Coordinative Behavior of a New Hydroxynaphthanyl Sulphonamide Tridentate Schiff Base Towards First Row Late Transition Metal (LTM) and Post-Transitional Metal Atoms Zn and Cd: A Crystallographic and Computational Study
Abstract
1. Introduction
2. Results
- Density functional theory simulations allowed us to add detail to the electronic structure description of these complexes, and in all cases, a good fit between the obtained crystallographic structure and the optimized structure was obtained.
- The Quantum Theory of Atoms in Molecules was applied to offer deeper insight into the nature of key ligand-to-metal interactions.
- Hirshfeld surface analysis was conducted to provide a description of the supramolecular structure in the crystal lattice (due to the extension of this latter analysis, it has been consigned to the supporting information).
2.1. Description of the Structure of NEt4[CoL2] (1)
DFT Studies on NEt4[CoL2] (1)
2.2. Description of the Structure of the Nickel Compounds [NiL(H2O)] (2), [NiL(CH3CN)(H2O)]2 (3) and [Ni2L2(4,4′-bpy)] (4)
DFT Studies on [NiL(H2O)] (2), [NiL(CH3CN)(H2O)]2 (3) and [Ni2L2(4,4′-bpy)] (4)
2.3. Description of the Structure of [Zn2L2(MeOH)2] (5) and [ZnL(2,2′-bpy)]·CH3CN (6)
DFT Studies on [Zn2L2(MeOH)2] (5) and [ZnL(2,2′-bpy)]·CH3CN (6)
2.4. Metal-N Bond Length Conclusions
3. Spectroscopic Studies
3.1. IR Spectrocopy
3.2. Mass Spectra
3.3. Electronic Spectroscopy
3.4. NMR Spectra
4. Experimental Section
4.1. Materials and Methods
4.2. Synthesis of the Ligand and the Metal Complexes
4.2.1. Synthesis of the Ligand
4.2.2. Electrochemical Synthesis of the Complexes
4.3. Instruments
4.4. Crystal Structure Determinations
4.5. Hirshfeld Surface Analysis
4.6. Electronic Structure Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schiff, H. Mittheilungen aus dem Universitäts-laboratorium in Pisa: 2. Eine neue Reihe organischer Basen. Ann. Chem. Pharm. 1864, 131, 118–119. [Google Scholar] [CrossRef]
- Felemban, M.F.; Tayeb, F.J.; Alqarni, A.; Ashour, A.A.; Shafie, A. Recent advances in Schiff base coinage metal complexes as anticancer agents: A comprehensive review (2021–2025). Dye. Pigment. 2025, 237, 112710. [Google Scholar] [CrossRef]
- Kargar, H.; Fallah-Mehrjardi, M.; Munawar, K.S. Metal complexes incorporating tridentate ONO pyridyl hydrazone Schiff base ligands: Crystal structure, characterization and applications. Coord. Chem. Rev. 2024, 501, 215587. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, A.K.; Singh, A.K.; Yadav, R.K.; Singh, A.P.; Chauhan, A. Recent advances in 3d-block metal complexes with bi, tri, and tetradentate Schiff base ligands derived from salicylaldehyde and its derivatives: Synthesis, characterization and applications. Coord. Chem. Rev. 2023, 488, 215176. [Google Scholar] [CrossRef]
- Pathan, I.R.; Patel, M.K. A comprehensive review on the synthesis and applications of Schiff base ligand and metal complexes: A comparative study of conventional heating, microwave heating, and sonochemical methods. Inorg. Chem. Commun. 2023, 158, 111464. [Google Scholar] [CrossRef]
- Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.; Benguerba, Y. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023, 150, 110451. [Google Scholar] [CrossRef]
- Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, 27, 787. [Google Scholar] [CrossRef]
- Attia, K.; Parveen, B.; Ashraf, R.; Haider, N.; Ali, K.G. A Review on Synthesis and Applications of Some Selected Schiff Bases with Their Transition Metal Complexes. J. Coord. Chem. 2022, 75, 2533–2556. [Google Scholar] [CrossRef]
- Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff Bases: A Short Survey on an Evergreen Chemistry Tool. Molecules 2013, 18, 12264–12289. [Google Scholar] [CrossRef]
- Poornima, K.; Kosuru, R.Y.; Srinivasan, V. Bioactive Properties of Schiff Base Ligands and Metal Complexes Containing Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. ChemistrySelect 2025, 10, e00134. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, A.K.; Singh, V.K.; Yadav, R.K.; Singh, A.P.; Singh, S. Recent developments in the biological activities of 3d-metal complexes with salicylaldehyde-based N,O-donor Schiff base ligands. Coord. Chem. Rev. 2024, 505, 215663. [Google Scholar] [CrossRef]
- Zoubi, W. Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works. Int. J. Org. Chem. 2013, 3, 73–95. [Google Scholar] [CrossRef]
- Alagarraj, A.; Raman, N. Biological Response of Schiff Base Metal Complexes Incorporating Amino Acids—A Short Review. J. Coord. Chem. 2020, 73, 2095–2116. [Google Scholar] [CrossRef]
- Nath, B.D.; Islam, M.M.; Karim, M.R.; Rahman, S.; Shaikh, M.A.A.; Georghiou, P.E.; Menelaou, M. Recent Progress in Metal-Incorporated Acyclic Schiff-Base Derivatives: Biological Aspects. ChemistrySelect 2022, 7, e202104290. [Google Scholar] [CrossRef]
- Shruti, J.; Rana, M.; Sultana, R.; Mehandi, R.; Rahisuddin. Schiff Base Metal Complexes as Antimicrobial and Anticancer Agents. Polycycl. Aromat. Compd. 2022, 43, 6351–6406. [Google Scholar] [CrossRef]
- De, S.; Jain, A.; Barman, P. Recent Advances in the Catalytic Applications of Chiral Schiff-Base Ligands and Metal Complexes in Asymmetric Organic Transformations. ChemistrySelect 2022, 7, e202104334. [Google Scholar] [CrossRef]
- Gupta, K.C.; Sutar, A.K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev 2008, 252, 1420–1450. [Google Scholar] [CrossRef]
- Cozzi, P.G. Metal-Salen Schiff Base Complexes in Catalysis: Practical Aspects. Chem. Soc. Rev. 2004, 33, 410–421. [Google Scholar] [CrossRef]
- Whiteoak, C.J.; Salassa, G.; Kleij, A.W. Recent advances with π-conjugated salen systems. Chem. Soc. Rev. 2012, 41, 622–631. [Google Scholar] [CrossRef]
- Pradeep, C.P.; Das, S.K. Coordination and supramolecular aspects of the metal complexes of chiral N-salicyl-β-amino alcohol Schiff base ligands: Towards understanding the roles of weak interactions in their catalytic reactions. Coord. Chem. Rev 2013, 257, 1699–1715. [Google Scholar] [CrossRef]
- Burlov, A.S.; Koshchienko, Y.V.; Vlasenko, V.G.; Demidov, O.P.; Chaltsev, B.V.; Kiskin, M.A.; Garnovskii, D.A.; Kolodina, A.A.; Gusev, A.N.; Braga, E.V.; et al. Zinc (II) complexes with Schiff bases obtained from N-[2-(cyclohexyliminomethyl)- or 2-(4-cyclohexylphenyliminomethyl) phenyl]-4-methylbenzenesulfonamides and their application as highly luminescent blue emitters for OLEDs. Appl. Organomet. Chem. 2024, 38, e7375. [Google Scholar] [CrossRef]
- Sarkar, A.; Chakraborty, A.; Chakraborty, T.; Purkait, S.; Samanta, D.; Maity, S.; Das, D. A Chemodosimetric Approach for Fluorimetric Detection of Hg2+ Ions by Trinuclear Zn(II)/Cd(II) Schiff Base Complex: First Case of Intermediate Trapping in a Chemodosimetric Approach. Inorg. Chem. 2020, 59, 9014–9028. [Google Scholar] [CrossRef] [PubMed]
- Kagatikar, S.; Sunil, D. Schiff bases and their complexes in organic light emitting diode application. J. Electron. Mater. 2021, 50, 6708–6723. [Google Scholar] [CrossRef]
- Qurrat-ul-ain, R.; Rahman, M.U.; Javed, H.M.; Hassan, S.; Munir, T.; Asghar, R. Exploring sulfonamides derivatives Schiff base and metal complexes as antimicrobial agents: A comprehensive review. Inorg. Chem. Commun. 2024, 170, 113396. [Google Scholar] [CrossRef]
- Panova, E.V.; Voronina, J.K.; Azizova, A.N.; Tutar, Ö.F.; Mahmoudi, G.; Safin, D.A. Polymorphism phenomenon of the naphthyl-containing N-salicylidenaniline derivative: Syntheses, crystal structures, optical properties, and theoretical calculations. CrystEngComm 2025, 27, 3502–3516. [Google Scholar] [CrossRef]
- Diz, M.; Durán-Carril, M.L.; Castro, J.; Alvo, S.; Bada, L.; Viña, D.; García-Vázquez, J.A. Antitumor activity of copper(II) complexes with Schiff bases derived from N′-tosylbenzene-1,2-diamine. J. Inorg. Biochem. 2022, 236, 111975. [Google Scholar] [CrossRef]
- Viqueira, J.; Durán, M.L.; García-Vázquez, J.A.; Castro, J.; Platas-Iglesias, C.; Esteban-Gómez, D.; Alzuet-Piña, G.; Moldes, A.; Nascimento, O.R. Modulating the DNA cleavage ability of copper(II) Schiff bases through ternary complex formation. New J. Chem. 2018, 42, 15170–15183. [Google Scholar] [CrossRef]
- Chaltsev, B.V.; Burlov, A.S.; Vlasenko, V.G.; Shiryaeva, A.A.; Koshchienko, Y.V.; Zubenko, A.A.; Klimenko, A.I.; Lazarenko, V.A. Synthesis, structure, and biological activities of mixed-ligand nickel(II) and cobalt(II) complexes of benzoylhydrazone 2-(N-tosylamino)benzaldehyde and benzimidazole derivatives. Inorg. Chim. Acta 2024, 572, 122272. [Google Scholar] [CrossRef]
- Côrte-Real, L.; Pósa, V.; Martins, M.; Colucas, R.; May, N.V.; Fontrodona, X.; Romero, I.; Mendes, F.; Reis, C.P.; Gaspar, M.M.; et al. Cu(II) and Zn(II) Complexes of New 8-Hydroxyquinoline Schiff Bases: Investigating Their Structure, Solution Speciation, and Anticancer Potential. Inorg. Chem. 2023, 62, 11466–11486. [Google Scholar] [CrossRef]
- Sogukomerogullari, H.G.; Başaran, E.; Sarıoğlu, A.O.; Köse, A.; Akkoç, S. Synthesis, Characterization, Photoluminescence Properties and Antiproliferative Activity of New Pd(II), Ni(II) and Cu(II) Mixed Complexes Bearing Schiff Base Ligand and 1,10-phenanthroline. ChemistrySelect 2023, 8, e202301014. [Google Scholar] [CrossRef]
- Rodríguez, A.; García-Vázquez, J.A. The use of sacrificial anodes for the electrochemical synthesis of metallic complexes. Coord. Chem. Rev. 2015, 303, 42–85. [Google Scholar] [CrossRef]
- Clausen, H.F.; Chevallier, M.S.; Spackman, M.A.; Iversen, B.B. Three new co-crystals of hydroquinone: Crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J. Chem. 2010, 34, 193–199. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wu, G.; Xu, H.; Wang, X.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. Magnetooptical Properties of Chiral [Co2Ln] Clusters. Inorg. Chem. 2020, 59, 193–197. [Google Scholar] [CrossRef]
- Nurdin, L.; Spasyuk, D.M.; Piers, W.E.; Maron, L. Reactions of Neutral Cobalt(II) Complexes of a Dianionic Tetrapodal Pentadentate Ligand: Cobalt(III) Amides from Imido Radicals. Inorg. Chem. 2017, 56, 4157–4168. [Google Scholar] [CrossRef]
- Salem, M.S.H.; Kumar, A.; Sako, M.; Abe, T.; Takizawa, S.; Sasai, H. Preparation of Optically Pure Dinuclear Cobalt(III) Complex with Λ-Configuration as a Dianionic Chiral Catalyst. Heterocycles 2021, 103, 225–230. [Google Scholar] [CrossRef]
- Cremer, D.; Pople, J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. [Google Scholar] [CrossRef]
- Singh, H.; MacKay, A.; Sheibany, N.; Chen, F.; Mosser, M.; Rouet, P.-É.; Rousseau, F.; Askari, M.S.; Ottenwaelder, X. Intramolecular H-bond stabilization of a primary hydroxylamine in salen-type metal complexes. Chem. Commun. 2021, 57, 10403–10406. [Google Scholar] [CrossRef]
- Barma, A.; Chakraborty, M.; Bhattacharya, S.K.; Ghosh, P.; Roy, P. Mononuclear nickel(II) complexes as electrocatalysts in hydrogen evolution reactions: Effects of alkyl side chain lengths. Mater. Adv. 2022, 3, 7655–7666. [Google Scholar] [CrossRef]
- Kherrouba, A.; Bensegueni, R.; Guergouri, M.; Boulkedid, A.-L.; Boutebdja, M.; Bencharif, M. Synthesis, crystal structures, optical properties, DFT and TD-DFT studies of Ni (II) complexes with imine-based ligands. J. Mol. Struct. 2022, 1247, 131351. [Google Scholar] [CrossRef]
- Pham, S.Q.T.; Richardson, C.; Kelso, C.; Willis, A.C.; Ralph, S.F. The effect of isomerism and other structural variations on the G-quadruplex DNA-binding properties of some nickel Schiff base complexes. Dalton Trans. 2020, 49, 10360–10379. [Google Scholar] [CrossRef]
- Sheng, N. Aqua [2-(2-pyridylmethyliminomethyl)phenolato]nickel(II) nitrate monohydrate. Acta Crystallogr. 2009, 65, m1348. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 2015, 90, 47–57. [Google Scholar] [CrossRef]
- Rahimi, N.; Zargarian, D. Cationic tetra- and pentacoordinate complexes of nickel based on POCN- and POCOP-type pincer ligands: Synthesis, characterization, and ligand exchange studies. New J. Chem. 2021, 45, 15063–15073. [Google Scholar] [CrossRef]
- Beloso, I.; Castro, J.; Pérez-Lourido, P.; Romero, J.; García-Vázquez, J.A.; Sousa, A. Electrochemical Synthesis and Structural Characterization of Silver(I) Complexes of N-2-Pyridyl Sulfonamide Ligands with Different Nuclearity: Influence of the Steric Hindrance at the Pyridine Ring and the Sulfonamide Group on the Structure of the Complexes. Inorg. Chem. 2005, 44, 336–351. [Google Scholar] [CrossRef]
- Shi, W.-B.; Cui, A.-L.; Kou, H.-Z. Sulfadiazine/dimethylsulfadiazine transition metal complexes: Synthesis, crystal structures and magnetic properties. Polyhedron 2015, 99, 252. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Gurbanov, A.V.; Aliyeva, V.A.; Guedes da Silva, M.F.C.; Resnatic, G.; Pombeiro, A.J.L. Chalcogen bonding in coordination chemistry. Coord. Chem. Rev. 2022, 464, 214556. [Google Scholar] [CrossRef]
- Brazzolotto, D.; Bogart, J.A.; Ross, D.L.; Ziller, J.W.; Borovik, A.S. Stabilizing a NiII-aqua complex via intramolecular hydrogen bonds: Synthesis, structure, and redox properties. Inorg. Chim. Acta 2019, 495, 118960. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Hao, Z.; Han, Z.; Lin, J.; Lu, G.-L. Nickel Complexes Bearing N,N,O-Tridentate Salicylaldiminato Ligand: Efficient Catalysts for Imines Formation via Dehydrogenative Coupling of Primary Alcohols with Amines. Organometallics 2021, 40, 3843–3853. [Google Scholar] [CrossRef]
- Vlasenkoa, V.G.; Burlovb, A.S.; Koshchienkob, Y.V.; Kiskinc, M.A.; Garnovskiid, D.A.; Zubavichuse, Y.V.; Kolodinab, A.A.; Trigubf, A.L.; Zubenkog, A.A.; Drobing, Y.D. Synthesis, characterization, and biological activity of Co(II), Ni(II), and Cu(II) complexes derived from N,N’-bis(2-N-tozylaminobenzylidene)diaminodipropyliminate ligand. Inorg. Chim. Acta 2020, 510, 119766. [Google Scholar] [CrossRef]
- Li, Y.; Dong, J.; Zhao, P.; Hu, P.; Yang, D.; Gao, L.; Li, L. Synthesis of Amino Acid Schiff Base Nickel (II) Complexes as Potential Anticancer Drugs In Vitro. Bioinorg. Chem. Appl. 2020, 2020, 8834859. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, T.; Adhikari, S.; Sheikh, A.H.; Mahmoudi, G.; Mlowe, S.; Akerman, M.P.; Choudhury, N.A.; Chakraborty, S.; Butcher, R.J.; Kennedy, A.R.; et al. Syntheses, crystal structures, theoretical studies, and anticancer properties of an unsymmetrical schiff base ligand N-2-(6-methylpyridyl)-2-hydroxy-1-naphthaldimine and its Ni(II) complex. J. Mol. Struct. 2022, 1269, 133717. [Google Scholar] [CrossRef]
- Belmonte, M.M.; Wezenberg, S.J.; Haak, R.M.; Anselmo, D.; Escudero-Adan, E.C.; Benet-Buchholz, J.; Kleij, A.W. Self-assembly of Zn(salphen) complexes: Steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3′-t-Bu-substituted Zn(salphen) complex. Dalton Trans. 2010, 39, 4541. [Google Scholar] [CrossRef]
- Saswatia; Mohantya, M.; Banerjee, A.; Biswal, S.; Horn, A., Jr.; Schenk, G.; Brzezinski, K.; Sinn, E.; Reuter, H.; Dinda, R. Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. J. Inorg. Biochem. 2020, 203, 110908. [Google Scholar] [CrossRef]
- Su, H.; Hao, L.; Hussain, W.; Li, Z.; Li, H. Two donor–acceptor (D–A) type Zn(II) complexes as fluorescent probes for highly selective detection of iodide. CrystEngComm 2020, 22, 2103–2109. [Google Scholar] [CrossRef]
- Blackman, A.G.; Schenk, E.B.; Jelley, R.E.; Krensked, E.H.; Gahan, L.R. Five-coordinate transition metal complexes and the value of τ5: Observations and caveats. Dalton Trans. 2020, 49, 14798–14806. [Google Scholar] [CrossRef]
- Aryaeifar, M.; Rudbari, H.A.; Blacque, O.; Islam, M.K.; Scopelliti, R.; Braun, J.D.; Herbert, D.E.; Bruno, G.; Janiak, C.; Enamullah, M. Schiff base ligands derived from 1,2-bis(2′-nitro-/amino-phenoxy)-3-R-benzene and 2-hydroxy-1-naphthaldehyde and their Cu/Zn(II) complexes: Synthesis, characterization, X-ray structures and computational studies. CrystEngComm 2021, 23, 6322–6339. [Google Scholar] [CrossRef]
- Shakil, M.A.; Ullah, S.; Shah, S.R.; Al-Harrasi, R.; Khan, A.; Al-Harrasi, A.; Anwar, M.U.; Powell, A.K. Synthesis of Six New Transition Metal Complexes: Structural Characterization and in vitro α-Glucosidase Inhibitions Studies. ChemistrySelect 2023, 8, e2022040. [Google Scholar] [CrossRef]
- Döring, M.; Ciesielski, M.; Walter, O.; Görls, H. Salicylaldimine Dizinc Complexes: Activation of Water Molecules and Fixation of CO2 in the Coordination Sphere of Zinc. Eur. J. Inorg. Chem. 2002, 2002, 1615–1621. [Google Scholar] [CrossRef]
- Barwiolek, M.; Jankowska, D.; Chorobinski, M.; Kaczmarek-Kedziera, A.; Lakomska, I.; Wojtulewski, S.; Muziol, T.M. New dinuclear zinc(II) complexes with Schiff bases obtained from o-phenylenediamine and their application as fluorescent materials in spin coating deposition. RSC Adv. 2021, 11, 24515. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules—A Quantum Theory; Oxford University Press: Oxford, UK, 1990; ISBN 9780198551683. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; ISBN 978-0-471-74493-1. [Google Scholar] [CrossRef]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984; ISBN 9780444423894. [Google Scholar]
- Lever, A.B.P. Electronic Spectra of Some Transition Metal Complexes: Derivation of Dq and B. J. Chem. Educ. 1968, 45, 711–712. [Google Scholar] [CrossRef]
- Malik, W.U.; Sharma, T.C. A new Reagent O-(P-Toluyl Sulphonamido) Aniline for Spectrophotometric Determination of Cerium (IV). J. Indian Chem. Soc. 1970, 47, 167–169. [Google Scholar] [CrossRef]
- APEX4 v.2022.1-1, SAINT v.8.40B, XPREP v.2014/2, SADABS-2016/2; Bruker AXS Inc.: Madison, WI, USA, 2022.
- McArdle, P. Oscail, a program package for small-molecule single-crystal crystallography with crystal morphology prediction and molecular modelling. J. Appl. Crystallogr. 2017, 50, 320–326. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Crystallogr. 2020, 76, 1–11. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. University of Western Australia, Perth, Australia. Available online: https://crystalexplorer.net/ (accessed on 26 June 2025).
- MacKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; MacKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Carter, D.J.; Raiteri, P.; Barnard, K.R.; Gielink, R.; Mocerino, B.; Skelton, W.; Vaughan, J.G.; Ogden, M.I.; Rohl, A.L. Difference Hirshfeld fingerprint plots: A tool for studying polymorphs. CrystEngComm 2017, 19, 2207–2215. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Bauernschmitt, R.; Ahlrichs, R. Stability analysis for solutions of the closed shell Kohn-Sham equation. J. Chem. Phys. 1996, 104, 9047–9052. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
Co-N(11) | 1.967(7) | Co-N(12) | 1.871(8) |
Co-N(21) | 1.973(8) | Co-N(22) | 1.867(8) |
Co-O(13) | 1.876(6) | Co-O(23) | 1.875(6) |
N(11)-Co-N(12) | 83.5(3) | N(22)-Co-N(21) | 83.3(3) |
N(12)-Co-O(23) | 89.7(3) | N(12)-Co-O(13) | 93.5(3) |
N(22)-Co-O(23) | 93.3(3) | N(22)-Co-O(13) | 88.6(3) |
N(22)-Co-N(11) | 94.5(3) | O(23)-Co-N(11) | 92.2(3) |
O(13)-Co-O(23) | 87.3(3) | O(13)-Co-N(21) | 91.8(3) |
N(12)-Co-N(21) | 93.7(3) | N(11)-Co-N(21) | 88.8(3) |
O(13)-Co-N(11) | 176.9(3) | O(23)-Co-N(21) | 176.5(3) |
N(22)-Co-N(12) | 176.4(3) |
[NiL(H2O)] | [NiL(CH3CN)(H2O)]2 | [Ni2L2(4,4′bpy)] Mol. 1 | [Ni2L2(4,4′bpy)] Mol. 2 | |
---|---|---|---|---|
Ni-N(1) | 1.8502(16) | 1.9898(19) | 1.897(4) | 1.854(3) |
Ni-N(2) | 1.9083(16) | 2.0810(19) | 1.850(3) | 1.904(4) |
Ni-O(3) | 1.8277(13) | 2.0009(16) | 1.811(4) | 1.819(3) |
Ni-O(1W) | 1.9309(17) | 2.0527(17) | ||
Ni-N(3) | 2.099(2) | |||
Ni-O(2 i) | 2.2069(16) | |||
Ni-N4,4bpy | 1.922(4) | 1.939(4) | ||
Ni-Ni i | 5.4071(6) | |||
N(1)-Ni-N(2) | 86.02(7) | 81.05(8) | 86.31(16) | 86.11(16) |
N(1)-Ni-O(3) | 94.32(6) | 89.02(7) | 94.42(16) | 94.14(15) |
N(2)-Ni-O(3) | 179.59(6) | 169.45(7) | 173.96(17) | 173.85(17) |
N(1)-Ni-O(1W) | 173.32(7) | 174.15(8) | ||
N(2)-Ni-O(1W) | 95.96(7) | 100.14(8) | ||
O(3)-Ni-O(1W) | 83.73(7) | 90.10(7) | ||
N(1)-Ni-N(3) | 97.10(8) | |||
O(3)-Ni-N(3) | 88.26(7) | |||
O(1W)-Ni-N(3) | 88.65(8) | |||
N(2)-Ni-N(3) | 89.44(8) | |||
N(1)-Ni-O(2 i) | 89.42(7) | |||
O(3)-Ni-O(2 i) | 90.04(6) | |||
O(1W)-Ni-O(2 i) | 84.80(7) | |||
N(2)-Ni-O(2 i) | 93.39(7) | |||
N(3)-Ni-O(2 i) | 173.23(7) | |||
N(1)-Ni-N4,4′bpy | 92.33(16) | 93.85(16) | ||
N(2)-Ni-N4,4′bpy | 170.76(17) | 170.91(18) | ||
O(3)-Ni-N4,4′bpy | 87.89(15) | 86.87(15) |
[ZnL(MeOH)]2 | [ZnL(2,2′-bpy)] | |
---|---|---|
Zn-N(11) | 2.045(2) | 2.094(3) |
Zn-N(12) | 2.037(2) | 2.040(4) |
Zn-O(13) | 2.0666(17) | 1.953(3) |
Zn-O(13 i) | 1.9951(17) | |
Zn-O(1) | 2.069(2) | |
Zn-N(31) | 2.118(3) | |
Zn-N(32) | 2.117(3) | |
Zn-Zn i | 3.1572(13) | |
N(12)-Zn-N(11) | 80.79(8) | 79.45(13) |
N(11)-Zn-O(13) | 84.98(8) | 87.77(12) |
N(12)-Zn-O(13) | 165.57(7) | 130.50(13) |
N(11)-Zn-O(1) | 125.78(8) | |
N(12)-Zn-O(1) | 95.33(8) | |
O(13)-Zn-O(1) | 91.01(7) | |
N(11)-Zn-O(13 i) | 128.95(8) | |
N(12)-Zn-O(13 i) | 113.05(8) | |
O(13)-Zn-O(13 i) | 77.99(7) | |
O(1)-Zn-O(13 i) | 102.50(8) | |
N(1)-Zn-N(32) | 169.61(13) | |
N(2)-Zn-N(32) | 108.53(13) | |
O(3)-Zn-N(32) | 91.67(12) | |
N(1)-Zn-N(31) | 93.83(13) | |
N(2)-Zn-N(31) | 105.57(13) | |
O(3)-Zn-N(31) | 122.98(13) | |
N(31)-Zn-N(32) | 77.78(13) |
Identification code | NEt4[CoL2] |
Empirical formula | C56H56CoN5O6S2 |
Moiety formula | C56H56CoN5O6S2 |
Formula weight | 1018.1 |
Temperature | 100(2) K |
Wavelength | 0.71073 Å |
Crystal system | Monoclinic |
Space group | P21/n |
Unit cell dimensions | a = 15.527(4) Å |
b = 20.322(5) Å | |
c = 17.487(4) Å | |
α = 90° | |
β = 106.295(4)° | |
γ = 90° | |
Volume | 5296(2) Å3 |
Z | 4 |
Density (calculated) | 1.277 Mg/m3 |
Absorption coefficient | 0.457 mm−1 |
F(000) | 2136 |
Crystal size | 0.220 × 0.210 × 0.070 mm3 |
Theta range for data collection | 1.552 to 26.451° |
Index ranges | −19 ≤ h ≤ 19 |
−25 ≤ k ≤ 25 | |
−21 ≤ l ≤ 21 | |
Reflections collected | 44,312 |
Independent reflections | 10,884 [Rint = 0.2063] |
Reflections observed (>2σ) | 4070 |
Data completeness | 0.995 |
Absorption correction | Semi-empirical from equivalents |
Max. and min. transmission | 0.9593 and 0.2509 |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 10,884/0/634 |
Goodness-of-fit on F2 | 1.018 |
Final R indices [I > 2σ(I)] | R1 = 0.1115 |
wR2 = 0.2644 | |
R indices (all data) | R1 = 0.2548 |
wR2 = 0.3805 | |
Largest diff. peak and hole | 1.045 and −1.026 e·Å−3 |
Identification code | [NiL(H2O)] | [NiLCH3CN)(H2O)]2 | [Ni2L2(4,4′bpy)] |
Empirical formula | C24H20N2NiO4S | C26H23N3NiO4S | C29H22N3NiO3S |
Moiety formula | C24H20N2NiO4S | (C26H23N3NiO4S)2 | C29H22N3NiO3S |
Formula weight | 491.19 | 532.24 | 551.26 |
Temperature | 293(2) K | 273(2) K | 273(2) K |
Wavelength | 0.71073 Å | 0.71073 Å | 0.71073 Å |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | P−1 | P−1 | P−1 |
Unit cell dimensions | a = 8.2708(3) Å | a = 9.5918(2) Å | a = 12.9369(6) Å |
b = 11.0377(5) Å | b = 11.1199(2) Å | b = 15.1884(7) Å | |
c = 12.0578(4) Å | c = 12.3547(2) Å | c = 16.3634(7) Å | |
α = 73.900(2)° | α = 105.0580(10)° | α = 112.800(2)° | |
β = 83.556(2)° | β = 90.7020(10)° | β = 106.758(3)° | |
γ = 79.093(2)° | γ = 113.3570(10)° | γ = 98.396(3)° | |
Volume | 1036.40(7) Å3 | 1158.31(4) Å3 | 2714.5(2) Å3 |
Z | 2 | 2 | 4 |
Density (calculated) | 1.574 Mg/m3 | 1.526 Mg/m3 | 1.349 Mg/m3 |
Absorption coefficient | 1.073 mm−1 | 0.968 mm−1 | 0.826 mm−1 |
F(000) | 508 | 552 | 1140 |
Crystal size | 0.47 × 0.14 × 0.12 mm | 0.13 × 0.08 × 0.04 mm | 0.360 × 0.050 × 0.030 mm |
Theta range for data collection | 1.761 to 26.466° | 1.721 to 26.427° | 1.719 to 26.480° |
Index ranges | −9 ≤ h ≤ 10 | −12 ≤ h ≤ 11 | −16 ≤ h ≤ 16 |
−13 ≤ k ≤ 13 | −13 ≤ k ≤ 13 | −18 ≤ k ≤ 18 | |
−15 ≤ l ≤ 15 | −15 ≤ l ≤ 15 | −20 ≤ l ≤ 20 | |
Reflections collected | 14,160 | 19,189 | 43,941 |
Independent reflections | 4251 [Rint = 0.0280] | 4748 [Rint = 0.0445] | 11,007 [Rint = 0.0968] |
Reflections observed (>2σ) | 3720 | 3611 | 5951 |
Data completeness | 0.991 | 0.997 | 0.981 |
Absorption correction | Semi-empirical from equivalents | Semi-empirical from equivalents | Semi-empirical from equivalents |
Max. and min. transmission | 0.8821 and 0.6325 | 0.9623 and 0.8845 | 0.9756 and 0.7553 |
Refinement method | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 |
Data/restraints/parameters | 4251/0/302 | 4748/0/326 | 11,007/0/669 |
Goodness-of-fit on F2 | 1.054 | 1.007 | 0.988 |
Final R indices [I > 2sigma(I)] | R1 = 0.0299 | R1 = 0.0344 | R1 = 0.0619 |
wR2 = 0.0725 | wR2 = 0.0692 | wR2 = 0.1366 | |
R indices (all data) | R1 = 0.0362 | R1 = 0.0587 | R1 = 0.1363 |
wR2 = 0.0752 | wR2 = 0.0770 | wR2 = 0.1681 | |
Largest diff. peak and hole | 0.461 and −0.472 e·Å−3 | 0.420 and −0.436 e·Å−3 | 0.963 and −0.570 e·Å−3 |
Identification code | [ZnL(MeOH)]2 | [ZnL(2,2′-bpy)] |
Empirical formula | C50H44N4O8S2Zn2 | C36H28N5O3SZn |
Moiety formula | C50H44N4O8S2Zn2 | C36H28N5O3SZn |
Formula weight | 1023.75 | 676.06 |
Temperature | 120(2) K | 273(2) K |
Wavelength | 0.71069 Å | 0.71073 Å |
Crystal system | Triclinic | Monoclinic |
Space group | P−1 | P21/c |
Unit cell dimensions | a = 7.812(5) Å | a = 16.378(3) Å |
b = 11.982(5) Å | b = 10.6843(17) Å | |
c = 13.282(5) Å | c = 17.377(3) Å | |
α = 72.254(5)° | α = 90° | |
β = 73.749(5)° | β = 91.478(6)° | |
γ = 71.882(5)° | γ = 90° | |
Volume | 1101.6(9) Å3 | 3039.9(9) Å3 |
Z | 1 | 4 |
Density (calculated) | 1.543 Mg/m3 | 1.477 Mg/m3 |
Absorption coefficient | 1.246 mm−1 | 0.924 mm−1 |
F(000) | 528 | 1396 |
Crystal size | 0.440 × 0.130 × 0.110 mm | 0.150 × 0.140 × 0.050 mm |
Theta range for data collection | 1.644 to 27.173° | 2.238 to 26.401° |
Index ranges | −10 ≤ h ≤ 10 | −20 ≤ h ≤ 20 |
−15 ≤ k ≤ 15 | −12 ≤ k ≤ 13 | |
−17 ≤ l ≤ 17 | −20 ≤ l ≤ 21 | |
Reflections collected | 13,165 | 25,355 |
Independent reflections | 4851 [Rint = 0.0358] | 6213 [Rint = 0.0934] |
Reflections observed (>2σ) | 3910 | 3843 |
Data completeness | 0.991 | 0.995 |
Absorption correction | Semi-empirical from equivalents | Semi-empirical from equivalents |
Max. and min. transmission | 1.0000 and 0.730982 | 0.7449 and 0.4653 |
Refinement method | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 |
Data/restraints/parameters | 4851/0/304 | 6213/0/417 |
Goodness-of-fit on F2 | 1.064 | 1.023 |
Final R indices [I > 2σ(I)] | R1 = 0.0339 | R1 = 0.0494 |
wR2 = 0.0799 | wR2 = 0.0944 | |
R indices (all data) | R1 = 0.0508 | R1 = 0.1113 |
wR2 = 0.0887 | wR2 = 0.1206 | |
Largest diff. peak and hole | 0.456 and −0.625 e·Å−3 | 0.712 and −0.994 e·Å−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Guirao, L.; Viqueira, J.; Silva López, C.; García-Vázquez, J.A.; Castro, J. Coordinative Behavior of a New Hydroxynaphthanyl Sulphonamide Tridentate Schiff Base Towards First Row Late Transition Metal (LTM) and Post-Transitional Metal Atoms Zn and Cd: A Crystallographic and Computational Study. Molecules 2025, 30, 3543. https://doi.org/10.3390/molecules30173543
Sánchez-Guirao L, Viqueira J, Silva López C, García-Vázquez JA, Castro J. Coordinative Behavior of a New Hydroxynaphthanyl Sulphonamide Tridentate Schiff Base Towards First Row Late Transition Metal (LTM) and Post-Transitional Metal Atoms Zn and Cd: A Crystallographic and Computational Study. Molecules. 2025; 30(17):3543. https://doi.org/10.3390/molecules30173543
Chicago/Turabian StyleSánchez-Guirao, Laura, Joaquín Viqueira, Carlos Silva López, José A. García-Vázquez, and Jesús Castro. 2025. "Coordinative Behavior of a New Hydroxynaphthanyl Sulphonamide Tridentate Schiff Base Towards First Row Late Transition Metal (LTM) and Post-Transitional Metal Atoms Zn and Cd: A Crystallographic and Computational Study" Molecules 30, no. 17: 3543. https://doi.org/10.3390/molecules30173543
APA StyleSánchez-Guirao, L., Viqueira, J., Silva López, C., García-Vázquez, J. A., & Castro, J. (2025). Coordinative Behavior of a New Hydroxynaphthanyl Sulphonamide Tridentate Schiff Base Towards First Row Late Transition Metal (LTM) and Post-Transitional Metal Atoms Zn and Cd: A Crystallographic and Computational Study. Molecules, 30(17), 3543. https://doi.org/10.3390/molecules30173543