Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosaccharides with Prebiotic and Antidiabetic Benefits
Abstract
1. Introduction
2. Results
2.1. Optimization of Extraction Conditions
2.1.1. Optimization of Extraction Conditions Using Plackett–Burman Design
2.1.2. Optimization of Extraction Conditions Using Box–Behnken Design
2.2. Cultivar Comparison
2.2.1. TPC Comparison
2.2.2. HPLC Analysis
2.2.3. Antioxidant Activity
2.2.4. Antidiabetic Activity
2.3. Principal Component Analysis
2.4. System Obtaining and Assessing Properties
2.4.1. FT-IR Analysis
2.4.2. Content of Active Compounds
2.4.3. Antioxidant Activity of Obtained Systems
2.4.4. Antidiabetic Activity of Obtained Systems
2.4.5. PAMPA Assay
2.4.6. Dissolution Study
2.4.7. Microbiological Study
3. Discussion
4. Materials and Methods
4.1. Optimization of Extraction
4.1.1. Plackett–Burman Design
4.1.2. Box–Behnken Design
4.2. Cultivars Comparision
4.3. HPLC (High-Performance Liquid Chromatography) Analysis
4.4. Antioxidant Activity
4.4.1. DPPH Assay
4.4.2. CUPRAC Assay
4.5. Antidiabetic Activity
4.6. Statistical Analysis
4.7. System Preparation
4.8. FT-IR Analysis
4.9. PAMPA Assay
4.10. Dissolution Study
4.11. Prebiotic Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COS | Chitooligosaccharides |
CUPRAC | Cupric Ion Reducing Antioxidant Capacity |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FOS | Fructo-oligosaccharides |
FT-IR | Fourier-Transform Infrared Spectroscopy |
GOS | Galactooligosaccharides |
HPLC | High-Performance Liquid Chromatography |
PAMPA | Parallel Artificial Membrane Permeability Assay |
PAS | Prebiotic Activity Score |
PI | Prebiotic Index |
TPC | Total Phenolic Content |
References
- Huang, F.; Zhao, R.; Xia, M.; Shen, G.X. Impact of Cyanidin-3-Glucoside on Gut Microbiota and Relationship with Metabolism and Inflammation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice. Microorganisms 2020, 8, 1238. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, F.; Shen, G.X. Dose-Responses Relationship in Glucose Lowering and Gut Dysbiosis to Saskatoon Berry Powder Supplementation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice. Microorganisms 2021, 9, 1553. [Google Scholar] [CrossRef]
- Jurí ková, T.; Balla, Š.; Sochor, J.; Pohanka, M.; Mlček, J.; Baroň, M. Flavonoid Profile of Saskatoon Berries (Amelanchier Alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar] [CrossRef]
- Huang, F. Impact of Saskatoon Berry Powder on Metabolism and Gut Microbiota in Diet-Induced Insulin Resistant Mice; University of Manitoba: Winnipeg, MB, Canada, 2021. [Google Scholar]
- Zhao, L.; Huang, F.; Hui, A.L.; Shen, G.X. Bioactive Components and Health Benefits of Saskatoon Berry. J. Diabetes Res. 2020, 2020, 3901636. [Google Scholar] [CrossRef]
- Moghadasian, M.H.; Masisi, K.; Le, K.; Beta, T.; Shen, G.X.; Fischer, G. The Potential Anti-Diabetic Effects of Saskatoon Berry in Experimental Mouse Models. Austin J. Nutr. Food Sci. 2019, 7, 10–26420. [Google Scholar] [CrossRef]
- Zhao, R.; Shen, G.X. Impact of Anthocyanin Component and Metabolite of Saskatoon Berry on Gut Microbiome and Relationship with Fecal Short Chain Fatty Acids in Diet-Induced Insulin Resistant Mice. J. Nutr. Biochem. 2023, 111, 109201. [Google Scholar] [CrossRef]
- Catling, P.M.; Mitrow, G. Regional Variation in Amelanchier in the Whitewood Area of Southeastern Saskatchewan and the First Saskatchewan Records of Amelanchier sanguinea. Can. Field-Nat. 2006, 120, 428. [Google Scholar] [CrossRef][Green Version]
- Kuklina, A.G.; Sorokopudov, B.H.; Stepanova, A.B. Amelanchier Medik. (Rosaceae) Fruits—A Nutrition Dietary Product and a Source Material for Phytopharmacology. Agrobiodiversity Improv. Nutr. Health Life Qual. 2017, 1, 268–272. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of Phenolic Compounds and Antioxidant Potential Between Selected Edible Fruits and Their Leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Rational Use of Prebiotics for Gut Microbiota Alterations: Specific Bacterial Phylotypes and Related Mechanisms. J. Funct. Foods 2020, 66, 103838. [Google Scholar] [CrossRef]
- Wei, X.; Yu, L.; Zhang, C.; Ni, Y.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q.; Tian, F. Prebiotic Activity of Chitooligosaccharides and Their Ability to Alleviate Necrotizing Enterocolitis in Newborn Rats. Carbohydr. Polym. 2023, 299, 120156. [Google Scholar] [CrossRef]
- Guan, Z.; Feng, Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. Int. J. Mol. Sci. 2022, 23, 6761. [Google Scholar] [CrossRef]
- Nurmalasari; Liu, C.-H.; Maftuch, I.M.; Hu, S.-Y. Dietary Supplementation with Prebiotic Chitooligosaccharides Enhances the Growth Performance, Innate Immunity and Disease Resistance of Nile Tilapia (Oreochromis niloticus). Fishes 2022, 7, 313. [Google Scholar] [CrossRef]
- Kim, H.; Cheon, G.Y.; Kim, J.H.; Choi, R.-Y.; Kim, I.-W.; Suh, H.J.; Hong, K.-B.; Han, S.H. Preparation of Chitosan Oligosaccharides from Chitosan of Tenebrio Molitor and Its Prebiotic Activity. Appl. Biol. Chem. 2024, 67, 84. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, S.K.; Kundu, A.; Grover, M.; Saha, S. Role of Fructooligosaccharides in Promoting Beneficial Gut Bacteria: A Prebiotic Perspective. Food Biosci. 2025, 63, 105726. [Google Scholar] [CrossRef]
- Mei, Z.; Yuan, J.; Li, D. Biological Activity of Galacto-Oligosaccharides: A Review. Front. Microbiol. 2022, 13, 993052. [Google Scholar] [CrossRef]
- Kaur, A.P.; Bhardwaj, S.; Dhanjal, D.S.; Nepovimova, E.; Cruz-Martins, N.; Kuča, K.; Chopra, C.; Singh, R.; Kumar, H.; Șen, F.; et al. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021, 11, 440. [Google Scholar] [CrossRef]
- Arnold, J.W.; Roach, J.; Fabela, S.; Moorfield, E.; Ding, S.; Blue, E.; Dagher, S.; Magness, S.; Tamayo, R.; Bruno-Barcena, J.M.; et al. The Pleiotropic Effects of Prebiotic Galacto-Oligosaccharides on the Aging Gut. Microbiome 2021, 9, 31. [Google Scholar] [CrossRef]
- Hu, Y.; Aljumaah, M.R.; Azcarate-Peril, M.A. Galacto-Oligosaccharides and the Elderly Gut: Implications for Immune Restoration and Health. Adv. Nutr. 2024, 15, 100263. [Google Scholar] [CrossRef]
- Ji, X.-G.; Chang, K.-L.; Chen, M.; Zhu, L.-L.; Osman, A.; Yin, H.; Zhao, L.-M. In Vitro Fermentation of Chitooligosaccharides and Their Effects on Human Fecal Microbial Community Structure and Metabolites. LWT 2021, 144, 111224. [Google Scholar] [CrossRef]
- Chen, Y.; Ling, Z.; Wang, X.; Zong, S.; Yang, J.; Zhang, Q.; Zhang, J.; Li, X. The Beneficial Mechanism of Chitosan and Chitooligosaccharides in the Intestine on Different Health Status. J. Funct. Foods 2022, 97, 105232. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Z.; Liu, T.; Feng, H.; Liu, Y.; Chen, K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024, 13, 2157. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay Between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Koumpouli, D.; Koumpouli, V.; Koutelidakis, A.E. Functional Foods, Gut Microbiome and Association with Obesity and Metabolic Syndrome: A Literature Review. Appl. Sci. 2024, 14, 5578. [Google Scholar] [CrossRef]
- Medda, S.; Dessena, L.; Mulas, M. Monitoring of the PAL Enzymatic Activity and Polyphenolic Compounds in Leaves and Fruits of Two Myrtle Cultivars during Maturation. Agriculture 2020, 10, 389. [Google Scholar] [CrossRef]
- Dehghan, S.; Sadeghi, M.; Pöppel, A.; Fischer, R.; Lakes-Harlan, R.; Kavousi, H.R.; Vilcinskas, A.; Rahnamaeian, M. Differential Inductions of Phenylalanine Ammonia-Lyase and Chalcone Synthase During Wounding, Salicylic Acid Treatment, and Salinity Stress in Safflower, Carthamus Tinctorius. Biosci. Rep. 2014, 34, e00114. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Baranović, G.; Šegota, S. Infrared Spectroscopy of Flavones and Flavonols. Reexamination of the Hydroxyl and Carbonyl Vibrations in Relation to the Interactions of Flavonoids with Membrane Lipids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 473–486. [Google Scholar] [CrossRef]
- Espina, A.; Sanchez-Cortes, S.; Jurašeková, Z. Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks. Molecules 2022, 27, 279. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential against Digestive Enzymes of 25 Herbal Infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef]
- Nikonenko, N.A.; Buslov, D.K.; Sushko, N.I.; Zhbankov, R.G. Spectroscopic Manifestation of Stretching Vibrations of Glycosidic Linkage in Polysaccharides. J. Mol. Struct. 2005, 752, 20–24. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lubinska-Szczygeł, M.; Park, Y.-S.; Deutsch, J.; Ezra, A.; Luksrikul, P.; Beema Shafreen, R.M.; Gorinstein, S. Characterization of Bioactivity of Selective Molecules in Fruit Wines by FTIR and NMR Spectroscopies, Fluorescence and Docking Calculations. Molecules 2023, 28, 6036. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical Functional Groups of Extractives, Cellulose and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Nikonenko, N.A.; Buslov, D.K.; Sushko, N.I.; Zhbankov, R.G. Investigation of Stretching Vibrations of Glycosidic Linkages in Disaccharides and Polysaccharides with Use of IR Spectra Deconvolution. Biopolymers 2000, 57, 257–262. [Google Scholar] [CrossRef]
- Renard, C.M.G.C.; Watrelot, A.A.; Le Bourvellec, C. Interactions between Polyphenols and Polysaccharides: Mechanisms and Consequences in Food Processing and Digestion. Trends Food Sci. Technol. 2017, 60, 43–51. [Google Scholar] [CrossRef]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and Near-Infrared Reflection Spectral Database of Natural Organic Materials in the Cultural Heritage Field. Int. J. Anal. Chem. 2018, 2018, 7823248. [Google Scholar] [CrossRef]
- Shurvell, H.F. Spectra–Structure Correlations in the Mid- and Far-Infrared. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-470-02732-5. [Google Scholar]
- Tzeng, H.-P.; Liu, S.-H.; Chiang, M.-T. Antidiabetic Properties of Chitosan and Its Derivatives. Mar. Drugs 2022, 20, 784. [Google Scholar] [CrossRef]
- Gil-Martínez, L.; Aznar-Ramos, M.J.; del Carmen Razola-Diaz, M.; Mut-Salud, N.; Falcón-Piñeiro, A.; Baños, A.; Guillamón, E.; Gómez-Caravaca, A.M.; Verardo, V. Establishment of a Sonotrode Extraction Method and Evaluation of the Antioxidant, Antimicrobial and Anticancer Potential of an Optimized Vaccinium myrtillus L. Leaves Extract as Functional Ingredient. Foods 2023, 12, 1688. [Google Scholar] [CrossRef]
- Pollini, L.; Tringaniello, C.; Ianni, F.; Blasi, F.; Manes, J.; Cossignani, L. Impact of Ultrasound Extraction Parameters on the Antioxidant Properties of Moringa Oleifera Leaves. Antioxidants 2020, 9, 277. [Google Scholar] [CrossRef]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced Yield of Oleuropein from Olive Leaves Using Ultrasound-assisted Extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef]
- Mitra, P.; Meda, V. Optimization of Microwave-Vacuum Drying Parameters of Saskatoon Berries Using Response Surface Methodology. Dry. Technol. 2009, 27, 1089–1096. [Google Scholar] [CrossRef]
- Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules 2022, 27, 1292. [Google Scholar] [CrossRef]
- Didur, O.O.; Khromykh, N.O.; Lykholat, T.Y.; Alexeyeva, A.A.; Liashenko, O.V.; Lykholat, Y.V. Comparative Analysis of the Polyphenolic Compounds Accumulation and the Antioxidant Capacity of Fruits of Different Species of the Genus Amelanchier. Agrology 2022, 5, 3–7. [Google Scholar] [CrossRef]
- Szpadzik, E.; Krupa, T. The Yield, Fruit Quality and Some of Nutraceutical Characteristics of Saskatoon Berries (Amelanchier alnifolia Nutt.) in the Conditions of Eastern Poland. Agriculture 2021, 11, 824. [Google Scholar] [CrossRef]
- Lavola, A.; Karjalainen, R.; Julkunen-Tiitto, R. Bioactive Polyphenols in Leaves, Stems, and Berries of Saskatoon (Amelanchier alnifolia Nutt.) Cultivars. J. Agric. Food Chem. 2012, 60, 1020–1027. [Google Scholar] [CrossRef]
- Meczarska, K.; Cyboran-Mikolajczyk, S.; Wloch, A.; Bonarska-Kujawa, D.; Oszmianski, J.; Kleszczynska, H. Polyphenol Content and Bioactivity of Saskatoon (Amelanchier alnifolia Nutt.) Leaves and Berries. Acta Pol. Pharm 2017, 74, 660–669. [Google Scholar]
- Lachowicz, S.; Oszmiański, J.; Seliga, Ł.; Pluta, S. Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules 2017, 22, 853. [Google Scholar] [CrossRef]
- Asyakina, L.; Atuchin, V.V.; Drozdova, M.; Kozlova, O.; Prosekov, A. Ex Vivo and in Vitro Antiaging and Antioxidant Extract Activity of the Amelanchier Ovalis From Siberia. Int. J. Mol. Sci. 2022, 23, 15156. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- du Preez, R.; Wanyonyi, S.; Mouatt, P.; Panchal, S.K.; Brown, L. Saskatoon Berry Amelanchier Alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients 2020, 12, 931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.J.; Rimando, A.M.; Fish, W.; Mentreddy, S.R.; Mathews, S.T. Serviceberry [Amelanchier Alnifolia (Nutt.) Nutt. Ex. M. Roem (Rosaceae)] Leaf Extract Inhibits Mammalian α-Glucosidase Activity and Suppresses Postprandial Glycemic Response in a Mouse Model of Diet-Induced Obesity and Hyperglycemia. J. Ethnopharmacol. 2012, 143, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The Potential Effects of Chlorogenic Acid, the Main Phenolic Components in Coffee, on Health: A Comprehensive Review of the Literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Dubey, S.; Ganeshpurkar, A.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Glycolytic Enzyme Inhibitory and Antiglycation Potential of Rutin. Future J. Pharm. Sci. 2017, 3, 158–162. [Google Scholar] [CrossRef]
- Borges, P.H.O.; Pedreiro, S.; Baptista, S.J.; Geraldes, C.F.G.C.; Batista, M.T.; Silva, M.M.C.; Figueirinha, A. Inhibition of α-Glucosidase by Flavonoids of Cymbopogon Citratus (DC) Stapf. J. Ethnopharmacol. 2021, 280, 114470. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The Inhibitory Effects of Flavonoids on α-Amylase and α-Glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Li, Y.; Sun, Y.; Xu, W.; Wang, H.; Zhang, R.; Yi, Y. Lotus Root Polysaccharide-Phenol Complexes: Interaction, Structure, Antioxidant, and Anti-Inflammatory Activities. Foods 2023, 12, 577. [Google Scholar] [CrossRef]
- Yuan, W.-P.; Liu, B.; Liu, C.-H.; Wang, X.-J.; Zhang, M.-S.; Meng, X.-M.; Xia, X.-K. Antioxidant Activity of Chito-Oligosaccharides on Pancreatic Islet Cells in Streptozotocin-Induced Diabetes in Rats. World J. Gastroenterol. 2009, 15, 1339–1345. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The Antioxidant Activity of Polysaccharides: A Structure-Function Relationship Overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Makalani, F.; Khazaei, M.R.; Ghanbari, E.; Khazaei, M.; Makalani, F.; Khazaei, M.R.; Ghanbari, E.; Khazaei, M. Crab Shell Extract Improves Serum Biochemical Markers and Histological Changes of Pancreas in Diabetic Rats. Int. J. Morphol. 2017, 35, 1437–1443. [Google Scholar] [CrossRef]
- Liu, S.H.; Huang, Y.W.; Wu, C.T.; Chiu, C.Y.; Chiang, M.T. Low Molecular Weight Chitosan Accelerates Glucagon-like Peptide-1 Secretion in Human Intestinal Endocrine Cells via a P38-Dependent Pathway. J. Agric. Food Chem. 2013, 61, 4855–4861. [Google Scholar] [CrossRef]
- Zhu, D.; Yan, Q.; Liu, J.; Wu, X.; Jiang, Z. Can Functional Oligosaccharides Reduce the Risk of Diabetes Mellitus? FASEB J. 2019, 33, 11655–11667. [Google Scholar] [CrossRef]
- Gonai, M.; Shigehisa, A.; Kigawa, I.; Kurasaki, K.; Chonan, O.; Matsuki, T.; Yoshida, Y.; Aida, M.; Hamano, K.; Terauchi, Y. Galacto-Oligosaccharides Ameliorate Dysbiotic Bifidobacteriaceae Decline in Japanese Patients with Type 2 Diabetes. Benef. Microbes 2017, 8, 705–716. [Google Scholar] [CrossRef]
- Boyanov, K.O.; Choneva, M.A.; Dimov, I.; Dimitrov, I.V.; Vlaykova, T.I.; Gerginska, F.D.; Delchev, S.D.; Hrischev, P.I.; Georgieva, K.N.; Bivolarska, A.V. Effect of Oligosaccharides on the Antioxidant, Lipid and Inflammatory Profiles of Rats with Streptozotocin-Induced Diabetes Mellitus. Z. Naturforschung C 2022, 77, 379–386. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Li, J.; Liu, W.; Warda, M.; Cui, B.; Abd El-Aty, A.M. Oligosaccharides Derived from Lycium Barbarum Ameliorate Glycolipid Metabolism and Modulate the Gut Microbiota Community and the Faecal Metabolites in a Type 2 Diabetes Mouse Model: Metabolomic Bioinformatic Analysis. Food Funct. 2022, 13, 5416–5429. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Bujard, A.; Skalicka-Woźniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.-A.; Wolfender, J.-L. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Medica 2016, 82, 424–431. [Google Scholar] [CrossRef]
- Abioye, R.O.; Nwamba, O.C.; Okagu, O.D.; Udenigwe, C.C. Synergistic Effect of Acarbose–Chlorogenic Acid on α-Glucosidase Inhibition: Kinetics and Interaction Studies Reveal Mixed-Type Inhibition and Denaturant Effect of Chlorogenic Acid. ACS Food Sci. Technol. 2023, 3, 1255–1268. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and Chlorogenic Acids Inhibit Key Enzymes Linked to Type 2 Diabetes (In Vitro): A Comparative Study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 3715. [Google Scholar] [CrossRef]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Karav, S.; Witkowska, A.M. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants 2024, 13, 1220. [Google Scholar] [CrossRef]
- Stasiłowicz-Krzemień, A.; Rosiak, N.; Płazińska, A.; Płaziński, W.; Miklaszewski, A.; Tykarska, E.; Cielecka-Piontek, J. Cyclodextrin Derivatives as Promising Solubilizers to Enhance the Biological Activity of Rosmarinic Acid. Pharmaceutics 2022, 14, 2098. [Google Scholar] [CrossRef]
- Sip, S.; Szymanowska, D.; Chanaj-Kaczmarek, J.; Skalicka-Woźniak, K.; Budzyńska, B.; Wronikowska-Denysiuk, O.; Słowik, T.; Szulc, P.; Cielecka-Piontek, J. Potential for Prebiotic Stabilized Cornus mas L. Lyophilized Extract in the Prophylaxis of Diabetes Mellitus in Streptozotocin Diabetic Rats. Antioxidants 2022, 11, 380. [Google Scholar] [CrossRef]
- Sip, S.; Stasiłowicz-Krzemień, A.; Sip, A.; Szulc, P.; Neumann, M.; Kryszak, A.; Cielecka-Piontek, J. Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L. Molecules 2024, 29, 3574. [Google Scholar] [CrossRef]
- Sip, S.; Sip, A.; Miklaszewski, A.; Żarowski, M.; Cielecka-Piontek, J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023, 28, 5209. [Google Scholar] [CrossRef] [PubMed]
- Sip, S.; Sip, A.; Szulc, P.; Selwet, M.; Żarowski, M.; Czerny, B.; Cielecka-Piontek, J. Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants 2024, 13, 357. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Methanol content (%) | 58.06 |
Ratio (m/v) | 26.03 |
Time (min) | 73.56 |
Chlorogenic Acid | Epicatechin | EGCG | Rutin | Hyperoside | Isoquercetin | |
---|---|---|---|---|---|---|
(mg/g DW) | (mg/g DW) | (mg/g DW) | (mg/g DW) | (mg/g DW) | (mg/g DW) | |
W1 | 8.03 ± 0.01 a | 3.48 ± 0.19 e,f | 0.98 ± 0.12 b | 1.03 ± 0.10 c | 2.21 ± 2.28 b | 1.65 ± 0.09 c |
W2 | 18.48 ± 0.47 f | 3.91 ± 0.09 f,g | 1.12 ± 0.01 b | 2.28 ± 0.02 f,g | 5.77 ± 5.72 e | 2.50 ± 0.03 d,e |
W3 | 12.85 ± 0.15 c | 1.83 ± 0.02 a,b | 2.04 ± 0.01 e | 2.02 ± 0.16 e,f | 6.08 ± 6.04 e,f | 3.39 ± 0.03 g |
W4 | 15.77 ± 0.66 d,e | 3.01 ± 0.50 e,f | 1.17 ± 0.16 b | 2.40 ± 0.18 g,h | 5.60 ± 5.76 e | 2.65 ± 0.13 e,f |
W5 | 9.97 ± 0.41 b | 2.22 ± 0.01 b,c | 1.96 ± 0.01 d,b | 1.41 ± 0.09 d | 3.73 ± 3.46 c | 1.27 ± 0.06 b |
W6 | 15.12 ± 0.41 d | 4.88 ± 0.08 h | 2.55 ± 0.07 f | 3.43 ± 0.04 i | 4.73 ± 4.78 d | 2.84 ± 0.04 f |
W7 | 16.65 ± 0.37 e | 2.69 ± 0.10 c,d | 1.52 ± 0.01 c | 2.44 ± 0.02 g,h | 4.08 ± 4.18 c,d | 2.27 ± 0.02 d |
W8 | 13.51 ± 0.05 c | 4.50 ± 0.03 g,h | 3.30 ± 0.03 g | 1.72 ± 0.04 d,e | 3.52 ± 3.59 c | 1.42 ± 0.01 b,c |
W9 | 19.38 ± 0.38 f | 2.00 ± 0.13 a,b,c | 1.50 ± 0.01 c | 0.66 ± 0.04 b | 1.89 ± 1.85 b | 1.13 ± 0.00 b |
W10 | 8.03 ± 0.01 a | 1.40 ± 0.00 a | 0.49 ± 0.00 a | 0.27 ± 0.01 a | 0.89 ± 0.99 b | 0.74 ± 0.13 a |
W11 | 12.99 ± 0.11 c | 2.07 ± 0.10 a,b,c | 1.73 ± 0.02 c,d | 2.68 ± 0.01 h | 6.35 ± 6.59 f | 3.65 ± 0.15 g |
Chlorogenic Acid | Epicatechin | EGCG | Rutin | Hyperoside | Isoquercetin | |
---|---|---|---|---|---|---|
(mg/g of System) | (mg/g of System) | (mg/g of System) | (mg/g of System) | (mg/g of System) | (mg/g of System) | |
FOS system | 19.48 ± 0.11 a | 3.82 ± 0.17 a | 2.47 ± 0.15 a | 2.92 ± 0.01 a | 7.64 ± 0.01 a | 2.83 ± 0.15 a |
GOS system | 19.75 ± 0.25 a | 4.16 ± 0.16 a | 2.69 ± 0.10 a | 3.08 ± 0.01 a | 8.35 ± 0.05 a | 3.02 ± 0.02 a |
COS system | 20.13 ± 0.02 a | 4.12 ± 0.14 a | 2.55 ± 0.18 a | 2.92 ± 0.33 a | 7.82 ± 0.82 a | 2.87 ± 0.23 a |
Freeze-dried extract | 39.23 ± 0.75 b | 6.93 ± 0.16 b | 5.15 ± 0.06 b | 7.34 ± 2.37 b | 15.35 ± 0.09 b | 5.71 ± 0.01 b |
Sample | CUPRAC IC0.5 (mg/mL) | DPPH IC50 (mg/mL) |
---|---|---|
FOS system | 0.166 ± 0.005 c | 0.172 ± 0.008 c |
GOS system | 0.164 ± 0.002 c | 0.169 ± 0.005 c |
COS system | 0.166 ± 0.001 c | 0.174 ± 0.010 c |
Freeze-dried extract | 0.083 ± 0.002 b | 0.085 ± 0.005 b |
Ascorbic acid | 0.072 ± 0.003 a | 0.068 ± 0.005 a |
Sample | α-Glucosidase Inhibition IC50 (mg/mL) |
---|---|
FOS system | 0.29 ± 0.02 b |
GOS system | 0.31 ± 0.03 b |
COS system | 0.32 ± 0.01 b |
Freeze-dried extract | 0.15 ± 0.7 a |
Acarbose | 3.24 ± 0.03 c |
Sample | Papp |
---|---|
FOS system | <1 × 10−6 cm/s |
GOS system | <1 × 10−6 cm/s |
COS system | <1 × 10−6 cm/s |
Freeze-dried extract | <1 × 10−6 cm/s |
Category | Key Findings | Mechanistic Insights |
---|---|---|
Optimized Extraction Parameters | 58.06% MeOH; 26.03 m/v; 73.56 min (Box–Behnken design) | Optimal solvent polarity and extraction time enhanced phenolic solubility and diffusion, maximizing compound recovery. |
Polyphenolic Content | W2 (Obelisk) showed the highest TPC and rich in chlorogenic acid. | High chlorogenic acid and phenolic content provided strong radical-scavenging and enzyme-inhibitory potential. |
Antioxidant Activity | W2 (Obelisk), W5 (Thiessen), and W6 (Martin) cultivars demonstrated strongest CUPRAC and DPPH activity. | A. alnifolia extract rich in polyphenolic compounds neutralize free radicals through hydrogen donation and electron transfer. |
Antidiabetic Activity | W1 (Smoky), W2 (Obelisk), W4 (Northline), and W11 (Pembina) extracts showed strongest α-glucosidase inhibition. | A. alnifolia extract rich in polyphenolic compounds inhibits α-glucosidase activity, and has the potential to slow carbohydrate hydrolysis and glucose release. |
PCA | PCA explained 68.12% of the total variance (PC1: 48.19%, PC2: 19.93%). Antioxidant capacity (CUPRAC, DPPH), TPC, and chlorogenic acid strongly correlated with PC1. Rutin, hyperoside, epicatechin, EGCG, isoquercetin and α-glucosidase contributed to PC2 differentiation. | PCA confirmed that higher phenolic content, particularly chlorogenic acid, underlies stronger antioxidant activity, and enzyme inhibition is correlated with other flavonoids. |
System Preparation | Lyophilized systems maintained bioactive compound content and preserved antioxidant and antidiabetic properties. | Lyophilization avoided thermal degradation, maintaining structural integrity and preserving functional properties. |
Molecular Interactions (FT-IR) | FT-IR confirmed hydrogen bonding and interactions with oligosaccharides. | Intermolecular bonds stabilized polyphenols, enhancing solubility. |
Chlorogenic Acid Release | The COS system provided the fastest initial release, while the lyophilized extract exhibited the most sustained profile. FOS and GOS systems showed intermediate release patterns. | COS improved solubility via hydrogen bonding, while lyophilization modulated release through matrix entrapment. |
Prebiotic Effects | Systems increased PI up to 2×, especially stimulating B. longum and B. animalis. | Synergy between oligosaccharides and A. alnifolia extract promoted beneficial bacterial growth and enhanced prebiotic function. |
Parameter | Minimum Level (−1) | Maximum Level (1) |
---|---|---|
Methanol content (%) | 0 | 100 |
Temperature (°C) | 25 | 80 |
Time (min) | 15 | 90 |
Ratio (mg/mL) | 10 | 50 |
Sonification intensity (%) | 0 | 100 |
pH | 2 | 10 |
Particle size (sieve) | 125 | 1000 |
Run Order | Methanol Content (%) | Temperature (°C) | Time (min) | Ratio (mg/mL) | Sonification Intensity (%) | pH | Particle Size (Sieve) |
---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 |
2 | 1 | −1 | −1 | −1 | −1 | 1 | 1 |
3 | −1 | 1 | −1 | −1 | 1 | −1 | 1 |
4 | 1 | 1 | −1 | 1 | −1 | −1 | −1 |
5 | −1 | −1 | 1 | 1 | −1 | −1 | 1 |
6 | 1 | −1 | 1 | −1 | 1 | −1 | −1 |
7 | −1 | 1 | 1 | −1 | −1 | 1 | −1 |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Parameter | Minimum Level (−1) | Medium Level (0) | Maximum Level (1) |
---|---|---|---|
MeOH content (%) | 0 | 5 | 100 |
Time (min) | 15 | 52.5 | 90 |
Ratio (mg/mL) | 10 | 30 | 50 |
Run Order | Methanol Content (%) | Ratio (m/v) | Time (min) |
---|---|---|---|
1 | −1 | −1 | 0 |
2 | 1 | −1 | 0 |
3 | −1 | 1 | 0 |
4 | 1 | 1 | 0 |
5 | −1 | 0 | −1 |
6 | 1 | 0 | −1 |
7 | −1 | 0 | 1 |
8 | 1 | 0 | 1 |
9 | 0 | −1 | −1 |
10 | 0 | 1 | −1 |
11 | 0 | −1 | 1 |
12 | 0 | 1 | 1 |
13 | 0 | 0 | 0 |
14 | 0 | 0 | 0 |
15 | 0 | 0 | 0 |
Variety | Growth Vigor | Habit | Root Suckers | Fruit Size | Fruit Shape | Wax Bloom | Skin Color | Sweetness | Acidity | Ripening Time |
---|---|---|---|---|---|---|---|---|---|---|
Northline (W1) | Strong | spreading | numerous | large | round | present | blue-black | low to medium | high | early to medium |
Obelisk (W2) | Strong to very strong | semi-upright | absent or very few | medium | round | present | blue-navy | very high | very low to low | early to medium |
Pembina (W3) | Strong | spreading | numerous | medium | round | present | blue-black | medium | medium | early to medium |
Sleyt (W4) | Very strong | spreading | medium | medium to large | oval | present | blue-navy | high | low | early to medium |
Thiessen (W5) | Medium to strong | upright | few | large | round | present | blue-black | high | medium | early to medium |
Honeywood (W6) | Weak to medium | semi-upright | few | medium | round | present | purple-blue | high | low | early to medium |
Krasnojarskaya (W7) | Medium | upright | few | large | round | present | blue | high | very low | medium to late |
Mandam (W8 | Strong | upright | absent or very few | medium | round flattened | present | purple-blue | very high | very low to low | early to medium |
Ballerina (W9) | Medium | upright | absent or very few | large | oval | present | purple-blue | high | low | medium to late |
BLUE GEM (W10) | Weak to medium | upright | absent or very few | small | round | present | red-purple | low | medium | very early to early |
Bluemoon (W11) | weak to medium | upright | few | small | round | present | purple-blue | medium | medium | late |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Sip, A.; Szulc, P.; Cielecka-Piontek, J. Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosaccharides with Prebiotic and Antidiabetic Benefits. Molecules 2025, 30, 3327. https://doi.org/10.3390/molecules30163327
Gościniak A, Sip A, Szulc P, Cielecka-Piontek J. Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosaccharides with Prebiotic and Antidiabetic Benefits. Molecules. 2025; 30(16):3327. https://doi.org/10.3390/molecules30163327
Chicago/Turabian StyleGościniak, Anna, Anna Sip, Piotr Szulc, and Judyta Cielecka-Piontek. 2025. "Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosaccharides with Prebiotic and Antidiabetic Benefits" Molecules 30, no. 16: 3327. https://doi.org/10.3390/molecules30163327
APA StyleGościniak, A., Sip, A., Szulc, P., & Cielecka-Piontek, J. (2025). Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosaccharides with Prebiotic and Antidiabetic Benefits. Molecules, 30(16), 3327. https://doi.org/10.3390/molecules30163327