Enhanced Corrosion Performance of Epoxy Coatings Painted on ZnAlMg-LDH Conversion Film Vertically Grown on ZAM Steels from Sodium Carbonate Solution
Abstract
1. Introduction
2. Results
2.1. Characterization of LDH Pretreatment Layer
2.2. Corrosion Performance of the LDH Pretreatment Layer and the Whole Coating System
3. Discussion
3.1. Formation Mechanism of LDH Pretreatment Layer
3.2. Mechanism of Corrosion Protection of the Coating Systems
3.3. Commercial Resin Applications
4. Experimental
4.1. Materials and Chemicals
4.2. Synthesis of LDH Conversion Coatings on ZAM Steel
4.3. Encapsulation of Corrosion Inhibitor (NaVO3) on LDH Conversion Coatings
4.4. Preparation of Epoxy Coatings
4.5. Characterization
4.6. Corrosion Performance Evaluation
5. Conclusions
- All metal ions required for the formation of the thin film are derived from the substrate itself, eliminating the need for any external addition of film-forming metal ions. This approach significantly reduces preparation costs. The Na2CO3 solution used not only provides an alkaline environment but also facilitates the formation of LDH with CO32− intercalation. By sourcing all necessary metal ions for LDH formation from the substrate, excellent adhesion between the LDH layer and the substrate is ensured.
- The pretreatment layer obtained via the thermal carbonate solution treatment possesses a distinctive upright-growth morphology of LDH, which greatly enhances the adhesion strength of subsequent coatings.
- The upright growth morphology also imparts a porous structure to the pretreatment layer, ensuring a high loading capacity for corrosion inhibitors.
- The formation process of the LDH conversion coating is remarkably fast; a well-formed coating can be achieved within just a few minutes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ZAM | Zn-Al-Mg |
LDH | Layered double hydroxides |
References
- Cai, Y.; Xu, Y.; Zhao, Y.; Ma, X. Atmospheric corrosion prediction: A review. Corros. Rev. 2020, 38, 299–321. [Google Scholar] [CrossRef]
- Brown, R.K.; Schmidt, U.C.; Harnisch, F.; Schröder, U. Combining hydrogen evolution and corrosion data—A case study on the economic viability of selected metal cathodes in microbial electrolysis cells. J. Power Sources 2017, 356, 473–483. [Google Scholar] [CrossRef]
- Sen, S.; Chatterjee, A.; Ramakanth, D.; Singh, S.; Maji, P.K. Recent advances in cathodic electrodeposition coatings with special reference to resin materials: A comprehensive review. Prog. Org. Coat. 2024, 190, 108387. [Google Scholar] [CrossRef]
- Olajire, A.A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J. Mol. Liq. 2018, 269, 572–606. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.-B.; Hu, J.-M. Anticorrosive painting system constructed on a porous silica pretreatment layer prepared with the aid of alkaline catalysis. Prog. Org. Coat. 2021, 154, 106178. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.-H.; Hu, J.-M. A novel and facile method for constructing micro-nano porous phytic acid pretreatment layer on metal surface. Corros. Sci. 2021, 186, 109464. [Google Scholar] [CrossRef]
- Wang, J.; Wu, L.-K.; Zhou, J.-H.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Construction of a novel painting system using electrodeposited SiO2 film as the pretreatment layer. Corros. Sci. 2013, 68, 57–65. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Jin, X.-H.; Hu, J.-M. Electrodeposited silica films post-treated with organosilane coupling agent as the pretreatment layers of organic coating system. Corros. Sci. 2016, 106, 127–136. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Kuznetsova, A.; Maltanava, H.M.; Poznyak, S.K.; Ferreira, M.G.S.; Zheludkevich, M.L. Corrosion protection of zinc by LDH conversion coatings. Corros. Sci. 2024, 229, 111889. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Liu, L.; You, L.; Wang, J.; Xiang, R. Effect of cement-based composite pellets on phosphorus removal and microbial community structure in eutrophic water. Environ. Technol. Innov. 2024, 34, 103631. [Google Scholar] [CrossRef]
- Ponomareva, M.; Duchoslav, J.; Stifter, D.; Kogler, M.; Miano, D.; Akbari, E.; Bleij, A.; Luckeneder, G.; Singewald, T.; Valtiner, M. Effect of Surface Pretreatments on the Formation of Zr-Based Conversion Layers on Zn–Al–Mg Alloy-Coated Steel. Mater. Corros. 2024, 76, 510–518. [Google Scholar] [CrossRef]
- Maeda, S. Steel surface chemistry affecting the performance of organic coatings. Prog. Org. Coat. 1983, 11, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Jain, A.; Chen, B.; Wang, Y.; Jin, Q.; Yugandhar, P.; Xu, Y.; Sun, S.; Hu, F. Differential efficacy of water lily cultivars in phytoremediation of eutrophic water contaminated with phosphorus and nitrogen. Plant Physiol. Biochem. 2022, 171, 139–146. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.; Wei, Y.; Zhang, Z.; Zhang, Y. LDH-Based “Smart” Films for Corrosion Sensing and Protection. Materials 2023, 16, 3483. [Google Scholar] [CrossRef] [PubMed]
- Tedim, J.; Bastos, A.C.; Kallip, S.; Zheludkevich, M.L.; Ferreira, M.G.S. Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results. Electrochim. Acta 2016, 210, 215–224. [Google Scholar] [CrossRef]
- Tan, J.K.E.; Balan, P.; Birbilis, N. Advances in LDH coatings on Mg alloys for biomedical applications: A corrosion perspective. Appl. Clay Sci. 2021, 202, 105948. [Google Scholar] [CrossRef]
- Imanieh, I.; Afshar, A. Corrosion protection of aluminum by smart coatings containing layered double hydroxide (LDH) nanocontainers. J. Mater. Res. Technol. 2019, 8, 3004–3023. [Google Scholar] [CrossRef]
- Aminifazl, A.; Karunarathne, D.J.; Golden, T.D. Synthesis of Silane Functionalized LDH-Modified Nanopowders to Improve Compatibility and Enhance Corrosion Protection for Epoxy Coatings. Materials 2024, 29, 819. [Google Scholar] [CrossRef]
- Ismail, N.A.; Shakoor, R.A.; Al-Qahtani, N.; Kahraman, R. Multilayered LDH/Microcapsule Smart Epoxy Coating for Corrosion Protection. ACS Omega 2023, 8, 30838–30849. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Lu, L.; Chowwanonthapunya, T.; Chen, W.; Li, Z.; Ma, L.; Zhang, D. Corrosion-oriented self-healing coating based on ZnMg MOF for efficient corrosion protection of aluminum alloy via in-situ LDH film formation. Chem. Eng. J. 2024, 500, 156898. [Google Scholar] [CrossRef]
- Stephan, J.; Kasneryk, V.; Serdechnova, M.; Scharnagl, N.; Gazenbiller, E.; Vaghefinazari, B.; Volovitch, P.; Starykevich, M.; Blawert, C.; Zheludkevich, M.L. Formation of Li-Al LDH conversion layer on AA2024 alloy for corrosion protection. Appl. Surf. Sci. 2024, 659, 159919. [Google Scholar] [CrossRef]
- Song, Z.; Xie, Z.; Ding, L.; Zhang, Y.; Hu, X. Preparation of corrosion-resistant MgAl-LDH/Ni composite coating on Mg alloy AZ31B. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127699. [Google Scholar] [CrossRef]
- Mohammadi, I.; Shahrabi, T.; Mahdavian, M.; Izadi, M. Construction of an epoxy coating with excellent protection performance on the AA 2024-T3 using ion-exchange materials loaded with eco-friendly corrosion inhibitors. Prog. Org. Coat. 2022, 166, 106786. [Google Scholar] [CrossRef]
- Wu, J.; Peng, D.; He, Y.; Du, X.; Zhang, Z.; Zhang, B.; Li, X.; Huang, Y. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films. Materials 2017, 10, 426. [Google Scholar] [CrossRef]
- Yan, T.; Xu, S.; Peng, Q.; Zhao, L.; Zhao, X.; Lei, X.; Zhang, F. Self-Healing of Layered Double Hydroxide Film by Dissolution/Recrystallization for Corrosion Protection of Aluminum. J. Electrochem. Soc. 2013, 160, C480. [Google Scholar] [CrossRef]
- Farghali, M.A.; Selim, A.M.; Khater, H.F.; Bagato, N.; Alharbi, W.; Alharbi, K.H.; Taha Radwan, I. Optimized adsorption and effective disposal of Congo red dye from wastewater: Hydrothermal fabrication of MgAl-LDH nanohydrotalcite-like materials. Arabian J. Chem. 2022, 15, 104171. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, W. Removal of borate by layered double hydroxides prepared through microwave-hydrothermal method. Water Process Eng. 2017, 17, 271–276. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, H.; Peng, S.; Li, D.; Gao, H.; Wang, D. Performance and mechanisms of wastewater sludge conditioning with slag-based hydrotalcite-like minerals (Ca/Mg/Al-LDH). Water Res. 2020, 169, 115265. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yu, L.; Hu, J.-M. In-situ Zn-Al layered double hydroxide conversion coatings prepared on galvanized steels by a two-step electrochemical method. Corros. Sci. 2024, 233, 112057. [Google Scholar] [CrossRef]
- Thierry, D.; Persson, D.; Luckeneder, G.; Stellnberger, K.-H. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites. Corros. Sci. 2019, 148, 338–354. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Song, S.; Tang, L.; Zhang, H.; Zhou, H.; Fang, F. Effect of Coating on Stress Corrosion Performance of Bridge Cable Steel Wire. Coatings 2023, 13, 1339. [Google Scholar] [CrossRef]
- Persson, D.; Prosek, T.; LeBozec, N.; Thierry, D.; Luckeneder, G. Initial SO2-induced atmospheric corrosion of ZnAlMg coated steel studied with in situ Infrared Reflection Absorption Spectroscopy. Corros. Sci. 2015, 90, 276–283. [Google Scholar] [CrossRef]
- Salgueiro Azevedo, M.; Allély, C.; Ogle, K.; Volovitch, P. Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corros. Sci. 2015, 90, 482–490. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Hu, L.; Huang, S.; Jin, Z.; Zhang, M.; Huang, X.; Lu, J.; Ruan, S.; Zeng, Y.-J. Multifunctional Zn–Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption. Dalton Trans. 2019, 48, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Salak, A.; Lisenkov, A.D.; Zheludkevich, M.; Ferreira, M. Carbonate-Free Zn-Al (1:1) Layered Double Hydroxide Film Directly Grown on Zinc-Aluminum Alloy Coating. ECS Electrochem. Lett. 2014, 3, C9–C11. [Google Scholar] [CrossRef]
- Uan, J.-Y.; Lin, J.-K.; Tung, Y.-S. Direct growth of oriented Mg–Al layered double hydroxide film on Mg alloy in aqueous HCO3−/CO32− solution. J. Mater. Chem. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Li, J.; Ruan, Q.; Jin, W.; Yu, Z.; Li, W.; Chu, P.K. Calcium phosphate coating on biomedical WE43 magnesium alloy pretreated with a magnesium phosphate layer for corrosion protection. Surf. Coat. Technol. 2020, 401, 126248. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, W.; Ma, K.; Dai, C.; Wang, D.; Wang, J. In-situ growth and anticorrosion mechanism of a bilayer CaCO3/MgO coating via rapid electrochemical deposition on AZ41 Mg alloy concrete formwork. J. Mater. Res. Technol. 2023, 25, 6628–6643. [Google Scholar] [CrossRef]
- Hu, J.-M.; Zhang, J.-T.; Zhang, J.-Q.; Cao, C.-N. Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloys. Corros. Sci. 2005, 47, 2607–2618. [Google Scholar] [CrossRef]
- Li, L.-X.; Xie, Z.-H.; Fernandez, C.; Wu, L.; Cheng, D.; Jiang, X.-H.; Zhong, C.-J. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection. Electrochim. Acta 2020, 330, 135186. [Google Scholar] [CrossRef]
- Ahmadi, M.; Salgın, B.; Kooi, B.J.; Pei, Y. Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings. Mater. Des. 2020, 186, 108364. [Google Scholar] [CrossRef]
- Amanian, S.; Naderi, R.; Mahdavian, M. The Role of an In-Situ Grown Zn-Al Layered Double Hydroxide Conversion Coating in the Protective Properties of Epoxy Coating on Galvanized Steel. J. Electrochem. Soc. 2022, 169, 031511. [Google Scholar] [CrossRef]
- Rybka, K.; Matusik, J.; Kuligiewicz, A.; Leiviskä, T.; Cempura, G. Surface chemistry and structure evaluation of Mg/Al and Mg/Fe LDH derived from magnesite and dolomite in comparison to LDH obtained from chemicals. Appl. Surf. Sci. 2021, 538, 147923. [Google Scholar] [CrossRef]
- Karami, Z.; Jouyandeh, M.; Hamad, S.M.; Ganjali, M.R.; Aghazadeh, M.; Torre, L.; Puglia, D.; Saeb, M.R. Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Prog. Org. Coat. 2019, 136, 105278. [Google Scholar] [CrossRef]
- Karami, Z.; Aghazadeh, M.; Jouyandeh, M.; Zarrintaj, P.; Vahabi, H.; Ganjali, M.R.; Torre, L.; Puglia, D.; Saeb, M.R. Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Prog. Org. Coat. 2020, 138, 105355. [Google Scholar] [CrossRef]
- Farid, R.; Sarkar, D.K.; Das, S. Studies of Corrosion Inhibition Performance of Inorganic Inhibitors for Aluminum Alloy. Materials 2025, 18, 595. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, D.S.; Örnek, C.; Claesson, P.M.; Sommertune, J.; Zharskii, I.M.; Kurilo, I.I.; Pan, J. Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis. J. Electrochem. Soc. 2018, 165, C116. [Google Scholar] [CrossRef]
- Kutlu, B.; Leuteritz, A.; Boldt, R.; Jehnichen, D.; Heinrich, G. Effects of LDH synthesis and modification on the exfoliation and introduction of a robust anion-exchange procedure. Chem. Eng. J. 2014, 243, 394–404. [Google Scholar] [CrossRef]
- Zhao, X.-J.; Zhu, Y.-Q.; Xu, S.-M.; Liu, H.-M.; Yin, P.; Feng, Y.-L.; Yan, H. Anion exchange behavior of MIIAl layered double hydroxides: A molecular dynamics and DFT study. Phys. Chem. Chem. Phys. 2020, 22, 19758–19768. [Google Scholar] [CrossRef] [PubMed]
- ISO 4624:2023; Paints and Varnishes—Pull-Off Test for Adhesion. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 17872:2019; Paints and Varnishes—Guidelines for the Introduction of Scribe Marks Through Coatings on Metallic Panels for Corrosion Testing. International Organization for Standardization: Geneva, Switzerland, 2019.
Sample | Ecorr (V vs. Ag/AgCl) | Icorr (i/A·cm−2) |
---|---|---|
LDH/VOx | −1.075 | 1.56 × 10−6 |
LDH | −1.162 | 1.21 × 10−5 |
Blank | −1.168 | 1.60 × 10−5 |
Hydrolysis reaction of carbonate ion | CO32− + H2O ↔ HCO3− + OH− | (2) |
HCO3− + H2O ↔ H2CO3 + OH− | (3) | |
Reaction of Zn/Al with alkali | 2Al + 2OH− + 6H2O → 2Al(OH)4− + 3H2 | (4) |
Zn + 2OH− + 2H2O → Zn(OH)42− + H2 | (5) | |
Reaction of alloying elements with H2O under heating conditions | 2Al + 6H2O → 2Al(OH)3 + 3H2 | (6) |
Zn + 2H2O → Zn(OH)2 + H2 | (7) | |
Mg + 2H2O → Mg(OH)2 + H2 | (8) | |
Formation of hydroxides during the cooling process | Al(OH)4− → Al(OH)3 + OH− | (9) |
Zn(OH)42− → Zn(OH)2 + 2OH− | (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Hu, J.-M. Enhanced Corrosion Performance of Epoxy Coatings Painted on ZnAlMg-LDH Conversion Film Vertically Grown on ZAM Steels from Sodium Carbonate Solution. Molecules 2025, 30, 3491. https://doi.org/10.3390/molecules30173491
Yu L, Hu J-M. Enhanced Corrosion Performance of Epoxy Coatings Painted on ZnAlMg-LDH Conversion Film Vertically Grown on ZAM Steels from Sodium Carbonate Solution. Molecules. 2025; 30(17):3491. https://doi.org/10.3390/molecules30173491
Chicago/Turabian StyleYu, Lei, and Ji-Ming Hu. 2025. "Enhanced Corrosion Performance of Epoxy Coatings Painted on ZnAlMg-LDH Conversion Film Vertically Grown on ZAM Steels from Sodium Carbonate Solution" Molecules 30, no. 17: 3491. https://doi.org/10.3390/molecules30173491
APA StyleYu, L., & Hu, J.-M. (2025). Enhanced Corrosion Performance of Epoxy Coatings Painted on ZnAlMg-LDH Conversion Film Vertically Grown on ZAM Steels from Sodium Carbonate Solution. Molecules, 30(17), 3491. https://doi.org/10.3390/molecules30173491