Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting
Abstract
1. Introduction
2. Results
2.1. Biowaste and Compost Characterization
2.2. CO, O2 and CO2 Production During Laboratory-Scale Composting
2.3. CO Mass in Bioreactors
2.4. CO Yield in Technical-Scale Composting Plant
3. Discussion
4. Materials and Methods
4.1. Food Waste Composition
4.2. Food Waste Composting on a Laboratory Scale
4.3. Substrates and Composts Characterization
4.4. Analytical Procedures
4.4.1. Calculation of Daily Emitted CO Mass
4.4.2. Model of CO Yield in a Composting Plant
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiew, A.L.; Buckley, N.A. Carbon Monoxide Poisoning in the 21st Century. Crit. Care 2014, 18, 221. [Google Scholar] [CrossRef]
- Allied Market Research. Carbon Monoxide Market Size, Share, Competitive Landscape and Trend Analysis Report, by Purity, by Application: Global Opportunity Analysis and Industry Forecast, 2023–2032; Allied Market Research: Pune, India, 2024; pp. 1–250. [Google Scholar]
- Medrano-García, J.D.; Ruiz-Femenia, R.; Caballero, J.A. Multi-Objective Optimization of a Carbon Dioxide Utilization Superstructure for the Synthesis of Formic and Acetic Acid. In Computer Aided Chemical Engineering; Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; 28 European Symposium on Computer Aided Process Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 1419–1424. [Google Scholar]
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Luo, G.; Koziel, J.A.; Białowiec, A. Carbon Monoxide Fate in the Environment as an Inspiration For Biorefinery Industry: A Review. Front. Environ. Sci. 2022, 10, 822463. [Google Scholar] [CrossRef]
- Kildahl, H.; Wang, L.; Tong, L.; Cao, H.; Ding, Y. Industrial Carbon Monoxide Production by Thermochemical CO2 Splitting—A Techno-Economic Assessment. J. CO2 Util. 2022, 65, 102181. [Google Scholar] [CrossRef]
- Sobieraj, K.; Żebrowska-Różańska, P.; Siedlecka, A.; Łaczmański, Ł.; Białowiec, A. Analysis of Microbial Community Potentially Involved in Carbon Monoxide Production in Compost and Its Functional Assessment: Utilized Pathways, Enzymes, and Genes. Sci. Total Environ. 2025, 968, 178860. [Google Scholar] [CrossRef]
- Dang, J.; Chou, K. A Model for the Reduction of Metal Oxides by Carbon Monoxide. ISIJ Int. 2018, 58, 585–593. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The Therapeutic Potential of Carbon Monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Foresti, R.; Bani-Hani, M.G.; Motterlini, R. Use of Carbon Monoxide as a Therapeutic Agent: Promises and Challenges. Intensive Care Med. 2008, 34, 649–658. [Google Scholar] [CrossRef]
- Kim, H.-H.; Choi, S. Therapeutic Aspects of Carbon Monoxide in Cardiovascular Disease. Int. J. Mol. Sci. 2018, 19, 2381. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, L.; Mao, Y.; Hopkins, D.L.; Han, G.; Zhu, L.; Luo, X. Carbon Monoxide Packaging Shows the Same Color Improvement for Dark Cutting Beef as High Oxygen Packaging. Meat Sci. 2018, 137, 153–159. [Google Scholar] [CrossRef]
- Hellebrand, H.J.; Kalk, W.-D. Emission of Carbon Monoxide during Composting of Dung and Green Waste. Nutr. Cycl. Agroecosystems 2001, 60, 79–82. [Google Scholar] [CrossRef]
- Hellebrand, H.; Schade, G. Carbon Monoxide from Composting Due to Thermal Oxidation of Biomass. J. Environ. Qual. 2008, 37, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Haarstad, K.; Bergersen, O.; Sørheim, R. Occurrence of Carbon Monoxide during Organic Waste Degradation. J. Air Waste Manag. Assoc. 2006, 56, 575–580. [Google Scholar] [CrossRef]
- Phillip, E.A.; Clark, O.G.; Londry, K.; Yu, S.; Leonard, J. Emission of Carbon Monoxide During Composting of Municipal Solid Waste. Compost. Sci. Util. 2011, 19, 170–177. [Google Scholar] [CrossRef]
- Stegenta, S.; Dębowski, M.; Bukowski, P.; Randerson, P.F.; Białowiec, A. The Influence of Perforation of Foil Reactors on Greenhouse Gas Emission Rates during Aerobic Biostabilization of the Undersize Fraction of Municipal Wastes. J. Environ. Manag. 2018, 207, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Hellebrand, H.J. Emission of Nitrous Oxide and Other Trace Gases during Composting of Grass and Green Waste. J. Agric. Eng. Res. 1998, 69, 365–375. [Google Scholar] [CrossRef]
- Stegenta, S.; Sobieraj, K.; Pilarski, G.; Koziel, J.A.; Białowiec, A. The Spatial and Temporal Distribution of Process Gases within the Biowaste Compost. Data 2019, 4, 37. [Google Scholar] [CrossRef]
- Stegenta, S.; Sobieraj, K.; Pilarski, G.; Koziel, J.A.; Białowiec, A. Analysis of the Spatial and Temporal Distribution of Process Gases within Municipal Biowaste Compost. Sustainability 2019, 11, 2340. [Google Scholar] [CrossRef]
- Hellebrand, H.; Schade, G.W.; Idler, C.; Kern, J. Carbon monoxide from composting due to thermal oxidation of biomass: An additional pathway for co in agricultural and forest ecosystems. In Proceedings of the Workshop on Agricultural Air Quality: State of the Science, Potomac, MA, USA, 4–8 June 2006. [Google Scholar]
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Zafiu, C.; Binner, E.; Białowiec, A. Carbon Monoxide Production during Bio-Waste Composting under Different Temperature and Aeration Regimes. Materials 2023, 16, 4551. [Google Scholar] [CrossRef]
- Stegenta-Dąbrowska, S.; Drabczyński, G.; Sobieraj, K.; Koziel, J.A.; Białowiec, A. The Biotic and Abiotic Carbon Monoxide Formation During Aerobic Co-Digestion of Dairy Cattle Manure with Green Waste and Sawdust. Fron-tiers in Bioengineering and Biotechnology 2019, 7.
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Luo, G.; Koziel, J.A.; Białowiec, A. Biological Treatment of Biowaste as an Innovative Source of CO—The Role of Composting Process. Front. Bioeng. Biotechnol. 2023, 11, 1126737. [Google Scholar] [CrossRef]
- Sobieraj, K.; Derkacz, D.; Krasowska, A.; Białowiec, A. Isolation and Identification of Carbon Monoxide Producing Microorganisms from Compost. Waste Manag. 2024, 182, 250–258. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D. Global Primary Data on Consumer Food Waste: Rate and Characteristics—A Review. Resour. Conserv. Recycl. 2021, 168, 105332. [Google Scholar] [CrossRef]
- van Asperen, H.; Warneke, T.; Sabbatini, S.; Nicolini, G.; Papale, D.; Notholt, J. The Role of Photo- and Thermal Degradation for CO2 and CO Fluxes in an Arid Ecosystem. Biogeosciences 2015, 12, 4161–4174. [Google Scholar] [CrossRef]
- Lee, H.; Rahn, T.; Throop, H. An Accounting of C-Based Trace Gas Release during Abiotic Plant Litter Degradation. Glob. Change Biol. 2012, 18, 1185–1195. [Google Scholar] [CrossRef]
- Cowan, N.; Helfter, C.; Langford, B.; Coyle, M.; Levy, P.; Moxley, J.; Simmons, I.; Leeson, S.; Nemitz, E.; Skiba, U. Seasonal Fluxes of Carbon Monoxide from an Intensively Grazed Grassland in Scotland. Atmos. Environ. 2018, 194, 170–178. [Google Scholar] [CrossRef]
- Conrad, R. Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Derendorp, L.; Quist, J.B.; Holzinger, R.; Röckmann, T. Emissions of H2 and CO from Leaf Litter of Sequoiadendron Giganteum, and Their Dependence on UV Radiation and Temperature. Atmos. Environ. 2011, 45, 7520–7524. [Google Scholar] [CrossRef]
- Barthod, J.; Rumpel, C.; Dignac, M.-F. Composting with Additives to Improve Organic Amendments. A Review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Shafiq, T.; Ahmed, K. Characterization of Bulking Agents and Its Effects on Physical Properties of Compost. Bioresour. Technol. 2010, 101, 1913–1919. [Google Scholar] [CrossRef]
- Gea, T.; Barrena, R.; Artola, A.; Sánchez, A. Optimal Bulking Agent Particle Size and Usage for Heat Retention and Disinfection in Domestic Wastewater Sludge Composting. Waste Manag. 2007, 27, 1108–1116. [Google Scholar] [CrossRef]
- Eftoda, G.; McCartney, D. Determining the Critical Bulking Agent Requirement for Municipal Biosolids Composting. Compost. Sci. Util. 2004, 12, 208–218. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.; Gao, H.; Yan, X.; Chang, J.; Wang, C.; Hu, J.; Zhang, L. Chemical Structures and Characteristics of Animal Manures and Composts during Composting and Assessment of Maturity Indices. PLoS ONE 2017, 12, e0178110. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.D.; Caldwell, M.E.; Lawson, P.A.; Huhnke, R.L.; Tanner, R.S. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 2483–2489. [Google Scholar] [CrossRef]
- Jureckova, K.; Nykrynova, M.; Slaninova, E.; Fleuriot-Blitman, H.; Amstutz, V.; Hermankova, K.; Bezdicek, M.; Mrazova, K.; Hrubanova, K.; Zinn, M.; et al. Cultivation Driven Transcriptomic Changes in the Wild-Type and Mutant Strains of Rhodospirillum Rubrum. Comput. Struct. Biotechnol. J. 2024, 23, 2681–2694. [Google Scholar] [CrossRef]
- Saludes, R.B.; Iwabuchi, K.; Kayanuma, A.; Shiga, T. Composting of Dairy Cattle Manure Using a Thermophilic–Mesophilic Sequence. Biosyst. Eng. 2007, 98, 198–205. [Google Scholar] [CrossRef]
- Miyatake, F.; Iwabuchi, K. Effect of Compost Temperature on Oxygen Uptake Rate, Specific Growth Rate and Enzymatic Activity of Microorganisms in Dairy Cattle Manure. Bioresour. Technol. 2006, 97, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Schulze, K.L. Continuous Thermophilic Composting. Appl. Microbiol. 1962, 10, 108–122. [Google Scholar] [CrossRef]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Evolution of Organic Matter during the Mesophilic Composting of Lignocellulosic Winery Wastes. J. Environ. Manag. 2013, 116, 18–26. [Google Scholar] [CrossRef]
- Andersen, J.K.; Boldrin, A.; Samuelsson, J.; Christensen, T.H.; Scheutz, C. Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste. J. Environ. Qual. 2010, 39, 713–724. [Google Scholar] [CrossRef]
- Hampson, N.B.; Piantadosi, C.A.; Thom, S.R.; Weaver, L.K. Practice Recommendations in the Diagnosis, Management, and Prevention of Carbon Monoxide Poisoning. Am. J. Respir. Crit. Care Med. 2012, 186, 1095–1101. [Google Scholar] [CrossRef]
- ChemAnalyst. Carbon Monoxide Price Trend and Forecast: Market Overview. Available online: https://www.chemanalyst.com/Pricing-data/carbon-monoxide-1235 (accessed on 19 March 2025).
- European Compost Network e.V. ECN Data Report 2022. Compost and Digestate for a Circular Economy. Overview of Bio-Waste Collection, Treatment & Markets Across Europe; European Compost Network e.V.: Bochum, Germany, 2022. [Google Scholar]
- Valta, K.; Sotiropoulos, A.; Malamis, D.; Kosanovic, T.; Antonopoulou, G.; Alexandropoulou, M.; Jonuzay, S.; Lyberatos, G.; Loizidou, M. Assessment of the Effect of Drying Temperature and Composition on the Biochemical Methane Potential of In-House Dried Household Food Waste. Waste Manag. Res. 2019, 37, 461–468. [Google Scholar] [CrossRef]
- PN-EN 15169:2011; Characterization of Waste—Determination of Loss on Ignition of Waste and Sludge. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN 14346:2011; Characterization of Waste—Calculation of the Dry Matter from the Determination of the Dry Residue or the Water Content. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Committee for Standardization: Warsaw, Poland, 2015.
- Binner, E.; Böhm, K.; Lechner, P. Large Scale Study on Measurement of Respiration Activity (AT4) by Sapromat and OxiTop. Waste Manag. 2012, 32, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 23145-1:2016-05; High-Quality Ceramics (Advanced Ceramics, Technical Advanced Ceramics)—Determination of Bulk Density of Ceramic Powders. Polish Committee for Standardization: Warsaw, Poland, 2016.
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Koziel, J.A.; Białowiec, A. Modeling of CO Accumulation in the Headspace of the Bioreactor during Organic Waste Composting. Energies 2021, 14, 1367. [Google Scholar] [CrossRef]
- Global Composting Solutions Ltd. (HotRot) Global Composting Solutions. Available online: https://www.globalcomposting.solutions/about-us (accessed on 25 February 2025).
- Mason, I.G.; Milke, M.W. Physical Modelling of the Composting Environment: A Review. Part 1: Reactor Systems. Waste Manag. 2005, 25, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Hemidat, S.; Saidan, M.; Nassour, A.; Nelles, M. Study and Assessment of Segregated Bio-Waste Composting: The Case Study of Jordan; Deutschen Gesellschaft für Abfallwirtschaft e.V. (DGAW): Berlin, Germany, 2019; pp. 171–177. [Google Scholar]
Variant | FW:G Ratio | Dry Matter (d.m.), % | LOI, % d.m. | AT4, mg O2∙g d.m.−1 | C, % | H, % | N, % | S, % |
---|---|---|---|---|---|---|---|---|
Substrates | 0:1 | 100 ± 0.0 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.3 ± 0.0 | <DL | 0.3 ± 0.2 | <DL |
1:0 | 20.9 ± 0.0 | 95.3 ± 0.3 | 27.5 ± 0.3 | 44.7 ± 1.9 | 7.0 ± 0.7 | 2.4 ± 0.5 | 1.5 ± 0.0 | |
1:1 | 45.1 ± 0.0 | 39.1 ± 2.3 | 12.2 ± 0.8 | 8.6 ± 0.2 | 0.8 ± 0.2 | 0.6 ± 0.1 | 0.5 ± 0.2 | |
1:2 | 57.0 ± 0.0 | 21.5 ± 2.1 | 8.5 ± 1.2 | 3.2 ± 0.6 | 0.3 ± 0.3 | 0.4 ± 0.2 | 0.5 ± 0.0 | |
45 °C | 0:1 | 100 ± 0.0 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.4 ± 0.2 | 2.7 ± 2.1 | 1.3 ± 0.9 | 0.8 ± 0.5 |
1:0 | 23.0 ± 0.0 | 95.0 ± 1.0 | 23.1 ± 1.2 | 44.0 ± 0.7 | 6.3 ± 0.4 | 2.2 ± 0.1 | 1.4 ± 0.1 | |
1:1 | 46.1 ± 0.1 | 28.4 ± 3.2 | 7.5 ± 0.2 | 27.8 ± 8.9 | 4.0 ± 1.3 | 2.4 ± 0.9 | 1.1 ± 0.2 | |
1:2 | 54.3 ± 0.1 | 18.1 ± 7.5 | 6.4 ± 0.5 | 19.6 ± 13.2 | 2.7 ± 2.1 | 1.3 ± 0.9 | 0.8 ± 0.5 | |
60 °C | 0:1 | 100 ± 0.0 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.4 ± 0.0 | <DL | 0.3 ± 0.1 | <DL |
1:0 | 22.7 ± 3.4 | 95.2 ± 0.7 | 17.8 ± 2.3 | 47.1 ± 3.2 | 7.1 ± 0.4 | 2.8 ± 0.9 | 1.7 ± 0.2 | |
1:1 | 36.1 ± 3.5 | 40.1 ± 4.3 | 14.6 ± 2.4 | 23.3 ± 19.3 | 3.1 ± 2.6 | 0.8 ± 0.6 | 0.9 ± 0.7 | |
1:2 | 55.5 ± 8.8 | 17.0 ± 6.8 | 5.9 ± 1.1 | 13.4 ± 2.7 | 1.8 ± 0.5 | 0.5 ± 0.1 | 0.5 ± 0.1 | |
70 °C | 0:1 | 100 ± 0.0 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.5 ± 0.0 | <DL | 0.3 ± 0.1 | <DL |
1:0 | 21.1 ± 2.6 | 96.4 ± 0.6 | 17.3 ± 1.9 | 44.4 ± 1.2 | 6.2 ± 0.3 | 1.8 ± 0.6 | 1.4 ± 0.2 | |
1:1 | 47.6 ± 6.9 | 56.0 ± 15.5 | 10.0 ± 2.5 | 26.5 ± 3.0 | 3.7 ± 0.4 | 1.6 ± 0.3 | 1.0 ± 0.1 | |
1:2 | 56.0 ± 7.0 | 28.3 ± 8.8 | 6.3 ± 0.8 | 15.4 ± 11.4 | 2.0 ± 1.6 | 0.8 ± 0.4 | 0.5 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobieraj, K. Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting. Molecules 2025, 30, 2807. https://doi.org/10.3390/molecules30132807
Sobieraj K. Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting. Molecules. 2025; 30(13):2807. https://doi.org/10.3390/molecules30132807
Chicago/Turabian StyleSobieraj, Karolina. 2025. "Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting" Molecules 30, no. 13: 2807. https://doi.org/10.3390/molecules30132807
APA StyleSobieraj, K. (2025). Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting. Molecules, 30(13), 2807. https://doi.org/10.3390/molecules30132807