Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate)
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of OBD, LPOBD, and LPOBD-T
2.2. Hybrid PET Materials Doped by LPOBD and LPOBD-T
3. Experimental
3.1. Materials
3.2. Synthesis of OBD Nanocomposites
3.3. Synthesis of LPOBD Nanocomposites
3.4. Synthesis of LPOBD-T Nanocomposites
3.5. Synthesis of Doped PET Composites with Both LPOBD and LPOBD-T
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Fang, T.; Yao, X.; Li, X.; Zhu, W. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste. Adv. Mater. 2023, 35, 2210758. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, J.; Mai, Y.; Chen, L.; Chen, Z.; Wang, G.; Deng, L.; Xu, P.; Yuan, C.; Jiang, L. Double-Grafted PET Fiber Material to Remove Airborne Bacteria with High Efficiency. ACS Appl. Mater. Interfaces 2022, 14, 47003–47013. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Huang, C.; Zhang, Z.; Xiao, L.; Dong, Q.; Sun, G. Controlled Surface Radical Graft Polymerization of N-Halamine Monomers on Polyester Fabrics and Potential Application in Bioprotective Medical Scrubs. ACS Appl. Polym. Mater. 2022, 4, 6760–6769. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Xia, C.; Yang, B. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Appl. Catal. B Envir. 2022, 316, 121662. [Google Scholar] [CrossRef]
- Cao, T.; Feng, Y.; Chen, G.; Guo, C.-Y. Effect of photofunctional organo anion-intercalated layered double hydroxide nanoparticles on poly(ethylene terephthalate) nonisothermal crystallization kinetics. React. Funct. Polym. 2014, 83, 1–6. [Google Scholar] [CrossRef]
- Wellen, R.M.R.; Rabello, M.S. Antinucleating action of polystyrene on the isothermal cold crystallization of poly(ethylene terephthalate). J. Appl. Polym. Sci. 2009, 114, 1884–1895. [Google Scholar] [CrossRef]
- Huang, W.-T.; He, G.-J.; Tang, W.-D.; Zou, X.-L.; Yin, X.-C. A facile approach to realize simultaneously chain extension and crystallization promotion of poly (ethylene terephthalate). Polym. Degrad. Stab. 2021, 190, 109644. [Google Scholar] [CrossRef]
- Hao, T.; Wang, Y.; Liu, Z.; Li, J.; Shan, L.; Wang, W.; Liu, J.; Tang, J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. Nanomaterials 2021, 11, 2810. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, G.; Bragato, G. High speed spinning of poly(ethylene terephthalate). Eur. Polym. 1982, 19, 803–809. [Google Scholar]
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; AlFayez, F.; Yang, L.; Ahmed, T.; Bashir, Z. Powder bed fusion of aluminum –poly(ethylene terephthalate) hybrid powder: Process behavior and characterization of printed parts. Addit. Manuf. 2022, 51, 102616. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Xiao, W.; Li, H.; Fetng, H.; Walng, D.; Qu, C. Rapid Crystallization and Fluorescence of Poly(ethylene terephthalate) Using Graphene Quantum Dots as Nucleating Agents. Polymers 2023, 15, 3506. [Google Scholar] [CrossRef] [PubMed]
- Tianbin, W.; Yangchuan, K. Preparation of silica–PS composite particles and their application in PET. Eur. Polym. J. 2006, 42, 274–285. [Google Scholar] [CrossRef]
- Ahmed, M.; Al-Hadeethi, Y.M.; Alshahrie, A.; Kutbee, A.T.; Al-Hossainy, A.F.; Shaaban, E.R. Thermal analysis and non-isothermal crystallization kinetic of PET/UiO-66 nanocomposite. J. Mater. Res. Technol. 2022, 18, 3492–3501. [Google Scholar] [CrossRef]
- Rezaeian, I.; Jafari, S.H.; Zahedi, P.; Nouri, S. An investigation on the rheology, morphology, thermal and mechanical properties of recycled poly (ethylene terephthalate) reinforced with modified short glass fibers. Polym. Compos. 2008, 30, 993–999. [Google Scholar] [CrossRef]
- Schawe, J.E.K.; Budde, F.; Alig, I. Nucleation activity at high supercooling: Sorbitol-type nucleating agents in polypropylene. Polymer 2018, 153, 587–596. [Google Scholar] [CrossRef]
- Goudarzi, L.; Izadi-Vasafi, H.; Nikfar, N. Investigation of the Morphological and Mechanical Properties of Polyethylene Terephthalate (PET)/Ethylene Propylene Diene Rubber (EPDM) Blends in the Presence of Multi-Walled Carbon Nanotubes. J. Macromol. Sci. Part B 2018, 57, 585–594. [Google Scholar] [CrossRef]
- Montava-Jordà, S.; Torres-Giner, S.; Ferrandiz-Bou, S.; Quiles-Carrillo, L.; Montanes, N. Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. Int. J. Mol. Sci. 2019, 20, 1378. [Google Scholar] [CrossRef] [PubMed]
- Canetti, M.; Bertini, F. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos. Sci. Technol. 2007, 67, 3151–3157. [Google Scholar] [CrossRef]
- Ju, L.; Dennis, J.M.; Heifferon, K.V.; Long, T.E.; Moore, R.B. Compatibilization of Polyester/Polyamide Blends with a Phosphonated Poly(ethylene terephthalate) Ionomer: Comparison of Monovalent and Divalent Pendant Ions. ACS Appl. Polym. Mater. 2019, 1, 1071–1080. [Google Scholar] [CrossRef]
- Dan, Y.; Wang, Y.; Zhang, M.; Huang, L.; Sun, Q.; Zhang, P.; Li, Z.; Wang, W.; Tang, J. Synthesis of Polyethylene Terephthalate (PET) with High Crystallization and Mechanical Properties via Functionalized Graphene Oxide as Nucleation Agent. Molecules 2024, 29, 1953. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Du, W.; Li, W.; Chen, D.; Liu, Y.; Ouyang, Y. Hygrothermal aging behavior and mechanical properties of modified ramie fiber reinforced polyethylene terephthalate glycol composites. Cellulose 2023, 30, 3061–3072. [Google Scholar] [CrossRef]
- da Fonseca, B.S.; Piçarra, S.; Pinto, A.P.F.; Ferreira, M.J.; Montemor, M.F. TEOS-based consolidants for carbonate stones: The role of N1-(3-trimethoxysilylpropyl)diethylenetriamine. New J. Chem. 2017, 41, 2458–2467. [Google Scholar] [CrossRef]
- Voicu, S.I.; Thakur, V.K. Aminopropyltriethoxysilane as a linker for cellulose-based functional materials: New horizons and future challenges. Curr. Opin. Green. Sustain. Chem. 2021, 30, 100480. [Google Scholar] [CrossRef]
- Nolasco, M.M.; Parker, S.F.; Vaz, P.D.; Ribeiro-Claro, P.J.A. Intermolecular Interactions in 3-Aminopropyltrimethoxysilane, N-Methyl-3-aminopropyltrimethoxysilane and 3-Aminopropyltriethoxysilane: Insights from Computational Spectroscopy. Int. J. Mol. Sci. 2023, 24, 16634. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, A.A.; Abouomar, R.M.; El-Basheer, T.M.; Azab, M.A.; Zaki, E.G.; Elsaeed, S.M.; Elkhateeb, A. Improving the acoustic performance of flexible polyurethane foam using biochar modified by (3-aminopropyl)trimethoxysilane coupling agent. Sci. Rep. 2024, 14, 18382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Li, H.; Gong, X.; Liu, J.; Huang, L.; Wang, W.; Wang, Y.; Zhao, Z.; Belfiore, L.A.; et al. Fluorescent SiO2@Tb3+(PET-TEG)3Phen Hybrids as Nucleating Additive for Enhancement of Crystallinity of PET. Polymers 2020, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Wang, Y.; Wang, S.; Zhang, Y.; Mao, S.; Wang, G.; Liu, J.; Huang, L.; Li, H.; Belfiore, L.A.; et al. Effects of Modified Graphene Oxide on Thermal and Crystallization Properties of PET. Polymers 2018, 10, 613. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, Y.; Dan, Y.; Li, Z.; Sun, Q.; Wang, Y.; Wang, W.; Du, Z.; Huang, L.; Kipper, M.J.; et al. Silicon-linked polyethylene glycol-polyethylene terephthalate (PEG-PET) nanostructures loaded with Eu3+-complexes for hybrid luminescent PET materials. Polym. Compos. 2023, 45, 999–1011. [Google Scholar] [CrossRef]
- Bu, Q.; Yin, S.; Wan, W.; Zeng, S.; Zhou, S.; Yu, L.; Ouyang, Y. Effect of silane coupling agent KH550 on the dielectric properties of CaCu3Ti4O12/polyurethane composite films. Ceram. Int. 2024, 50, 12389–12396. [Google Scholar] [CrossRef]
- Lee, A.S.; Jeon, H.; Choi, S.-S.; Park, J.; Hwang, S.Y.; Jegal, J.; Oh, D.X.; Kim, B.C.; Hwang, S.S. Crystallization derivation of amine functionalized T12 polyhedral oligomeric silsesquioxane-conjugated poly(ethylene terephthalate). Compos. Sci. Technol. 2017, 146, 42–48. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, H.; Zhang, D.; Tian, X.; Jin, L. Silane coupling agent γ-aminopropyltriethoxysilane-modified nanoparticles/polyurethane elastomer nanocomposites. Iran. Polym. J. 2023, 32, 715–727. [Google Scholar] [CrossRef]
- Kluge, M.; Rennhofer, H.; Lichtenegger, H.C.; Liebner, F.W.; Robert, T. Poly(ester amide)s from poly(alkylene succinate)s and rapid crystallizing amido diols: Synthesis, thermal properties and crystallization behavior. Eur. Polym. J. 2020, 129, 109622. [Google Scholar] [CrossRef]
- Ju, L.; Mondschein, R.J.; Vandenbrande, J.A.; Arrington, C.B.; Long, T.E.; Moore, R.B. Phosphonated Poly(ethylene terephthalate) ionomers as compatibilizers in extruded Poly(ethylene terephthalate)/Poly(m-xylylene adipamide) blends and oriented films. Polymer 2020, 205, 122891. [Google Scholar] [CrossRef]
- Luo, J.; Ma, N.; Zeng, S.; Gong, X.; Shi, B.; Li, C.; Zhao, X.; Hu, T.; Wu, C. Effect of ionization of polyamide-66 on its heterogeneous nucleation of poly(ethylene terephthalate) crystallization: An efficient polyamide-66 ionene nucleator promoted by ion-dipole interactions. Polym. Test. 2018, 71, 301–311. [Google Scholar] [CrossRef]
- Naudy, S.; Fulchiron, R. Static and shear induced crystallization of glass fiber reinforced poly(m-xylylene adipamide) with nucleating additives. J. Polym. Sci. Part B Polym. Physics 2007, 45, 2982–2992. [Google Scholar] [CrossRef]
- Serhatkulu, B.E.T.; Bahar, I.; Fakirov, S. Dynamic mechanical study of amorphous phases in poly(ethylene terephthalate)/nylon-6 blends. Pollymer 1995, 36, 2371–2377. [Google Scholar] [CrossRef]
- Mousavi, M.; Fini, E. Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustain. Chem. Eng. 2020, 8, 3231–3240. [Google Scholar] [CrossRef]
- Han, X.; Cao, Z.; Wang, R.; He, P.; Zhang, Y.; Yu, J.; Ge, Y. Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt. Constr. Build. Mater. 2020, 259, 119713. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, S.; Xie, Y.; Sun, Y.; Ma, H.; Xie, Z.; Zhu, Z.; Yang, J. Dual effects of a diamide derivative as nucleator on crystallization kinetics and aggregated structure of biodegradable Poly(ethylene succinate). Polym. Test. 2021, 94, 107022. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, H.; Zhang, H.; Shao, Y.; Zhu, J. Exploring the properties and performance of Lewis base organocatalysts in epoxy/polyester hybrid low-cure powder coatings. Prog. Org. Coat. 2025, 200, 109053. [Google Scholar] [CrossRef]
- Iqbal, A.; Amna, B.; Islam, I.U.; Yuchi, Z.; Siddiqi, H.M.; Zali, J.; Qian, X. Thermally stable benzimidazole based co-polyimides and derived LIG for flexible supercapacitors. Polymer 2025, 319, 128016. [Google Scholar] [CrossRef]
- Ge, C.; Shi, L.; Yang, H.; Tang, S. Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/Barite nanocomposites. Polym. Compos. 2010, 31, 1504–1514. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Mo, Z. A method for the non-isothermal crystallization kinetics of polymers. Acta Polym. Sin. 2008, 7, 656–661. [Google Scholar] [CrossRef]
- Flores, I.; Etxeberria, A.; Irusta, L.; Calafel, I.; Vega, J.F.; Martinez-Salazar, J.; Sardón, H.; Müller, A.J. PET-ran-PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of Poly(l-lactic acid) Incorporation on Crystallization and Morphology. ACS Sustain. Chem. Eng. 2019, 7, 8647–8659. [Google Scholar] [CrossRef]
- Alexiou, V.F.; Mathioudakis, G.N.; Andrikopoulos, K.S.; Beobide, A.S.; Voyiatzis, G.A. Poly(ethylene Terephthalate) Carbon-Based Nanocomposites: A Crystallization and Molecular Orientation Study. Polymers 2020, 12, 2626. [Google Scholar] [CrossRef] [PubMed]
- Toda, A.; Furushima, Y.; Schick, C. Crystal Domains and Crystallization Kinetics of Poly(butylene terephthalate). Macromolecules 2023, 56, 6891–6902. [Google Scholar] [CrossRef]
- Tian, Y.; Cen, H.; Zheng, X.; Zeng, Z.; Xu, W.; Hu, T.; Gong, X.; Hu, C.; Wu, C. Enhancing the crystallinity and heat resistance of poly(ethylene terephthalate) using ZnCl2-ionized polyamide-66 as a heterogeneous nucleator. J. Appl. Polym. Sci. 2022, 140, 53358. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; He, J.; Bai, Y. Synthesis and properties of poly(ethylene terephthalate) modified with a small amount of 1,10-decanediamine and hydrogen bonds. J. Mater. Sci. 2020, 56, 4922–4939. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, M.; Liu, J.; Huang, L.; Wang, Y.; Hao, T.; Li, J.; Tang, J. Preparation of QDs@ SiO2-PEG-LMPET and its influence on crystallization and luminescence of polyethylene terephthalate. Nanotechnology 2021, 32, 225706. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F.; Rubio, J.; Oteo, J.L. A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS). Spectrosc. Lett. 1998, 31, 199–219. [Google Scholar] [CrossRef]
Sample | Tc (°C) | Tm (°C) | ΔHm (J/g) | ΔHc (J/g) | Xc (%) | t1/2 (s) | n | Kc |
---|---|---|---|---|---|---|---|---|
Pure PET | 182.3 | 248.7 | 32.1 | 31.1 | 22.2 | 128 | 2.35 | 0.26 |
1% LPOBD | 199.8 | 252.5 | 36.3 | 34.9 | 25.2 | 94 | 2.76 | 0.38 |
1% LPOBD-T | 203.4 | 254.5 | 37.8 | 35.3 | 25.5 | 75 | 2.81 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Wang, Y.; Zhang, M.; Huang, L.; Zhang, P.; Li, K.; Wang, W.; Tang, J. Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate). Molecules 2025, 30, 3077. https://doi.org/10.3390/molecules30153077
Sun Q, Wang Y, Zhang M, Huang L, Zhang P, Li K, Wang W, Tang J. Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate). Molecules. 2025; 30(15):3077. https://doi.org/10.3390/molecules30153077
Chicago/Turabian StyleSun, Quankai, Yao Wang, Miaorong Zhang, Linjun Huang, Pengwei Zhang, Kang Li, Wei Wang, and Jianguo Tang. 2025. "Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate)" Molecules 30, no. 15: 3077. https://doi.org/10.3390/molecules30153077
APA StyleSun, Q., Wang, Y., Zhang, M., Huang, L., Zhang, P., Li, K., Wang, W., & Tang, J. (2025). Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate). Molecules, 30(15), 3077. https://doi.org/10.3390/molecules30153077