Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches
Abstract
1. Introduction
2. Methodology
2.1. Electronic Structure Calculation
2.1.1. Fe/Y2O3 Interface Supercells
2.1.2. Computational Details for DFT Calculations
2.1.3. Solute Segregation Details
2.2. ML Approaches
2.2.1. Input Features
- (1)
- Geometrical features describe the local environment around the segregation site, specifically, the distances between the solute site (i) and its neighboring atoms (see Figure 1c). In our previous study [16], it was observed that the solute segregation behavior at Fe/Y2O3 interfaces is influenced by the local oxygen environment. Consequently, the distance between the segregation site (i) and the nearest oxygen atom (O), denoted as i-O, is identified as a key geometrical feature. Additionally, competition may exist between the solute, the nearest Fe atom (Fe) to the solute, and the nearest Y atom (Y) to bond with the nearest O atom. Therefore, other interatomic distances—i-Fe, i-Y, Fe-Y, Fe-O, and Y-O—were also included as geometrical features that can impact .
- (2)
- (3)
2.2.2. ML Techniques
Data Preprocessing
Kendall Rank Correlation
Random Forest
Kernel Ridge Regression (KRR)
Evaluation Metrics
3. Results and Discussion
3.1. Feature Importance Analysis
3.1.1. Heatmap Collected from Kendall Rank Correlation
3.1.2. Numerical Feature Importance Generated from Random Forest
3.2. ML Models for Predicting
3.2.1. Interface A: Role of Number of Features in Predicting Using KRR Model
3.2.2. Interface A: Role of the Data Size in Predicting Using the KRR Model
3.2.3. Information Transfer Between Interface A and B
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823. [Google Scholar] [CrossRef]
- Pryds, N.; Esposito, V. When two become one: An insight into 2D conductive oxide interfaces. J. Electroceramics 2017, 38, 1–23. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zheng, Y.J.; Song, Z.; Chi, D.; Wee, A.T.; Quek, S.Y. The organic–2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.S.; Steiner, M.; Chiu, H.Y.; Engel, M.; Bol, A.A.; Krupke, R.; Burghard, M.; Kern, K.; Avouris, P. The graphene–gold interface and its implications for nanoelectronics. Nano Lett. 2011, 11, 3833–3837. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; et al. Dual metal–organic framework heterointerface. ACS Cent. Sci. 2019, 5, 1591–1601. [Google Scholar] [CrossRef]
- Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M. Iron-based metal–organic frameworks in drug delivery and biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655. [Google Scholar] [CrossRef]
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Odette, G.R.; Hoelzer, D.T. Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. Jom 2010, 62, 84–92. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Anderoglu, O.; Choudhury, S.; Baldwin, J.K.; Wang, Y.; Misra, A.; Uberuaga, B.P. Nanoscale morphologies at alloyed and irradiated metal-oxide bilayers. J. Mater. Sci. 2015, 50, 2726–2734. [Google Scholar] [CrossRef]
- Principe, E.L.; Shaw, B.A.; Davis, G.D. Role of oxide/metal interface in corrosion resistance: Al-W and Al-Mo systems. Corrosion 2003, 59, 295–313. [Google Scholar] [CrossRef]
- Xu, Y.; Aguiar, J.A.; Yadav, S.K.; Anderoglu, O.; Baldwin, J.K.; Wang, Y.Q.; Valdez, J.A.; Misra, A.; Luo, H.M.; Uberuaga, B.P.; et al. Solute redistribution and phase stability at FeCr/TiO2−x interfaces under ion irradiation. Acta Mater. 2015, 89, 364–373. [Google Scholar] [CrossRef]
- Wang, R.; Klein, M.L.; Carnevale, V.; Borguet, E. Investigations of water/oxide interfaces by molecular dynamics simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1537. [Google Scholar] [CrossRef]
- Raghavan, K.; Foster, K.; Motakabbir, K.; Berkowitz, M. Structure and dynamics of water at the Pt (111) interface: Molecular dynamics study. J. Chem. Phys. 1991, 94, 2110–2117. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, L.; Hu, M.; Wang, J.S.; Li, B.; Keblinski, P. Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 235427. [Google Scholar] [CrossRef]
- Rayson, M.J.; Briddon, P.R. Highly efficient method for Kohn-Sham density functional calculations of 500–10000 atom systems. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 205104. [Google Scholar] [CrossRef]
- Choudhury, S.; Aguiar, J.A.; Fluss, M.J.; Hsiung, L.L.; Misra, A.; Uberuaga, B.P. Non-uniform solute segregation at semi-coherent metal/oxide interfaces. Sci. Rep. 2015, 5, 13086. [Google Scholar] [CrossRef]
- Choudhury, S.; Morgan, D.; Uberuaga, B.P. Massive interfacial reconstruction at misfit dislocations in metal/oxide interfaces. Sci. Rep. 2014, 4, 6533. [Google Scholar] [CrossRef] [PubMed]
- Shutthanandan, V.; Choudhury, S.; Manandhar, S.; Kaspar, T.C.; Wang, C.; Devaraj, A.; Wirth, B.D.; Thevuthasan, S.; Hoagland, R.G.; Dholabhai, P.P.; et al. Radiation tolerant interfaces: Influence of local stoichiometry at the misfit dislocation on radiation damage resistance of metal/oxide interfaces. Adv. Mater. Interfaces 2017, 4, 1700037. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Psychology Press: Hove, UK, 2005. [Google Scholar]
- Scherbela, M.; Hörmann, L.; Jeindl, A.; Obersteiner, V.; Hofmann, O.T. Charting the energy landscape of metal/organic interfaces via machine learning. Phys. Rev. Mater. 2018, 2, 043803. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, L.; Zhao, C.; Wu, Z.; Wang, J.; Yu, X.; Wang, Z.; Wei, W.; Liu, Y.; Mitrovic, I.Z.; et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 2022, 97, 107171. [Google Scholar] [CrossRef]
- Sun, H.; Lordi, V.; Takamura, Y.; Samanta, A. Unraveling the Correlation between the Interface Structures and Tunable Magnetic Properties of La1–x Sr x CoO3− δ/La1–x Sr x MnO3− δ Bilayers Using Deep Learning Models. ACS Appl. Mater. Interfaces 2024, 16, 30166–30175. [Google Scholar] [CrossRef] [PubMed]
- Oxley, M.P.; Yin, J.; Borodinov, N.; Somnath, S.; Ziatdinov, M.; Lupini, A.R.; Jesse, S.; Vasudevan, R.K.; Kalinin, S.V. Deep learning of interface structures from simulated 4D STEM data: Cation intermixing vs. roughening. Mach. Learn. Sci. Technol. 2020, 1, 04LT01. [Google Scholar] [CrossRef]
- Sharma, V.; Datta, D. Developing potential energy surfaces for graphene-based 2D–3D interfaces from modified high-dimensional neural networks for applications in energy storage. J. Electrochem. Energy Convers. Storage 2022, 19, 041006. [Google Scholar] [CrossRef]
- Inkson, B.J.; Threadgill, P.L. Y2O3 morphology in an oxide dispersion strengthened FeAl alloy prepared by mechanical alloying. MRS Online Proc. Libr. 1996, 460, 767. [Google Scholar] [CrossRef]
- Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 192, 222–229. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- McLean, D. Grain Boundaries in Metals; Clarendon Press: Oxford, UK, 1957. [Google Scholar]
- Razumovskiy, V.I.; Lozovoi, A.Y.; Razumovskii, I.M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2015, 82, 369–377. [Google Scholar] [CrossRef]
- Cottrell, A.H. Unified theory of effects of segregated interstitials on grain boundary cohesion. Mater. Sci. Technol. 1990, 6, 806–810. [Google Scholar] [CrossRef]
- Hudson, D.; Smith, G.D. Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe. Scr. Mater. 2009, 61, 411–414. [Google Scholar] [CrossRef]
- Petrazoller, J.; Guénolé, J.; Berbenni, S.; Richeton, T. On the effect of elastic anisotropy and polarizability on solute segregation at low-angle grain boundaries. Comput. Mater. Sci. 2025, 249, 113642. [Google Scholar] [CrossRef]
- Magri, R.; Zunger, A. Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices. Phys. Rev. B 2002, 65, 165302. [Google Scholar] [CrossRef]
- Ito, K.; Sawada, H. First-principles analysis of the grain boundary segregation of transition metal alloying elements in γFe. Comput. Mater. Sci. 2022, 210, 111050. [Google Scholar] [CrossRef]
- Ali, P.J.M.; Faraj, R.H.; Koya, E.; Ali, P.J.M.; Faraj, R.H. Data normalization and standardization: A technical report. Mach. Learn. Tech. Rep. 2014, 1, 1–6. [Google Scholar]
- Abdi, H. The Kendall rank correlation coefficient. Encycl. Meas. Stat. 2007, 2, 508–510. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2, pp. 1–758. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Dobie, R.A.; Wilson, M.J. A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. J. Acoust. Soc. Am. 1996, 100, 2236–2246. [Google Scholar] [CrossRef]
- Veyrat-Charvillon, N.; Standaert, F.X. Mutual Information Analysis: How, When and Why? In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 429–443. [Google Scholar]
- Ali, M.U.; Kabiru, A.; Haruna, C. Multi-Objective Feature Selection Using Non-dominated Sorting Mechanisms and Bi-Directional Elimination for Heart Disease Classification. Lautech. J. Comput. Inform. 2024, 4, 1–14. [Google Scholar]
- Lu, Y.; Treadway, J.; Ghimire, P.; Han, Y.; Choudhury, S. Prediction of electrohydrodynamic printing behavior using machine learning approaches. Int. J. Adv. Manuf. Technol. 2025, 136, 4439–4454. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhao, P.W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C 2020, 101, 051301. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Z.H. Nuclear charge radius predictions by kernel ridge regression with odd–even effects. Nucl. Sci. Tech. 2024, 35, 19. [Google Scholar] [CrossRef]
- Moreno-Salinas, D.; Moreno, R.; Pereira, A.; Aranda, J.; de la Cruz, J.M. Modelling of a surface marine vehicle with kernel ridge regression confidence machine. Appl. Soft Comput. 2019, 76, 237–250. [Google Scholar] [CrossRef]
- Chen, H.L.; Yang, B.; Liu, J.; Liu, D.Y. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert. Syst. Appl. 2011, 38, 9014–9022. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Points of Significance: Simple linear regression. Nat. Methods 2015, 12, 999–1000. [Google Scholar] [CrossRef]
- Miles, J. R-squared, adjusted R-squared. In Encyclopedia of Statistics in Behavioral Science; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Vidianto, A.; Sindunata, A.; Yudistira, N. Air Pollution Particulate Matter (PM2.5) Forecasting using Long Short Term Memory Model. In Proceedings of the 6th International Conference on Sustainable Information Engineering and Technology, Malang, Indonesia, 13–14 September 2021; pp. 139–145. [Google Scholar]
- Lapuerta, M.; Agudelo, J.R.; Prorok, M.; Boehman, A.L. Bulk modulus of compressibility of diesel/biodiesel/HVO blends. Energy Fuels 2012, 26, 1336–1343. [Google Scholar] [CrossRef]
- Mahabir, A.D.; Balatsky, A.V.; Haraldsen, J.T. Understanding the onset of negative electronic compressibility in single-band and two-band two-dimensional electron gases: Application to LaAlO3/SrTiO3. Phys. Rev. B 2021, 103, 125141. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Seah, M.P.; Hondros, E.D. Grain boundary segregation. Proc. R. Soc. Lond. A 1973, 335, 191–212. [Google Scholar] [CrossRef]
- Bonin, K.D.; Kresin, V.V. Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters; World Scientific: Singapore, 1997. [Google Scholar]
Geometry | Chemistry | Strain Energy |
---|---|---|
i (a)-Fe (b) (Å) | Ionic radius (Å) [16] | Bulk modulus (GPa) [29] |
i (a)-Y (c) (Å) | Crystal structure [16] | |
i (a)-O (d) (Å) | Valency [16] | |
Fe (b)-O (d) (Å) | Electronegativity [16] | |
Fe (b)-Y (c) (Å) | Oxide forming tendency (eV/atom) [16] | |
Y (c)-O (d) (Å) | Bulk cohesive energy (eV/atom) [30] | |
Electron affinity (eV/atom) [31] | ||
First Ionization potential (eV/atom) [32] | ||
Dipole polarizability (a.u.) [33] | ||
Electronic configuration [34] | ||
Magnetic moment (BM) [35] |
KRR Model | Alpha (a) | Gamma (b) | Degree (c) | Kernel (d) |
---|---|---|---|---|
Figure 4a | 0.8 | 0.1 | 3 | polynomial |
Figure 5b | 0.4 | |||
Figure 5c | 0.1 | |||
Figure 6a | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Uberuaga, B.P.; Choudhury, S. Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches. Molecules 2025, 30, 3344. https://doi.org/10.3390/molecules30163344
Lu Y, Uberuaga BP, Choudhury S. Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches. Molecules. 2025; 30(16):3344. https://doi.org/10.3390/molecules30163344
Chicago/Turabian StyleLu, Yizhou, Blas Pedro Uberuaga, and Samrat Choudhury. 2025. "Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches" Molecules 30, no. 16: 3344. https://doi.org/10.3390/molecules30163344
APA StyleLu, Y., Uberuaga, B. P., & Choudhury, S. (2025). Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches. Molecules, 30(16), 3344. https://doi.org/10.3390/molecules30163344