Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System
Abstract
1. Introduction
2. Results and Discussion
2.1. ARG Levels and Diversity
2.1.1. ARG Types, Levels, and Diversity
2.1.2. ARG Subtype Levels and Diversity
2.1.3. Effect of BES on Reducing ARGs in MFC-Fenton System
2.2. MGE Levels
2.3. Relationships Between ARGs, MGEs, and MRGs
2.3.1. Association Between ARG Types and MRGs
2.3.2. Association Between Microbial Community Abundance and ARGs
2.3.3. Relationships Between ARGs, MGEs, and MRGs
3. Materials and Methods
3.1. MFC-Fenton System Configuration and Operation
3.2. Metagenomic Sequencing and DNA Isolation
3.3. ARG, MGE, and MRG Analyses
3.4. Microbial Community Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Qian, X.; Gunturu, S.; Guo, J.; Chai, B.; Cole, J.R.; Gu, J.; Tiedje, J.M. Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems. Microbiome 2021, 9, 108. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, R.; Liu, Y.; Guo, J.; Yang, J.; Qin, X.; Wang, S.; Liu, J.; Yang, X.; Zhang, W.; et al. From glacier forelands to human settlements: Patterns, environmental drivers, and risks of antibiotic resistance genes. J. Hazard. Mater. 2025, 494, 138455. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z.; Xu, T.; Feng, Z.; Liu, J.; Luo, L.; He, Y.; Xiao, Y.; Peng, H.; Zhang, Y.; et al. The fate of antibiotic resistance genes and their influential factors during excess sludge composting in a full-scale plant. Bioresour. Technol. 2021, 342, 126049. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Chi, Y.; Yu, B.; Yang, M.; Zhang, Y. Thermophilic anaerobic digestion reduces ARGs in excess sludge even under high oxytetracycline concentrations. Chemosphere 2019, 222, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, Z.; Sun, X.; Xing, M. Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. Bioresour. Technol. 2024, 406, 130991. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Q.; Meng, F.; Ruan, L.; Sun, T.; Liu, X.; Liu, W.; Zhu, Y.; Li, W.; Meng, F. Deciphering the role of calcium peroxide on the fate of antibiotic resistance genes and mobile genetic elements during bioelectrochemically-assisted anaerobic composting of excess dewatered sludge. Chem. Eng. J. 2020, 397, 125355–125367. [Google Scholar] [CrossRef]
- Callegari, A.; Tucci, M.; Aulenta, F.; Cruz Viggi, C.; Capodaglio, A.G. Anaerobic sludge digestion enhancement with bioelectrochemical and electrically conductive materials augmentation: A state of the art review. Chemosphere 2025, 372, 144101. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wang, C.; Li, Y.; Huang, J.; Wang, Y. Occurrence, fate, effects and control of coagulants/flocculants in anaerobic digestion of waste activated sludge: A review. J. Water Process Eng. 2025, 69, 106618. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Zheng, X.; Garcia-Rodriguez, O.; Lefebvre, O. Sequential “electrochemical peroxidation-Electro-Fenton” process for anaerobic sludge treatment. Water Res. 2019, 154, 277–286. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Zhao, Q.L.; Wang, K.; Wei, L.L.; Zhang, G.D.; Zhang, J.N. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Sci. Technol. 2010, 61, 2915–2921. [Google Scholar] [CrossRef]
- Luo, L.; Wang, G.; Wang, Z.; Ma, J.; He, Y.; He, J.; Wang, L.; Liu, Y.; Xiao, H.; Xiao, Y.; et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. Sci. Total Env. 2021, 788, 147889. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Song, H.L.; Lu, Y.; Yang, X.L. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. Environ. Pollut. 2020, 265, 115084–115096. [Google Scholar] [CrossRef]
- Xia, H.; Yang, J.; Huang, K.; Nie, C. Microplastics into vermi-wetland lower the treatment performance of organic substances and antibiotic resistance genes in excess sludge. J. Environ. Chem. Eng. 2023, 11, 109946. [Google Scholar] [CrossRef]
- Wang, H.; Luo, H.; Fallgren, P.H.; Jin, S.; Ren, Z.J. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 2015, 33, 317–334. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, G.; Zhang, Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community. Bioresour. Technol. 2020, 313, 123660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Wang, R.S. A Bio-Electro-Fenton System Employing the Composite FePc/CNT/SS316 Cathode. Material 2017, 10, 169. [Google Scholar] [CrossRef]
- Su, C.; Lu, Y.; Deng, Q.; Chen, S.; Pang, G.; Chen, W.; Chen, M.; Huang, Z. Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol. Ecotoxicol. Environ. Saf. 2019, 177, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Rago, L.; Guerrero, J.; Baeza, J.A.; Guisasola, A. 2-Bromoethanesulfonate degradation in bioelectrochemical systems. Bioelectrochemistry 2015, 105, 44–49. [Google Scholar] [CrossRef]
- Zhao, H.; Kong, C.H. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresour. Technol. 2018, 258, 227–233. [Google Scholar] [CrossRef]
- Wang, W.; Wang, K.; Zhao, Q.; Liu, Y. Simultaneous degradation of anodic sludge and cathodic refractory pollutant in a MFC powered EF system enhanced by co-addition of lysozyme and 2-bromoethane sulfonate. J. Environ. Chem. Eng. 2022, 10, 108074. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.; Zhao, Q.; Gao, Y.; Wang, K.; Ding, J.; Yu, H.; Yao, Y. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism. Bioelectrochemistry 2017, 117, 48–56. [Google Scholar] [CrossRef]
- Ondon, B.S.; Li, S.; Zhou, Q.; Li, F. Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresour. Technol. 2020, 304, 122984. [Google Scholar] [CrossRef]
- Wei, L.; Li, J.; Xue, M.; Wang, S.; Li, Q.; Qin, K.; Jiang, J.; Ding, J.; Zhao, Q. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms. Bioresour. Technol. 2019, 291, 121868. [Google Scholar] [CrossRef]
- Zhang, S.; Song, H.L.; Cao, X.; Li, H.; Guo, J.; Yang, X.L.; Singh, R.P.; Liu, S. Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells. Bioresour. Technol. 2019, 281, 188–194. [Google Scholar] [CrossRef]
- Yin, C.; Shen, Y.; Yuan, R.; Zhu, N.; Yuan, H.; Lou, Z. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production. Bioresour. Technol. 2019, 284, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sun, R.; Zhang, C.; Ding, S.; Ying, M.; Shan, S. In situ analysis of antibiotic resistance genes in anaerobically digested dairy manure and its subsequent disposal facilities. Bioresour. Technol. 2021, 333, 124988. [Google Scholar] [CrossRef]
- Wang, W.; Wang, K.; Zhao, Q.; Yang, L. Maximizing electron flux, microbial diversity and gene abundance in MFC powered electro-Fenton system by optimizing co-addition of lysozyme and 2-bromoethanesulfonate. J. Env. Manag. 2022, 322, 116067. [Google Scholar] [CrossRef]
- Ejileugha, C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022, 8, e09543. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, L.; Su, Y.; Dolfing, J.; Xie, B. Associations between human bacterial pathogens and ARGs are magnified in leachates as landfill ages. Chemosphere 2021, 264, 128446. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hua, T.; Yuan, C.S.; Li, B.; Zhu, X.; Li, F. Degradation pathways, microbial community and electricity properties analysis of antibiotic sulfamethoxazole by bio-electro-Fenton system. Bioresour. Technol. 2020, 298, 122501. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhang, Y.; Yang, M. Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: Inhibition of hydrolytic acidification and enrichment of antibiotic resistome. Env. Pollut. 2018, 238, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jia, W.; Luo, Y.; Zhang, R.; Zhao, J.; Lu, C.; Dong, Y.; Shuo, H.; Li, B.; Qu, C. Accelerating enrichment of ARGs and MGEs with increasing ammonium removal during partial nitrification treating high-strength ammonia wastewater. Env. Res. 2025, 278, 121657. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wei, L.; Huang, H.; Zhao, Q.; Hou, W.; Kabutey, F.T.; Yuan, Y.; Dionysiou, D.D. Tertiary treatment of landfill leachate by an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction process: Performance and mechanism. J. Hazard. Mater. 2018, 351, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Huang, Y.; Zhou, R.; Gong, S.; Yang, H.; Chen, S.; Wang, M.; Cheng, A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Env. Pollut. 2020, 266, 115260. [Google Scholar] [CrossRef]
- Fang, Z.; Song, H.L.; Cang, N.; Li, X.N. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron. 2015, 68, 135–141. [Google Scholar] [CrossRef]
- Mortezaei, Y.; Demirer, G.N.; Williams, M.R. Fate of intracellular and extracellular antibiotic resistance genes in sewage sludge by full-scale anaerobic digestion. Sci. Total Env. 2024, 951, 175760. [Google Scholar] [CrossRef]
- Mousset, E.; Wang, Z.; Hammaker, J.; Lefebvre, O. Electrocatalytic phenol degradation by a novel nanostructured carbon fiber brush cathode coated with graphene ink. Electrochim. Acta 2017, 258, 607–617. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Yin, J.; Jiang, T.; Zhao, L.; Li, G.; Wang, G.; Yuan, J. Interactions between fungi and bacteria hosts carrying MGEs is dominant for ARGs fate during manure mesophilic composting. Waste Manag. 2025, 194, 1–12. [Google Scholar] [CrossRef]
- Shao, B.; Liu, Z.; Tang, L.; Liu, Y.; Liang, Q.; Wu, T.; Pan, Y.; Zhang, X.; Tan, X.; Yu, J. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. J. Hazard. Mater. 2022, 435, 129067. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Feng, Y.; Li, B.; Yu, M.; Xu, X.; Cai, L. Bio-Electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation. Biosens. Bioelectron. 2019, 136, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Su, C.; Lu, X.; Chen, W.; Guan, X.; Chen, S.; Chen, M. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system. Bioresour. Technol. 2020, 306, 123173–123185. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Regan, J.M. Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl. Env. Microbiol. 2011, 77, 564–571. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Zhao, K.; Song, G.; Zhao, S.; Liu, R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci. Total Env. 2023, 877, 162772. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jiang, J.; Zhao, Q.; Wang, K.; Zhang, Y.; Zheng, Z.; Hao, X. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. Bioresour. Technol. 2015, 193, 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Trujillo, S.; Liu, H. Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresour. Technol. 2019, 274, 557–560. [Google Scholar] [CrossRef]
- Costa, B.F.; Zarei-Baygi, A.; Md Iskander, S.; Smith, A.L. Antibiotic resistance genes fate during food waste management-Comparison between thermal treatment, hyperthermophilic composting, and anaerobic membrane bioreactor. Bioresour. Technol. 2023, 388, 129771. [Google Scholar] [CrossRef]
- Kong, L.; Qi, Y.; Shi, X. Variations in antibiotic resistance genes during long-term operation of an upflow anaerobic sludge blanket reactor. Environ. Res 2024, 241, 115755. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wei, J.; Guo, Z.; Bai, X.; Song, Y. Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System. Molecules 2025, 30, 3502. https://doi.org/10.3390/molecules30173502
Wang W, Wei J, Guo Z, Bai X, Song Y. Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System. Molecules. 2025; 30(17):3502. https://doi.org/10.3390/molecules30173502
Chicago/Turabian StyleWang, Weiye, Jian Wei, Zhuang Guo, Xiaodong Bai, and Yonghui Song. 2025. "Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System" Molecules 30, no. 17: 3502. https://doi.org/10.3390/molecules30173502
APA StyleWang, W., Wei, J., Guo, Z., Bai, X., & Song, Y. (2025). Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System. Molecules, 30(17), 3502. https://doi.org/10.3390/molecules30173502