COSMO-RS Solubility Screening and Coumarin Extraction from Pterocaulon polystachyum with Deep Eutectic Solvents
Abstract
1. Introduction
2. Results and Discussion
2.1. Coumarin Molecule Optimization
2.2. Experimental and Predictive DES Density Comparisons
2.3. Coumarins Solubility Screening
2.4. Extraction of Coumarins from P. polystachyum
2.5. Chlorophylls Solubility Screening in DESs
2.6. Total Chlorophyll Content of the Extracts
3. Materials and Methods
3.1. DESs Screened
3.2. Solubility Screening in COSMOthermX
3.3. Geometry Optimization Computation Details
3.4. Experimental Deep Eutectic Solvent Extraction
3.4.1. Plant Material
3.4.2. DES Preparation
3.5. Ultrasound-Assisted Extraction from P. polystachyum
3.6. Analysis of the Extracts
3.6.1. Coumarins Analysis
3.6.2. Quantitative Analysis of Chlorophylls
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP86 | Beck–Perdew generalized gradient approximation |
COSMO-RS | Conductor-like screening model for real solvents |
DAD | Diode array detector |
DES | Deep eutectic solvents |
Def-TZVP | Triple-zeta valence of polarization |
DFT | Density functional theory |
HBA | Hydrogen-bond acceptor |
HBD | Hydrogen-bond donors |
UAE | Ultrasound-assisted extraction |
UFLC | Ultrafast liquid chromatography |
UV | Ultraviolet |
References
- Abdussalam-Mohammed, W.; Ali, A.Q.; Errayes, A.O. Green Chemistry: Principles, Applications, and Disadvantages. Chem. Methodol. 2020, 4, 408–423. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solution Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Lu, W.; Liu, S. Choline Chloride–Based Deep Eutectic Solvents (Ch-DESs) as Promising Green Solvents for Phenolic Compounds Extraction from Bioresources: State-of-the-Art, Prospects, and Challenges. Biomass Convers. Biorefinery 2020, 12, 2949–2962. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Stein, A.C.; Alvarez, S.; Avancini, C.; Zacchino, S.; von Poser, G. Antifungal Activity of Some Coumarins Obtained from Species of Pterocaulon (Asteraceae). J. Ethnopharmacol. 2006, 107, 95–98. [Google Scholar] [CrossRef]
- Scopel, J.M.; Medeiros-Neves, B.; Teixeira, H.F.; Brazil, N.T.; Bordignon, S.A.L.; Diz, F.M.; Morrone, F.B.; Almeida, R.N.; Cassel, E.; von Poser, G.L. Supercritical Carbon Dioxide Extraction of Coumarins from the Aerial Parts of Pterocaulon polystachyum. Molecules 2024, 29, 2741. [Google Scholar] [CrossRef]
- Medeiros-Neves, B.; Teixeira, H.F.; von Poser, G.L. The Genus Pterocaulon (Asteraceae)–A Review on Traditional Medicinal Uses, Chemical Constituents and Biological Properties. J. Ethnopharmacol. 2018, 224, 451–464. [Google Scholar] [CrossRef]
- Wojeicchowski, J.P.; Ferreira, A.M.; Abranches, D.O.; Mafra, M.R.; Coutinho, J.A.P. Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustain. Chem. Eng. 2020, 8, 12132–12141. [Google Scholar] [CrossRef]
- Fattahi, N.; Shiri, F.; Zohrabi, P.; Sosa, F.H.B.; Hashemi, B.; Karimi, P. Using COSMO-RS in the Designing and Screening of Different Eutectic Solvents for the Extraction of Carbaryl. Sep. Purif. Technol. 2025, 370, 133278. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T. Water Absorption by Deep Eutectic Solvents. Phys. Chem. Chem. Phys. 2019, 21, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Lazović, M.; Cvijetić, I.; Jankov, M.; Milojković-Opsenica, D.; Trifković, J.; Ristivojević, P. COSMO-RS in Prescreening of Natural Eutectic Solvents for Phenolic Extraction from Teucrium Chamaedrys. J. Mol. Liq. 2023, 387, 122649. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, 5, 799–805. [Google Scholar] [CrossRef]
- Alioui, O.; Benguerba, Y.; Alnashef, I.M. Investigation of the CO2-Solubility in Deep Eutectic Solvents Using COSMO-RS and Molecular Dynamics Methods. J. Mol. Liq. 2020, 307, 113005. [Google Scholar] [CrossRef]
- Ferrarini, F.; Flôres, G.B.; Muniz, A.R.; de Soares, R.P. An Open and Extensible Sigma-profile Database for COSMO-based Models. AIChE J. 2018, 64, 3443–3455. [Google Scholar] [CrossRef]
- Mullins, E.; Oldland, R.; Liu, Y.A.; Wang, S.; Sandler, S.I.; Chen, C.-C.; Zwolak, M.; Seavey, K.C. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2006, 45, 4389–4415. [Google Scholar] [CrossRef]
- Rebocho, S.; Mano, F.; Cassel, E.; Anacleto, B.; do Rosário Bronze, M.; Paiva, A.; Duarte, A.R.C. Fractionated Extraction of Polyphenols from Mate Tea Leaves Using a Combination of Hydrophobic/Hydrophilic NADES. Curr. Res. food Sci. 2022, 5, 571–580. [Google Scholar] [CrossRef]
- Chemat, F.; You, H.J.; Muthukumar, K.; Murugesan, T. Effect of L-Arginine on the Physical Properties of Choline Chloride and Glycerol Based Deep Eutectic Solvents. J. Mol. Liq. 2015, 212, 605–611. [Google Scholar] [CrossRef]
- Gajardo-Parra, N.F.; Cotroneo-Figueroa, V.P.; Aravena, P.; Vesovic, V.; Canales, R.I. Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and Modeling. J. Chem. Eng. Data 2020, 65, 5581–5592. [Google Scholar] [CrossRef]
- Tiago, F.J.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Extraction of Bioactive Compounds from Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Front. Nutr. 2022, 9, 892314. [Google Scholar] [CrossRef]
- Mero, A.; Koutsoumpos, S.; Giannios, P.; Stavrakas, I.; Moutzouris, K.; Mezzetta, A.; Guazzelli, L. Comparison of Physicochemical and Thermal Properties of Choline Chloride and Betaine-Based Deep Eutectic Solvents: The Influence of Hydrogen Bond Acceptor and Hydrogen Bond Donor Nature and Their Molar Ratios. J. Mol. Liq. 2023, 377, 121563. [Google Scholar] [CrossRef]
- Benabid, S.; Benguerba, Y.; AlNashef, I.M.; Haddaoui, N. Theoretical Study of Physicochemical Properties of Selected Ammonium Salt-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 285, 38–46. [Google Scholar] [CrossRef]
- Zurob, E.; Cabezas, R.; Villarroel, E.; Rosas, N.; Merlet, G.; Quijada-Maldonado, E.; Romero, J.; Plaza, A. Design of Natural Deep Eutectic Solvents for the Ultrasound-Assisted Extraction of Hydroxytyrosol from Olive Leaves Supported by COSMO-RS. Sep. Purif. Technol. 2020, 248, 117054. [Google Scholar] [CrossRef]
- Rodrigues, V.H.S.; Vladic, J.; Pereira, J.; Monteiro, H.; Paiva, A.; Vargas, R.M.F.; Cassel, E.; Duarte, A.R.C. Green Approach for Obtaining Bioactive Compounds from Pterocaulon polystachyum through Ultrasound-Assisted Deep Eutectic Solvent Extraction. Clean. Chem. Eng. 2025, 11, 100166. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Green Ultrasound and Microwave Extraction of Carotenoids from Passion Fruit Peel Using Vegetable Oils as a Solvent: Optimization, Comparison, Kinetics, and Thermodynamic Studies. Innov. Food Sci. Emerg. Technol. 2021, 67, 102547. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium Barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Barata Vallejo, S. Identificación de Cumarinas En Especies Autóctonas Del Género Pterocaulon Ell; Universidad de Belgrano: Buenos Aires, Argentina, 2010. [Google Scholar]
- Medeiros-Neves, B.; De Barros, F.M.C.; Von Poser, G.L.; Ferreira Teixeira, H. Quantification of Coumarins in Aqueous Extract of Pterocaulon balansae (Asteraceae) and Characterization of a New Compound. Molecules 2015, 20, 18083–18094. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Nam, J.H.; Kang, S.; Liu, Y.; Lee, J. Carvone and Its Eutectic Mixtures as Novel, Biodegradable, and Tunable Solvents to Extract Hydrophobic Compounds in Substitution for Volatile Toxic Solvents. Food Chem. 2022, 374, 131630. [Google Scholar] [CrossRef] [PubMed]
- Phaisan, S.; Makkliang, F.; Putalun, W.; Sakamoto, S.; Yusakul, G. Development of a Colorless Centella asiatica (L.) Urb. Extract Using a Natural Deep Eutectic Solvent (NADES) and Microwave-Assisted Extraction (MAE) Optimized by Response Surface Methodology. RSC Adv. 2021, 11, 8741–8750. [Google Scholar] [CrossRef]
- Singh, K.; Paidi, M.K.; Kulshrestha, A.; Bharmoria, P.; Mandal, S.K.; Kumar, A. Deep Eutectic Solvents Based Biorefining of Value-Added Chemicals from the Diatom Thalassiosira Andamanica at Room Temperature. Sep. Purif. Technol. 2022, 298, 121636. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Novel Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Wu, R.; Song, Y.; Shi, M.; Dong, Q.; Cao, J.; Yu, P.; Cao, F.; Su, E. Simultaneous Extraction and Deglycosylation for Flavonoid Analysis in Ginkgo Biloba Products Using a Two-Phase Deep Eutectic Solvent System. Microchem. J. 2024, 207, 112039. [Google Scholar] [CrossRef]
- Ozel, N.; Inam, A.; Elibol, M. Exploring Deep Eutectic Solvents for Enhanced Extraction of Bio-Active Compounds from Microalgae Biomass. J. Mol. Liq. 2024, 407, 125237. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Wang, H.; Tong, M.; Gong, Y. Green and Enhanced Extraction of Coumarins from Cortex Fraxini by Ultrasound-assisted Deep Eutectic Solvent Extraction. J. Sep. Sci. 2020, 43, 3441–3448. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Liu, F.; Zhang, X.; Wang, W.; Peng, Q. COSMO-RS Prediction and Experimental Verification of Deep Eutectic Solvents for Water Insoluble Pesticides with High Solubility. J. Mol. Liq. 2022, 349, 118139. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F. COSMO-RS: A Novel and Efficient Method for the a Priori Prediction of Thermophysical Data of Liquids. Fluid Phase Equilib. 2000, 172, 43–72. [Google Scholar] [CrossRef]
- Paduszyński, K. An Overview of the Performance of the COSMO-RS Approach in Predicting the Activity Coefficients of Molecular Solutes in Ionic Liquids and Derived Properties at Infinite Dilution. Phys. Chem. Chem. Phys. 2017, 19, 11835–11850. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wang, N.; Li, Q. Ultrasonic Assisted Extraction of Coumarins from Angelicae Pubescentis Radix by Betaine-Based Natural Deep Eutectic Solvents. Arab. J. Chem. 2024, 17, 105542. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods 2020, 9, 1409. [Google Scholar] [CrossRef]
- Zheng, B.; Yuan, Y.; Xiang, J.; Jin, W.; Johnson, J.B.; Li, Z.; Wang, C.; Luo, D. Green Extraction of Phenolic Compounds from Foxtail Millet Bran by Ultrasonic-Assisted Deep Eutectic Solvent Extraction: Optimization, Comparison and Bioactivities. LWT 2022, 154, 112740. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ali Redha, A.; Salauddin, M.; Harahap, I.A.; Rupasinghe, H.P.V. Factors Affecting the Extraction of (Poly) Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit. Rev. Anal. Chem. 2025, 55, 139–160. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of Ultrasound-Assisted Extraction of Moringa Peregrina Oil with Response Surface Methodology and Comparison with Soxhlet Method. Ind. Crops Prod. 2019, 131, 106–116. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
DES | No. | Density (g/mL) | ||||
---|---|---|---|---|---|---|
Experimental | Ref. | COSMO-RS | Absolute Deviation a | Error (%) b | ||
Lactic acid/Glycine/Water (3:1:3) | 1 | 1.218 | [21] | 1.215 | 0.003 | 0.25 |
Menthol/Lauric Acid (2:1) | 2 | 0.880 | [21] | 0.874 | 0.006 | 0.68 |
Choline Chloride/Glycerol (1:2) | 3 | 1.169 | [22] | 1.146 | 0.033 | 2.80 |
Choline Chloride/Ethylene Glycol (1:2) | 4 | 1.108 | [23] | 1.094 | 0.014 | 1.26 |
Betaine/Glycerol (1:2) | 5 | 1.210 | [24] | 1.126 | 0.084 | 6.94 |
Betaine/Glycerol (1:3) | 6 | 1.218 | [24] | 1.129 | 0.089 | 7.31 |
Betaine/Lactic Acid (1:2) | 7 | 1.180 | [25] | 1.160 | 0.020 | 1.69 |
Betaine/Ethylene Glycol (1:3) | 8 | 1.122 | [24] | 1.060 | 0.062 | 5.53 |
DES | No. | Peaks Area a | |
---|---|---|---|
Peak A | Peak B | ||
Menthol/Lauric Acid (2:1) | 2 | 162.817 | 271.208 |
Choline Chloride/Glycerol (1:2) | 3 | 55.031 | 155.797 |
Choline Chloride/Ethylene Glycol (1:2) | 4 | 156.292 | 501.045 |
Betaine/Ethylene Glycol (1:3) | 8 | 278.076 | 745.401 |
DES 2 | DES 8 | |
---|---|---|
Chlorophyll a/Coumarin 1 a | 0.5869 | 4.4444 |
Chlorophyll a/Coumarin 2 b | 0.6667 | 2.4693 |
Chlorophyll b/Coumarin 1 a | 0.6314 | 3.4056 |
Chlorophyll b/Coumarin 2 b | 0.7172 | 1.8922 |
DES | No. | Chlorophyl a (µg/g Extract) | Chlorophyl b (µg/g Extract) | Total Chlorophyl (µg/g Extract) |
---|---|---|---|---|
Men/Lau (2:1) | 2 | 32.06 ± 2.28 | 48.75 ± 6.15 | 80.41 ± 8.43 |
Bet/Et (1:3) | 8 | 14.58 ± 1.34 | 30.55 ± 2.33 | 45.13 ± 3.67 |
Compound | CAS Number | Source | Supplier Purity a | Molar Mass (g/mol) |
---|---|---|---|---|
Choline Chloride b | 67-48-1 | Sigma-Aldrich | ≥98.0% | 139.6 |
Betaine | 107-43-7 | Sigma-Aldrich | ≥98.0% | 117.1 |
(DL)-Menthol | 89-78-1 | Sigma-Aldrich | ≥95.0% | 156.3 |
Ethylene Glycol | 107-21-1 | Sigma-Aldrich | ≥99.5% | 62.1 |
Glycerol | 56-81-5 | Sigma-Aldrich | ≥99.5% | 92.1 |
Lauric Acid | 143-07-7 | Sigma-Aldrich | ≥98.0% | 200.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, V.H.; Cavassa, A.; Cardeal, J.; Brazil, N.; Teixeira, H.; von Poser, G.; Vargas, R.M.; Duarte, A.R.; Cassel, E. COSMO-RS Solubility Screening and Coumarin Extraction from Pterocaulon polystachyum with Deep Eutectic Solvents. Molecules 2025, 30, 3468. https://doi.org/10.3390/molecules30173468
Rodrigues VH, Cavassa A, Cardeal J, Brazil N, Teixeira H, von Poser G, Vargas RM, Duarte AR, Cassel E. COSMO-RS Solubility Screening and Coumarin Extraction from Pterocaulon polystachyum with Deep Eutectic Solvents. Molecules. 2025; 30(17):3468. https://doi.org/10.3390/molecules30173468
Chicago/Turabian StyleRodrigues, Victor Hugo, Arthur Cavassa, Júlia Cardeal, Nathalya Brazil, Helder Teixeira, Gilsane von Poser, Rubem Mário Vargas, Ana Rita Duarte, and Eduardo Cassel. 2025. "COSMO-RS Solubility Screening and Coumarin Extraction from Pterocaulon polystachyum with Deep Eutectic Solvents" Molecules 30, no. 17: 3468. https://doi.org/10.3390/molecules30173468
APA StyleRodrigues, V. H., Cavassa, A., Cardeal, J., Brazil, N., Teixeira, H., von Poser, G., Vargas, R. M., Duarte, A. R., & Cassel, E. (2025). COSMO-RS Solubility Screening and Coumarin Extraction from Pterocaulon polystachyum with Deep Eutectic Solvents. Molecules, 30(17), 3468. https://doi.org/10.3390/molecules30173468