Investigation of Flame and Thermal Degradation Behavior of Xanthan- and Gelatin-Based Composites Used as Topsoil Covers in Forestry
Abstract
1. Introduction
2. Results and Discussion
2.1. Fourier-Transformed Infrared (FT-IR) Spectroscopy
2.2. Thermogravimetric Analysis (TGA)
2.3. Single-Flame-Source Tests
2.4. Limiting Oxygen Index (LOI)
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Experimental Techniques
3.3.1. FT-IR Spectroscopy
3.3.2. Thermogravimetric Analysis (TGA)
3.3.3. Single-Flame-Source Tests
3.3.4. Limiting Oxygen Index (LOI)
3.3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TSC | Topsoil cover |
XG | Xanthan gum |
CA | Citric acid |
TA | Tannic acid |
GEL | Gelatin |
WF | Wood fibers |
FT-IR | Fourier-transformed infrared spectroscopy |
TGA | Thermogravimetric analysis |
LOI | Limiting oxygen Index |
References
- Díaz-Pérez, J.C.; Batal, K.D. Colored plastic film mulches affect tomato growth and yield via changes in root-zone temperature. J. Am. Soc. Hortic. Sci. 2002, 127, 127–135. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.; Shalaby, T.A.; Ramadan, K.M.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef]
- Yang, N.; Sun, Z.-X.; Feng, L.-S.; Zheng, M.-Z.; Chi, D.-C.; Meng, W.-Z.; Hou, Z.-Y.; Bai, W.; Li, K.-Y. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 2015, 30, 143–154. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Han, Q.; Harayama, H.; Uemura, A.; Ito, E.; Utsugi, H.; Kitao, M.; Maruyama, Y. High biomass productivity of short-rotation willow plantation in boreal Hokkaido achieved by mulching and cutback. Forests 2020, 11, 505. [Google Scholar] [CrossRef]
- Vitone, A.; Coello, J.; Piqué, M.; Rovira, P. Use of innovative groundcovers in Mediterranean afforestations: Aerial and belowground effects in hybrid walnut. Ann. Silv. Res. 2016, 40, 140–147. [Google Scholar]
- Mansoor, Z.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Manning, G.; Parati, M.; Radecka, I.; Khan, H. Polymers use as mulch films in agriculture—A review of history, problems and current trends. Polymers 2022, 14, 5062. [Google Scholar] [CrossRef] [PubMed]
- Salama, K.; Geyer, M. Plastic mulch films in agriculture: Their use, environmental problems, recycling and alternatives. Environments 2023, 10, 179. [Google Scholar] [CrossRef]
- Liu, E.; He, W.; Yan, C. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based food packaging films. Polym. Test. 2018, 69, 39–51. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef] [PubMed]
- Menossi, M.; Cisneros, M.; Alvarez, V.A.; Casalongué, C. Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review. Agron. Sustain. Dev. 2021, 41, 53. [Google Scholar] [CrossRef]
- Kayserilioğlu, B.Ş.; Bakir, U.; Yilmaz, L.; Akkaş, N.J.B.t. Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: Mechanical, solubility and water vapor transfer rate properties. Bioresour. Technol. 2003, 87, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qiu, J.; Xu, J.; Gao, X.; Fu, X. Effects of crosslinking modes on the film forming properties of kelp mulching films. Algal Res. 2017, 26, 74–83. [Google Scholar] [CrossRef]
- Merino, D.; Gutiérrez, T.J.; Mansilla, A.Y.; Casalongué, C.A.; Alvarez, V.A. Critical Evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: Study on their interactions with water and light. ACS Sustain. Chem. Eng. 2018, 6, 15662–15672. [Google Scholar] [CrossRef]
- Akhir, M.A.M.; Mustapha, M. Formulation of biodegradable plastic mulch film for agriculture crop protection: A review. Polym. Rev. 2022, 62, 890–918. [Google Scholar] [CrossRef]
- Garcıa-Ochoa, F.; Santos, V.; Casas, J.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Patel, J.; Maji, B.; Moorthy, N.; Maiti, S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC Adv. 2020, 10, 27103–27136. [Google Scholar] [CrossRef] [PubMed]
- Bhat, I.M.; Wani, S.M.; Mir, S.A.; Masoodi, F. Advances in xanthan gum production, modifications and its applications. Biocatal. Agric. Biotechnol. 2022, 42, 102328. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, B.; Gihar, S.; Kumar, D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydr. Res. 2024, 538, 109070. [Google Scholar] [CrossRef]
- Ramshaw, J.A.; Glattauer, V. Biophysical and Chemical Properties of Collagen: Biomedical Applications; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Schrieber, R.; Gareis, H. Gelatine Handbook: Theory and Industrial Practice; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Alipal, J.; Pu’Ad, N.M.; Lee, T.; Nayan, N.; Sahari, N.; Basri, H.; Idris, M.; Abdullah, H. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Sorze, A.; Valentini, F.; Dorigato, A.; Pegoretti, A. Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications. Molecules 2023, 28, 1952. [Google Scholar] [CrossRef] [PubMed]
- Sorze, A.; Valentini, F.; Smolar, J.; Logar, J.; Pegoretti, A.; Dorigato, A. Effect of different cellulose fillers on the properties of xanthan-based composites for soil conditioning applications. Materials 2023, 16, 7285. [Google Scholar] [CrossRef]
- Smolar, J.; Fortuna, B.; Logar, J.; Sorze, A.; Valentini, F.; Maček, M.; Pulko, B. Reducing drought vulnerability of forest soils using Xanthan gum-based soil conditioners. Heliyon 2024, 10, e39974. [Google Scholar] [CrossRef]
- Sorze, A.; Valentini, F.; Burin Mucignat, M.; Pegoretti, A.; Dorigato, A. Multifunctional xanthan gum/wood fibers based hydrogels as novel topsoil covers for forestry and agricultural applications. Carbohydr. Polym. Technol. Appl. 2024, 7, 100520. [Google Scholar] [CrossRef]
- Valentini, F.; Sorze, A.; Coello, J.; Ros, L.; Chowdhury, A.A.; Piergiacomo, F.; Casapiccola, G.; Brusetti, L.; Bösing, J.; Hirschmüller, S.; et al. Xanthan-and gelatine-based composites used as nursery groundcovers: Assessment of soil microbiology and seedling performance. Sustainability 2025, 17, 1265. [Google Scholar] [CrossRef]
- Auriemma, S.; Chowdhury, A.A.; Sorze, A.; Valentini, F.; Piergiacomo, F.; Dorigato, A.; Brusetti, L. Wood-derived topsoil cover positively influences the diversity and activity of tomato plant rhizobacteria. Resour. Environ. Sustain. 2025, 21, 100241. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertà, G.; Oom, D.; Branco, A.; Suarez-Moreno, M.; Ferrari, D.; Roglia, E.; et al. Forest Fires in Europe, Middle East and North Africa 2022; Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2760/348120 (accessed on 15 April 2024).
- National Interagency Fire Center. Available online: https://www.nifc.gov/fire-information/statistics/wildfires (accessed on 25 March 2025).
- Massman, W.J.; Frank, J.M.; Mooney, S.J. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecol. 2010, 6, 36–54. [Google Scholar] [CrossRef]
- Arunrat, N.; Kongsurakan, P.; Solomon, L.W.; Sereenonchai, S. Fire impacts on soil properties and implications for sustainability in rotational shifting cultivation: A review. Agriculture 2024, 14, 1660. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 2014, 221, 131–138. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire effects on soil erosion dynamics: The case of 2021 megafires in Greece. Agric. For. 2022, 68, 49–63. [Google Scholar]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef]
- Noske, P.J.; Nyman, P.; Lane, P.N.; Rengers, F.K.; Sheridan, G.J. Changes in soil erosion caused by wildfire: A conceptual biogeographic model. Geomorphology 2024, 459, 109272. [Google Scholar] [CrossRef]
- Liu, B.; Liang, Y.; He, H.S.; Liu, Z.; Ma, T.; Wu, M.M. Wildfire affects boreal forest resilience through post-fire recruitment in Northeastern China. Ecol. Indic. 2022, 145, 109705. [Google Scholar] [CrossRef]
- Malucelli, G. Flame-retardant systems based on chitosan and its derivatives: State of the art and perspectives. Molecules 2020, 25, 4046. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, L.; Feng, Q. Waste gelatin based layer by layer assembly for sustainable solution to cotton fabrics flame retardancy. Prog. Org. Coat. 2022, 163, 106688. [Google Scholar] [CrossRef]
- Cen, Q.; Chen, S.; Yang, D.; Zheng, D.; Qiu, X. Full bio-based aerogel incorporating lignin for excellent flame retardancy, mechanical resistance, and thermal insulation. ACS Sustain. Chem. Eng. 2023, 11, 4473–4484. [Google Scholar] [CrossRef]
- Chen, B.; Wu, D.; Wang, T.; Liu, Q.; Jia, D. Porous carbon generation by burning starch-based intumescent flame retardants for supercapacitors. Chem. Eng. J. 2024, 486, 150353. [Google Scholar] [CrossRef]
- Solihat, N.N.; Hidayat, A.F.; Taib, M.N.A.M.; Hussin, M.H.; Lee, S.H.; Ghani, M.A.A.; Edrus, S.S.O.A.; Vahabi, H.; Fatriasari, W. Recent developments in flame-retardant lignin-based biocomposite: Manufacturing, and characterization. J. Polym. Environ. 2022, 30, 4517–4537. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Ash, J.; Jia, X.; Leone, A.; Templeton, A. Mechanism and impact of excipient incompatibility: Cross-linking of xanthan gum in pediatric powder-for-suspension formulations. J. Pharm. Sci. 2019, 108, 3609–3615. [Google Scholar] [CrossRef] [PubMed]
- Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int. J. Biol. Macromol. 2022, 202, 558–596. [Google Scholar] [CrossRef] [PubMed]
- Bueno, V.B.; Bentini, R.; Catalani, L.H.; Petri, D.F. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 2013, 92, 1091–1099. [Google Scholar] [CrossRef]
- Dong, Y.; Xue, Q.; Fu, Z.; Yan, Y.; Lu, Y.; Liu, Y.; Li, J. Enhancing wood stability and fire retardancy through citric acid and phosphorylated sucrose stearate cross-linking modification. Constr. Build. Mater. 2023, 393, 131946. [Google Scholar] [CrossRef]
- Zaleska, H.; Ring, S.; Tomasik, P. Electrosynthesis of potato starch–casein complexes. Int. J. Food Sci. Technol. 2001, 36, 509–515. [Google Scholar] [CrossRef]
- Sun, N.-x.; Liang, Y.; Yu, B.; Tan, C.-p.; Cui, B. Interaction of starch and casein. Food Hydrocoll. 2016, 60, 572–579. [Google Scholar] [CrossRef]
- Rouchon, V.; Pellizzi, E.; Janssens, K. FTIR techniques applied to the detection of gelatine in paper artifacts: From macroscopic to microscopic approach. Appl. Phys. A 2010, 100, 663–669. [Google Scholar] [CrossRef]
- Rohman, A.; Windarsih, A.; Erwanto, Y.; Zakaria, Z. Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends Food Sci. Technol. 2020, 101, 122–132. [Google Scholar] [CrossRef]
- Guo, J.; Sun, W.; Kim, J.P.; Lu, X.; Li, Q.; Lin, M.; Mrowczynski, O.; Rizk, E.B.; Cheng, J.; Qian, G. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018, 72, 35–44. [Google Scholar] [CrossRef]
- de Morais Lima, M.; Carneiro, L.C.; Bianchini, D.; Dias, A.R.G.; Zavareze, E.d.R.; Prentice, C.; Moreira, A.d.S. Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. J. Food Sci. 2017, 82, 698–705. [Google Scholar] [CrossRef]
- Raschip, I.E.; Hitruc, G.E.; Vasile, C.; Popescu, M.-C. Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels. Int. J. Biol. Macromol. 2013, 54, 230–237. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz, L.G.; Abt, T.; León, N.; Sánchez-Soto, M. Properties of freeze-dried gelatin/clay aerogel composites crosslinked with tannic acid. ACS Appl. Polym. Mater. 2023, 5, 7774–7785. [Google Scholar] [CrossRef]
- Ai, Y.; Zheng, N.; Liu, W.; Yang, P.; Wu, X.; Tian, Y.; Wang, C.; Liu, H.; Huang, C.; Liang, Z.; et al. Gelatin-based spray for forest fire prevention and fertilization. Commun. Mater. 2024, 5, 272. [Google Scholar] [CrossRef]
- Tang, M.; Han, M.; Gu, W.; Xu, W.; Lei, F.; Li, P.; Jiang, J.; Ji, L. Preparation and characterization of eco-friendly polysaccharide-based liquid mulch with soil amendment function. J. Clean. Prod. 2022, 363, 132586. [Google Scholar] [CrossRef]
- Stasi, E.; Giuri, A.; Ferrari, F.; Armenise, V.; Colella, S.; Listorti, A.; Rizzo, A.; Ferraris, E.; Esposito Corcione, C. Biodegradable carbon-based ashes/maize starch composite films for agricultural applications. Polymers 2020, 12, 524. [Google Scholar] [CrossRef]
- Ciaramitaro, V.; Piacenza, E.; Paliaga, S.; Cavallaro, G.; Badalucco, L.; Laudicina, V.A.; Chillura Martino, D.F. Exploring the feasibility of polysaccharide-based mulch films with controlled ammonium and phosphate ions release for sustainable agriculture. Polymers 2024, 16, 2298. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, X.; Gu, X.; Chen, C.; Li, H.; Zhang, Z.; Sun, J. The preparation of fully bio-based flame retardant poly (lactic acid) composites containing casein. J. Appl. Polym. Sci. 2018, 135, 46599. [Google Scholar] [CrossRef]
- Carosio, F.; Di Blasio, A.; Cuttica, F.; Alongi, J.; Malucelli, G. Flame retardancy of polyester and polyester–cotton blends treated with caseins. Ind. Eng. Chem. Res. 2014, 53, 3917–3923. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.Q.; He, Q. Flame retardant finishing of cotton fleece: Part VII. Polycarboxylic acids with different numbers of functional group. Cellulose 2010, 17, 859–870. [Google Scholar] [CrossRef]
- Kaya, M. Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid. J. Appl. Polym. Sci. 2017, 134, 45315. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Zhao, H.-B.; Degracia, K.; Han, L.-X.; Sun, H.; Sun, M.; Wang, Y.-Z.; Schiraldi, D.A. Green approach to improving the strength and flame retardancy of poly (vinyl alcohol)/clay aerogels: Incorporating biobased gelatin. ACS Appl. Mater. Interfaces 2017, 9, 42258–42265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, Y.; Sun, P.; Hai, Y.; Jiang, S. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings. Soft Matter 2021, 17, 5231–5239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Do, M.D.; Casey, P.; Sulistio, A.; Qiao, G.G.; Lundin, L.; Lillford, P.; Kosaraju, S. Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid. J. Agric. Food. Chem. 2010, 58, 6809–6815. [Google Scholar] [CrossRef] [PubMed]
- Zak, A.K.; Esmaeilzadeh, J.; Hashim, A.M. Exploring the gelatin-based sol-gel approach: A convenient route for fabricating high-quality pure and doped ZnO nanostructures. Ceram. Int. 2024, 50, 12649–12663. [Google Scholar]
- Zhao, F.; Tang, T.; Hou, S.; Fu, Y. Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly. Coatings 2020, 10, 848. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhang, J.; Lu, B.-X.; Xin, Z.X.; Kang, C.K.; Kim, J.K. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood–fiber composites. Compos. Part B Eng. 2012, 43, 150–158. [Google Scholar] [CrossRef]
- Benning, M.A. Measurement of oxygen index at elevated pressures. In Flammbility and Sensitivity of Materials in Oxygen-Enriched Atmospheres; ASTM International: Pennsylvania, PA, USA, 1983; pp. 68–83. [Google Scholar]
- Alaaeddin, M.; Sapuan, S.; Zuhri, M.; Zainudin, E.; AL-Oqla, F.M. Properties and common industrial applications of polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012021. [Google Scholar]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
Sample | Tonset (°C) | Td,1 (°C) | Td,2 (°C) | mR,700 (%) |
---|---|---|---|---|
XG_CA60 | 152.7 | 243.0 | 338.2 | 16.8 ± 1.5 |
XG_CA60_cas | 160.1 | 239.5 | 337.8 | 14.8 ± 2.1 |
XG_TA5 | 153.8 | 220.1 | 332.2 | 13.2 ± 1.1 |
GEL8_WF6_TA1 | 255.8 | - | 356.5 | 28.4 ± 3.2 |
GEL15_WF6_TA2 | 248.3 | - | 347.5 | 28.7 ± 1.1 |
GEL8_WF12_TA1 | 250.1 | - | 351.0 | 28.3 ± 0.8 |
GEL15_WF12_TA2 | 256.3 | - | 360.2 | 31.3 ± 2.5 |
GEL11.5_WF9_TA1 | 249.8 | - | 350.5 | 27.9 ± 1.8 |
Sample | Mass Loss (%) | Burnt Height (cm) | Burnt Width (cm) | Combustion * |
---|---|---|---|---|
XG_CA60 | 1.6 ± 0.1 a | 3.0 ± 0.6 ab | 9.7 ±2.2 a | no |
XG_CA60_cas | 0.3 ± 0.1 b | 2.4 ± 0.5 a | 7.0 ± 1.9 a | yes |
XG_TA5 | 9.5 ± 0.2 c | 3.8 ± 0.8 b | 13.3 ± 5.6 a | yes |
Sample | LOI (vol% O2) |
---|---|
XG_CA60 | 23.5 ± 0.1 a |
XG_CA60_cas | 23.7 ± 0.1 a |
XG_TA5 | 22.4 ± 0.2 a |
GEL8_WF6_TA1 | 36.3 ± 0.1 bc |
GEL15_WF6_TA2 | 41.5 ± 0.1 c |
GEL8_WF12_TA1 | 31.2 ± 0.2 ab |
GEL15_WF12_TA2 | 33.6 ± 0.1 abc |
GEL11.5_WF9_TA1 | 33.3 ± 0.1 abc |
Sample | Xanthan Gum (wt%) | Wood Fibers (wt%) | Glycerin (wt%) | CA (wt%) | TA (wt%) | Water (wt%) | Casein Coating |
---|---|---|---|---|---|---|---|
XG_CA60 | 3.5 | 3.5 | 4.2 | 2.0 | - | 86.8 | no |
XG_CA60_cas | 3.5 | 3.5 | 4.2 | 2.0 | - | 86.8 | yes |
XG_TA5 | 3.5 | 3.5 | 4.2 | - | 0.2 | 88.6 | no |
Sample | Gelatin (wt%) | Wood Fibers (wt%) | TA (wt%) | Water (wt%) |
---|---|---|---|---|
GEL8_WF6_TA1 | 8.0 | 6.0 | 1.0 | 85.0 |
GEL15_WF6_TA2 | 15.0 | 6.0 | 2.0 | 77.0 |
GEL8_WF12_TA1 | 8.0 | 12.0 | 1.0 | 79.0 |
GEL15_WF12_TA2 | 15.0 | 12.0 | 2.0 | 71.0 |
GEL11.5_WF9_TA1 | 11.5 | 9.0 | 1.0 | 78.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorze, A.; Bösing, J.; Hirschmüller, S.; Dorigato, A. Investigation of Flame and Thermal Degradation Behavior of Xanthan- and Gelatin-Based Composites Used as Topsoil Covers in Forestry. Molecules 2025, 30, 3324. https://doi.org/10.3390/molecules30163324
Sorze A, Bösing J, Hirschmüller S, Dorigato A. Investigation of Flame and Thermal Degradation Behavior of Xanthan- and Gelatin-Based Composites Used as Topsoil Covers in Forestry. Molecules. 2025; 30(16):3324. https://doi.org/10.3390/molecules30163324
Chicago/Turabian StyleSorze, Alessandro, Janine Bösing, Sebastian Hirschmüller, and Andrea Dorigato. 2025. "Investigation of Flame and Thermal Degradation Behavior of Xanthan- and Gelatin-Based Composites Used as Topsoil Covers in Forestry" Molecules 30, no. 16: 3324. https://doi.org/10.3390/molecules30163324
APA StyleSorze, A., Bösing, J., Hirschmüller, S., & Dorigato, A. (2025). Investigation of Flame and Thermal Degradation Behavior of Xanthan- and Gelatin-Based Composites Used as Topsoil Covers in Forestry. Molecules, 30(16), 3324. https://doi.org/10.3390/molecules30163324