Analysis of Bound Form Terpenes in Different Agricultural Byproducts
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction Yields of Studied Byproducts Using Different Extraction Media
2.2. Concentrations and Profiles of Major Terpenes in Water, Ethanol, and Acetone Extracts Before and After Hydrolysis
Water | Ethanol | Acetone | Odor | ||||||
---|---|---|---|---|---|---|---|---|---|
Compound | RI | LRI | Before | After | Before | After | Before | After | Perception |
Caryophyllene | 1422 | 1419 | - | - | - | 13.9 ± 0.3 | - | 14.1 ± 0.4 | Woody 1 |
γ-Himachalene | 1481 | 1477 | - | - | - | - | - | 14.7 ± 0.3 | Cedar, woody 2 |
Epicubebol | 1496 | 1493 | - | - | 13.7 ± 0.3 a | - | 14.8 ± 0.3 a | 37.3 ± 0.4 b | Pleasant aroma, herbal 3 |
Calamenene | 1518 | 1523 | 15.8 ± 0.3 a | 16.8 ± 0.4 a | 13.6 ± 0.3 a | 17.6 ± 0.3 a | 13.9 ± 0.3 a | 17.1 ± 0.3 a | Herb spice, minty 4 |
α-Calacorene | 1541 | 1542 | - | - | - | 20.6 ± 0.3 a | - | 17.8 ± 0.3 a | Dry-woody 5 |
Aristol-1(10)-en-9-ol | 1623 | 1642 | - | - | - | - | 18.3 ± 0.3 | - | Woody, floral 6 |
(-)-Isolongifolol, methyl ether | 1648 | 1645 | 17.9 ± 0.3 a | 19.3 ± 0.4 ab | - | 13.9 ± 0.3 b | - | - | Woody 7 |
Total | 33.7 | 36.1 | 27.3 | 66.0 | 47.0 | 101.0 |
Water | Ethanol | Acetone | Odor | ||||||
---|---|---|---|---|---|---|---|---|---|
Compound | RI | LRI | Before | After | Before | After | Before | After | Perception |
Copaene | 1375 | 1376 | - | - | - | 13.9 ± 0.3 a | - | 13.9 ± 0.3 a | Woody, spice 1 |
Caryophyllene | 1422 | 1419 | 17.2 ± 0.4 a | - | - | - | 14.6 ± 0.3 a | 16.3 ± 0.4 a | Woody 2 |
Geranyl acetone | 1459 | 1453 | - | - | - | - | 13.8 ± 0.3 a | 14.4 ± 0.4 a | Violet, rose, fruity 3 |
γ-Himachalene | 1481 | 1477 | - | - | - | - | 13.8 ± 0.3 a | 14.6 ± 0.4 a | - |
Epicubebol | 1496 | 1493 | 23.8 ± 0.3 a | 15.2 ± 0.3 b | - | 14.1 ± 0.3 b | 18.1 ± 0.3 c | 18.1 ± 0.4 c | Pleasant aroma, herbal 4 |
Calamenene | 1518 | 1523 | - | - | - | - | - | 14.9 ± 0.4 | Herb spice, minty 5 |
α-Calacorene | 1541 | 1542 | - | - | - | - | 14.9 ± 0.3 a | 15.9 ± 0.3 a | Dry-woody 6 |
Total | 41.0 | 15.2 | 0 | 28.0 | 75.2 | 108.1 |
2.3. Odors of Terpenes in the Byproduct Extracts and Their Relationships with Various Functions
3. Materials and Methods
3.1. Chemicals and Plant Materials
3.2. Sample Preparations and Extractions
3.3. Determination of Free and Bound Terpenes by Solid Phase Microextraction (SPME) Coupled with GC-MS
3.4. Sensory Analysis of Odor Perception
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2019; pp. 333–359. [Google Scholar]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and potentials. Biotechnol. Mol. Biol. Rev. 2008, 3, 1–7. [Google Scholar]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef]
- Eduardo, L.d.S.; Farias, T.C.; Ferreira, S.B.; Ferreira, P.B.; Lima, Z.N.; Ferreira, S.B. Antibacterial activity and time-kill kinetics of positive enantiomer of α-pinene against strains of staphylococcus aureus and Escherichia coli. Curr. Top. Med. Chem. 2018, 18, 917–924. [Google Scholar] [CrossRef]
- Borges, M.F.d.A.; Lacerda, R.d.S.; Correia, J.P.d.A.; de Melo, T.R.; Ferreira, S.B. Potential antibacterial action of α-pinene. Med. Sci. Forum 2022, 12, 11. [Google Scholar] [CrossRef]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Xu, Q.; Li, M.; Yang, M.; Yang, J.; Xie, J.; Lu, X.; Wang, F.; Chen, W. α-pinene regulates miR-221 and induces G2/M phase cell cycle arrest in human hepatocellular carcinoma cells. Biosci. Rep. 2018, 38, BSR20180980. [Google Scholar] [CrossRef]
- Bound, D.J.; Murthy, P.S.; Srinivas, P. Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols. Food Chem. 2015, 185, 192–199. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef]
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr. Rev. Food Sci. Food Saf. 2019, 19, 247–281. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and Anticancer Activities of Essential Oil from Gannan Navel Orange Peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Bartowsky, E.J.; McCarthy, J.; Moio, L.; Henschke, P.A. Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three saccharomyces yeast strains. J. Agric. Food Chem. 2006, 54, 6322–6331. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically bound volatile aroma compounds in grapes and wine: A review. Am. J. Enol. Vitic. 2014, 66, 1–11. [Google Scholar] [CrossRef]
- Yang, H.; Cai, G.; Lu, J.; Plaza, E.G. The production and application of enzymes related to the quality of Fruit Wine. Crit. Rev. Food Sci. Nutr. 2020, 61, 1605–1615. [Google Scholar] [CrossRef]
- Bergman, M.E.; Kortbeek, R.W.; Gutensohn, M.; Dudareva, N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog. Lipid Res. 2024, 95, 101287. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef]
- Gladvin, G.; Sudhakar, G.; Swathi, V.; Santhisri, K.V. Mineral and vitamin compositions contents in watermelon peel (rind). Int. J. Curr. Microbiol. App. Sci 2017, 5, 129–133. [Google Scholar] [CrossRef]
- Mehraj, M.; Das, S.; Feroz, F.; Wani, A.W.; Dar, S.; Kumar, S.; Wani, A.K.; Farid, A. Nutritional composition and therapeutic potential of pineapple peel—A comprehensive review. Chem. Biodivers. 2024, 21, e202400315. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Raghuvanshi, R.S.; Bhatnagar, A. Herbal tea formulation using different flavoured herbs with dried corn silk powder and its sensory and phytochemical analysis. Syst. Microbiol. Biomanuf. 2021, 1, 336–343. [Google Scholar] [CrossRef]
- Hasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012, 17, 9697–9715. [Google Scholar] [CrossRef]
- Handa, S.S.; Khanuja, S.P.S.; Longo, G.; Rakesh, D.D. Extraction Technologies for Medicinal and Aromatic Plants; United Nations Industrial Development Organization and International Centre for Science and High Technology: Trieste, Italy, 2008; p. 260. [Google Scholar]
- Jiang, Z.; Kempinski, C.; Chappell, J. Extraction and Analysis of Terpenes/Terpenoids. Curr. Protoc. Plant Biol. 2016, 1, 345–358. [Google Scholar] [CrossRef]
- Hu, D.; Guo, J.; Li, T.; Zhao, M.; Zou, T.; Song, H.; Alim, A. Comparison and Identification of the Aroma-Active Compounds in the Root of Angelica dahurica. Molecules 2019, 24, 4352. [Google Scholar] [CrossRef]
- Kirimer, N.; Kürkçüoğlu, M.; Özek, T.; Başer, K.H.C.; Tümen, G. Composition of the Essential Oil of Sideritis condensata Boiss. et Heldr. Flavour Fragr. J. 1996, 11, 315–320. [Google Scholar] [CrossRef]
- Hutchings, S.C.; Deb-Choudhury, S.; Subbaraj, A.K.; Guerrero, L.; Torrico, D.D.; Ham, E.E.; Realini, C.E. Characterizing the odor of New Zealand native plants using sensory analysis and gas chromatography–mass spectrometry. J. Food Sci. 2025, 90, e70050. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, D.; Lu, C.; Ye, S.; Li, L.; Li, T.; Liu, X.; Chen, B.; Guo, J.; Lu, L. Shorten spreading duration enhance the quality of summer Meitan Cuiya tea. Food Chem. X 2024, 24, 101878. [Google Scholar] [CrossRef]
- Sant’Anna, B.M.P.; Fontes, S.P.; Pinto, A.C.; Rezende, C.M. Characterization of woody odorant contributors in copaiba oil (Copaifera multijuga Hayne). J. Braz. Chem. Soc. 2007, 18, 984–989. [Google Scholar] [CrossRef]
- Abrão, F.Y.; da Costa, H.M.; Fiuza, T.d.S.; Ramada, M.H.S.; dos Santos, A.H.; Romano, C.A.; da Cunha, L.C.; Neto, J.R.d.O.; Borges, L.L.; Ferreira, H.D.; et al. Volatile oils from Psidium guineense Swartz leaves: Chemical seasonality, antimicrobial, and larvicidal activities. S. Afr. J. Bot. 2022, 149, 79–86. [Google Scholar] [CrossRef]
- Takei, M.; Umeyama, A.; Arihara, S. Epicubenol and Ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro. Biochem. Biophys. Res. Commun. 2005, 337, 730–738. [Google Scholar] [CrossRef]
- Melcher, E.; Jüngel, P.; Möllendorf, B.; Schmitt, U. Identification of a hydroxy substituted calamenene—A sesquiterpene associated with wound reactions in non-infected xylem of Tilia spp. Phytochemistry 2003, 62, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, J.; Wang, J.; Zhao, Z. Identification of volatile and odor-active compounds in Maojian herbal tea (Dracocephalum rupestre Hance). J. Food Compos. Anal. 2024, 135, 106643. [Google Scholar] [CrossRef]
- Uehara, A.; Tommis, B.; Belhassen, E.; Satrani, B.; Ghanmi, M.; Baldovini, N. Odor-active constituents of Cedrus atlantica wood essential oil. Phytochemistry 2017, 144, 208–215. [Google Scholar] [CrossRef]
- Van Opstaele, F.; Praet, T.; Aerts, G.; De Cooman, L. Characterization of Novel Single-Variety Oxygenated Sesquiterpenoid Hop Oil Fractions via Headspace Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry/Olfactometry. J. Agric. Food Chem. 2013, 61, 10555–10564. [Google Scholar] [CrossRef] [PubMed]
- Bonikowski, R.; Świtakowska, P.; Kula, J. Synthesis, odour evaluation and antimicrobial activity of some geranyl acetone and nerolidol analogues. Flavour Fragr. J. 2015, 30, 238–244. [Google Scholar] [CrossRef]
- Faris, A.; Edder, Y.; Louchachha, I.; Lahcen, I.A.; Azzaoui, K.; Hammouti, B.; Merzouki, M.; Challioui, A.; Boualy, B.; Karim, A.; et al. From himachalenes to Trans-himachalol: Unveiling bioactivity through hemisynthesis and mo-lecular docking analysis. Sci. Rep. 2023, 13, 17653. [Google Scholar] [CrossRef]
- Rasmann, S.; Köllner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U.; Gershenzon, J.; Turlings, T.C.J. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434, 732–737. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.-M.; Chan, T.-F.; Hui, J.H. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Rodriguez, G.; Prinyawiwatkul, W.; Aryana, K.J.; King, J.M.; Xu, Z. Bound form terpenes in sweet potatoes and their distribution in flesh and peel of different cultivars. Int. J. Food Sci. Technol. 2023, 58, 5773–5780. [Google Scholar] [CrossRef]
Source | Water | Ethanol | Acetone |
---|---|---|---|
Honeydew peel | 8.5 ± 0.2 a | 8.4 ± 0.2 a | 7.9 ± 0.2 b |
Watermelon peel | 8.4 ± 0.2 a | 8.1 ± 0.2 a | 7.5 ± 0.2 b |
Pineapple peel | 8.6 ± 0.3 a | 7.1 ± 0.3 b | 6.2 ± 0.3 c |
Corn silk | 7.1 ± 0.5 a | 6.4 ± 0.5 a | 5.9 ± 0.5 b |
Water | Ethanol | Acetone | Odor | ||||||
---|---|---|---|---|---|---|---|---|---|
Compound | RI | LRI | Before | After | Before | After | Before | After | Perception |
Copaene | 1375 | 1376 | - | - | - | - | - | 16.0 ± 0.4 | Woody, spice 1 |
Epicubebol | 1496 | 1493 | - | - | - | - | 18.5 ± 0.3 a | 16.9 ± 0.3 a | Pleasant aroma, herbal 2 |
Calamenene | 1518 | 1523 | - | 16.0 ± 0.3 a | 12.4 ± 0.3 b | 14.4 ± 0.3 ab | 41.8 ± 0.4 c | 51.6 ± 0.3 d | Herb spice, minty 3 |
Aristol-1(10)-en-9-ol | 1623 | 1642 | - | - | - | - | 18.5 ± 0.3 | - | Woody, floral 4 |
(-)-Isolongifolol, methyl ether | 1648 | 1645 | - | - | - | - | 17.3 ± 0.3 a | 47.1 ± 0.4 b | Woody 5 |
Total | - | 16.0 | 12.4 | 14.4 | 96.1 | 131.6 |
Water | Ethanol | Acetone | Odor | ||||||
---|---|---|---|---|---|---|---|---|---|
Compound | RI | LRI | Before | After | Before | After | Before | After | Perception |
Geranyl acetone | 1459 | 1453 | - | - | - | - | 17.5 ± 0.3 a | 16.0 ± 0.3 a | Violet, rose, fruity 1 |
γ-Himachalene | 1481 | 1477 | - | 15.5 ± 0.4 a | - | - | - | 15.5 ± 0.4 a | - |
Epicubebol | 1496 | 1493 | 29.3 ± 0.3 a | 18.8 ± 0.5 b | - | - | 15.3 ± 0.4 a | 80.5 ± 0.3 c | Pleasant aroma, Herbal 2 |
Calamenene | 1518 | 1523 | - | 15.8 ± 0.4 a | - | - | - | 14.5 ± 0.5 a | Herb spice, minty 3 |
α-Calacorene | 1541 | 1542 | - | 17.4 ± 0.4 a | 15.0 ± 0.4 a | 15.6 ± 0.4 a | - | - | Dry-woody 4 |
Aristol-1(10)-en-9-ol | 1623 | 1692 | - | 17.6 ± 0.4 a | - | - | - | - | Woody, floral 5 |
Total | 29.3 | 85.1 | 15.0 | 15.6 | 32.8 | 126.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, D.; Adhikari, A.; Prinyawiwatkul, W.; Xu, Z. Analysis of Bound Form Terpenes in Different Agricultural Byproducts. Molecules 2025, 30, 4077. https://doi.org/10.3390/molecules30204077
Bui D, Adhikari A, Prinyawiwatkul W, Xu Z. Analysis of Bound Form Terpenes in Different Agricultural Byproducts. Molecules. 2025; 30(20):4077. https://doi.org/10.3390/molecules30204077
Chicago/Turabian StyleBui, Duyen, Achyut Adhikari, Witoon Prinyawiwatkul, and Zhimin Xu. 2025. "Analysis of Bound Form Terpenes in Different Agricultural Byproducts" Molecules 30, no. 20: 4077. https://doi.org/10.3390/molecules30204077
APA StyleBui, D., Adhikari, A., Prinyawiwatkul, W., & Xu, Z. (2025). Analysis of Bound Form Terpenes in Different Agricultural Byproducts. Molecules, 30(20), 4077. https://doi.org/10.3390/molecules30204077