 0.56 | 0.62 a | 7.08 bc | 1.34 cde | 1.36 cde | 3.66 cd | n.d. | |
| SD | 7.00 | - | 0.36 | 0.88 | 0.61 | 0.19 | 0.27 | 0.16 | - | |||
| SaftSpirit | Mean | 69.16 ef | n.d. | 2.07 de | 0.97 a | 5.51 cd | n.d. | 0.97 e | 6.46 bcd | n.d. | ||
| SD | 8.00 | - | 0.07 | 0.01 | 0.06 | - | 0.03 | 0.14 | - | |||
| Pinnacle | Mean | 149.42 f | 0.43 bc | 8.00 a | 2.05 a | 8.26 b | n.d. | 2.08 abc | 12.42 a | n.d. | ||
| SD | 3.33 | 0.61 | 0.35 | 0.10 | 0.42 | - | 0.14 | 0.94 | - | |||
| Method of Starch Liberation | System of Hydrolysis and Fermentation | Yeast | Concentration | Methanol | 1-Propanol | 2-Methyl- 1-Propanol | 1-Butanol | 3-Methyl- 1-Butanol | 2-Methyl- 1-Butanol |
|---|---|---|---|---|---|---|---|---|---|
| mg/L Alcohol 100% v/v | |||||||||
| Pressure- thermal (PT) | SHF | Ethanol Red | Mean | 1173.96 bc | 547.66 e | 829.62 cd | 17.03 b | 325.82 c | 200.24 ef |
| SD | 36.30 | 37.60 | 18.40 | 1.10 | 17.80 | 8.09 | |||
| SaftSpirit | Mean | 1096.88 cd | 718.75 cd | 902.34 c | 13.8 b | 510.96 b | 316.07 cd | ||
| SD | 41.67 | 39.82 | 29.59 | 0.50 | 12.12 | 8.69 | |||
| Pinnacle | Mean | 1076.89 cd | 826.64 bcd | 928.03 c | 14.51 b | 564.52 ab | 310.38 cd | ||
| SD | 10.88 | 10.20 | 19.48 | 0.05 | 3.39 | 3.05 | |||
| SSF | Ethanol Red | Mean | 1530.95 a | 371.71 f | 710.13 de | 11.35 bcd | 351.93 c | 203.71 ef | |
| SD | 138.99 | 93.07 | 58.74 | 5.89 | 15.75 | 0.39 | |||
| SaftSpirit | Mean | 1389.01 ab | 706.95 d | 954.72 c | 13.20 bc | 524.3 b | 327.15 bcd | ||
| SD | 97.60 | 46.43 | 23.66 | 1.13 | 4.19 | 6.52 | |||
| Pinnacle | Mean | 1286.69 bc | 870.90 b | 1138.18 b | 14.20 b | 597.48 ab | 343.84 bc | ||
| SD | 1.11 | 5.14 | 53.60 | 0.81 | 27.95 | 5.37 | |||
| Pressureless starch liberation (PLS) | SHF | Ethanol Red | Mean | 819.18 e | 314.61 fg | 632.33 ef | 6.00 cd | 321.5 c | 166.20 f |
| SD | 63.43 | 26.45 | 35.19 | 1.09 | 20.13 | 11.49 | |||
| SaftSpirit | Mean | 812.25 e | 728.18 bcd | 1255.6 b | 10.53 bcd | 639.71 a | 415.80 a | ||
| SD | 26.52 | 17.28 | 20.24 | 1.17 | 12.21 | 13.62 | |||
| Pinnacle | Mean | 820.34 e | 1183.14 a | 1436.99 a | 27.03 a | 545.11 ab | 357.95 abc | ||
| SD | 55.60 | 13.04 | 18.99 | 0.35 | 73.02 | 50.93 | |||
| SSF | Ethanol Red | Mean | 902.98 de | 198.13 g | 557.54 f | 4.15 d | 316.58 c | 185.65 f | |
| SD | 12.36 | 17.11 | 37.94 | 0.14 | 24.2 | 13.36 | |||
| SaftSpirit | Mean | 742.06 e | 422.74 ef | 934.07 c | 4.03 d | 541.04 ab | 385.87 ab | ||
| SD | 3.00 | 23.67 | 41.01 | 0.57 | 23.47 | 15.66 | |||
| Pinnacle | Mean | 699.99 e | 868.11 bc | 965.38 c | 15.62 b | 530.02 b | 263.05 de | ||
| SD | 40.96 | 36.98 | 44.33 | 0.38 | 9.38 | 0.59 | |||
| No | Method of Mash Preparation | System of Hydrolysis and Fermentation | Abbreviation of Variant |
|---|---|---|---|
| 1 | pressure-thermal (steaming) | separate hydrolysis/saccharification and fermentation (SHF) | PT-SHF |
| 2 | pressure-thermal (steaming) | simultaneous saccharification and fermentation (SSF) | PT-SSF |
| 3 | pressureless (PLS) | separate hydrolysis/saccharification and fermentation (SHF) | PLS-SHF |
| 4 | pressureless (PLS) | simultaneous saccharification and fermentation (SSF) | PLS-SSF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcerek, M.; Mielczarek, R.; Dziekońska, U.; Pielech-Przybylska, K.; Patelski, A. The Impact of Production Technology on the Quality of Potato Spirit. Molecules 2025, 30, 4330. https://doi.org/10.3390/molecules30224330
Balcerek M, Mielczarek R, Dziekońska U, Pielech-Przybylska K, Patelski A. The Impact of Production Technology on the Quality of Potato Spirit. Molecules. 2025; 30(22):4330. https://doi.org/10.3390/molecules30224330
Chicago/Turabian StyleBalcerek, Maria, Rafał Mielczarek, Urszula Dziekońska, Katarzyna Pielech-Przybylska, and Andrea Patelski. 2025. "The Impact of Production Technology on the Quality of Potato Spirit" Molecules 30, no. 22: 4330. https://doi.org/10.3390/molecules30224330
APA StyleBalcerek, M., Mielczarek, R., Dziekońska, U., Pielech-Przybylska, K., & Patelski, A. (2025). The Impact of Production Technology on the Quality of Potato Spirit. Molecules, 30(22), 4330. https://doi.org/10.3390/molecules30224330

