Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution
Abstract
1. Introduction
2. Mechanism of Photocatalytic Hydrogen Evolution
3. Research Progress on Photocatalytic Hydrogen Production of MOF Composites Modified Using Binary Materials
3.1. Semiconductor-MOF Composite System
3.2. Metal Nanoparticles-MOF Composite System
3.3. Metal Sulfides and Carbon Material-MOF Composite System
4. Research Progress on Ternary Composites Based on MOF in Photocatalytic Hydrogen Production
4.1. Design Strategy and Construction Method of MOF-Based Ternary Composites
4.2. Synthesis Method and Structure Control
4.3. Precious Metals/MOF/Semiconductors Ternary System
4.4. Quantum Dot/MOF/Catalyst Ternary System
4.5. Polyacid/MOF/Semiconductor Ternary System
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Jia, J.; Wang, D.; Dong, H.; Zhu, M. Recent research progress of MOFs-based heterostructures for photocatalytic hydrogen evolution. Chem. Eng. J. 2024, 498, 155194. [Google Scholar] [CrossRef]
- Miao, P.; Zhao, J.; Wang, P.; Shi, R.; Zhang, T. Enhanced photocatalytic hydrogen production from poly(vinyl alcohol) plastic-dissolved wastewater. ACS Mater. Lett. 2024, 6, 590–597. [Google Scholar] [CrossRef]
- Wu, P.; Liu, H.; Xie, Z.; Xie, L.; Liu, G.; Xu, Y.; Chen, J.; Lu, C.Z. Excellent charge separation of NCQDs/ZnS nanocomposites for the promotion of photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2024, 16, 16601–16611. [Google Scholar] [CrossRef] [PubMed]
- Ashina, C.; Pugazhenthiran, N.; Mangalaraja, R.V.; Sathishkumar, P. Review on enhancing solar photocatalysis for sustainable degradation of invisible environmental pollutants. Renew. Sustain. Energy Rev. 2025, 214, 115490. [Google Scholar] [CrossRef]
- Lou, Z.; Zhang, Y.; Liang, X.; Cao, M.; Ma, Y.; Chen, P.R.; Fan, X. Deep-red and ultrafast photocatalytic proximity labeling empowered in situ dissection of tumor-immune interactions in primary tissues. J. Am. Chem. Soc. 2025, 147, 9716–9726. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Peter, S.C. Two-dimensional perovskites for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2025, 64, e202418708. [Google Scholar] [CrossRef]
- Ma, D.; Chen, J.; Li, J.; Ji, X.; Shi, J.W. A review on passivation engineering for improving photocatalytic hydrogen evolution performance. J. Mater. Chem. A 2024, 12, 12293–12324. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, Q.; Wang, Y.; Cao, Y.; Zeng, X.; Xie, Y.; Yu, Z. Electron regulation accelerates photocatalytic hydrogen evolution for bimetallic Pt, Au on CdS nanorods. Chem. Eng. J. 2025, 511, 162016. [Google Scholar] [CrossRef]
- Khan, A.; Le Pivert, M.; Ranjbari, A.; Dragoe, D.; Bahena Uribe, D.; Colbeau Justin, C.; Herrero, C.; Rutkowska Zbik, D.; Deschamps, J.; Remita, H. Cu-based MOF/TiO2 composite nanomaterials for photocatalytic hydrogen generation and the role of copper. Adv. Funct. Mater. 2025, 2501736. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Rosaiah, P.; Shim, J. Enhanced photocatalytic hydrogen evolution via Cd-doped C3N4: Structural, optical, and charge separation insights. Ceram. Int. 2025, 51, 19180–19187. [Google Scholar] [CrossRef]
- Lin, K.T.; Cheng, W.H.; Cheng, H.L.; Lin, H.H.; Chou, W.Y.; Hsu, B.Y.; Mao, C.A.; Hou, Y.C.; Ruan, J. Photocatalytic hydrogen evolution enabled by oriented phase interactions between monolayers of P3HT-Wrapped MoS2 and ferroelectric lamellar crystals. Adv. Funct. Mater. 2024, 34, 2307262. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Zhao, H.; Yue, S.; Zhong, L.; Huang, Y.; Jia, X.; Liu, K.; Li, X.; Wang, Z.; et al. Broadened photocatalytic capability to near-infrared for CdS hybrids and positioning hydrogen evolution sites. Appl. Catal. B Environ. 2023, 325, 122327. [Google Scholar] [CrossRef]
- Rehan, M.A.; Liang, H.; Li, G. Synergistic role of plasmonic Au-doped MOF with ZnIn2S4/MoS2 nanosheets for boosted photocatalytic hydrogen evolution. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Guo, C.; Ma, Y.; Zou, Y.; Wang, T. Preparation strategy of bimetallic MOF hollow photocatalysts for hydrogen evolution. Int. J. Hydrogen Energy 2024, 51, 950–961. [Google Scholar] [CrossRef]
- Li, H.; Gong, H.; Jin, Z. Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. Energy 2022, 307, 121166. [Google Scholar] [CrossRef]
- Li, Q.; Chang, H.; Gao, G.; Jian, H.; Liu, W.; Jia, H.; Xue, J.; Liu, H.; Shen, Q. Cadmium doping induced type-II to Z-scheme switching in CdSe/BiVO4 heterojunction for enhancing photocatalytic hydrogen production. Sep. Purif. Technol. 2025, 353, 128444. [Google Scholar] [CrossRef]
- Saothayanun, T.K.; Inchongkol, Y.; Weeranoppanant, N.; Kondo, M.; Ogawa, M.; Bureekaew, S. Self-shuttle-mediated electron transfer to boost photocatalytic hydrogen production of Co–Zn bimetallic MOF. J. Mater. Chem. A 2024, 12, 26743–26748. [Google Scholar] [CrossRef]
- Albukhari, S.M.; Ismail, A.A. Synthesis of mesoporous p-CuAl2O4/n-YVO4 heterojunction nanocomposites and their utilization as effective photocatalysts for hydrogen evolution. Fuel 2024, 357, 129755. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, X.; Ma, Y.; Cho, H.S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2021, 590, E16. [Google Scholar] [CrossRef]
- Shi, J.; Yang, L.; Zhang, J.; Wang, Z.; Zhu, W.; Wang, Y.; Zou, Z. Dual MOF-derived MoS2/CdS photocatalysts with rich sulfur vacancies for efficient hydrogen evolution reaction. Chem.—A Eur. J. 2022, 28, e202202019. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D. Biomorphic CdS/Cd photocatalyst derived from butterfly wing for efficient hydrogen evolution reaction. Adv. Mater. Interfaces 2022, 9, 2102323. [Google Scholar] [CrossRef]
- Mandari, K.K.; Son, N.; Kim, T.; Kang, M. Highly efficient SnS2@Ag/AgVO3 heterostructures for improved charge carriers in photocatalytic H2 production. J. Alloys Compd. 2022, 927, 166886. [Google Scholar] [CrossRef]
- He, T.; Chen, S.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W.; Wang, X. Zirconium–porphyrin-based metal–organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem. Int. Ed. 2018, 57, 3493–3498. [Google Scholar] [CrossRef]
- Leng, F.; Liu, H.; Ding, M.; Lin, Q.P.; Jiang, H.L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590. [Google Scholar] [CrossRef]
- Ortega Guerrero, A.; Fumanal, M.; Capano, G.; Tavernelli, I.; Smit, B. Insights into the electronic properties and charge transfer mechanism of a porphyrin ruthenium-based metal–organic framework. Chem. Mater. 2020, 32, 4194–4204. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364–3367. [Google Scholar] [CrossRef]
- Zuo, Q.; Liu, T.; Chen, C.; Ji, Y.; Gong, X.; Mai, Y.; Zhou, Y. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 2019, 58, 10198–10203. [Google Scholar] [CrossRef]
- Kim, J.H.; Wu, S.; Zdrazil, L.; Denisov, N.; Schmuki, P. 2D metal–organic framework nanosheets based on Pd-TCPP as photocatalysts for highly improved hydrogen evolution. Angew. Chem. Int. Ed. 2024, 63, e202319255. [Google Scholar] [CrossRef]
- Posligua, V.; Pandya, D.; Aziz, A.; Rivera, M.; Crespo Otero, R.; Hamad, S.; Grau Crespo, R. Engineering the electronic and optical properties of 2D porphyrin-paddlewheel metal-organic frameworks. J. Phys. Energy 2021, 3, 034005. [Google Scholar] [CrossRef]
- Pascanu, V.; Yao, Q.; Bermejo Gómez, A.; Gustafsson, M.; Yun, Y.; Wan, W.; Samain, L.; Zou, X.; Martín Matute, B. Sustainable catalysis: Rational Pd loading on MIL-101Cr-NH2 for more efficient and recyclable Suzuki–Miyaura reactions. Chem. Eng. J. 2013, 19, 17483–17493. [Google Scholar] [CrossRef]
- La Ngoc Tran, N.; Nguyen, T.A.; Le Hoang Doan, T.; Nguyen, H.V.T.; Huong, V.T.; Tran, T.T.V.; Ju, H.; Huy, T.H.; Le, H.V.; Tran, N.H.T. Stacking-order reversed multilayers of ZIF-8 and silver nanoparticles for the SERS detection of organic dye species. ChemNanoMat 2023, 9, e202300164. [Google Scholar] [CrossRef]
- Sui, J.; Liu, H.; Hu, S.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H.L. A general strategy to immobilize single-atom catalysts in metal–organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Zhang, J.; Li, L.; Gu, H.; Dai, W.L. Hierarchical fabrication of hollow Co2P nanocages coated with ZnIn2S4 thin layer: Highly efficient noble-metal-free photocatalyst for hydrogen evolution. J. Colloid Interface Sci. 2021, 590, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Li, W.; Yang, Q.; Hou, Q.; Wei, L.; Liu, L.; Huang, F.; Ju, M. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation. Appl. Catal. B Environ. 2017, 210, 352–367. [Google Scholar] [CrossRef]
- Bakuru, V.R.; Davis, D.; Kalidindi, S.B. Cooperative catalysis at the metal–MOF interface: Hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Trans. 2019, 48, 8573–8577. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.F.; Dai, W.L. Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: Extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation. Appl. Catal. B Environ. 2021, 298, 120632. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wang, X.; Li, L.; Li, Y.F.; Dai, W.L. In–N–In Sites Boosting Interfacial Charge Transfer in Carbon-Coated Hollow Tubular In2O3/ZnIn2S4 Heterostructure derived from In-MOF for enhanced photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 6276–6289. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Alanazi, H.S.; Al Nafaei, W.S.; Hasan, I. Synthesis of Zn3V2O8/rGO nanocomposite for photocatalytic hydrogen production. Inorganics 2023, 11, 93. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Alanazi, H.S.; Alshayiqi, A.A.; Hasan, I. Zinc Vanadate (Zn3V2O8) Immobilized multiwall carbon nanotube (MWCNT) heterojunction as an efficient photocatalyst for visible light driven hydrogen production. Molecules 2023, 28, 1362. [Google Scholar] [CrossRef]
- Muthukumar, R.; Balaji, G.; Vadivel, S. The charge transfer pathway of g-C3N4 decorated Au/Ni3(VO4)2 composites for highly efficient photocatalytic hydrogen evolution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130183. [Google Scholar] [CrossRef]
- Liu, P.; Yi, J.; Bao, R.; Fang, D. A flower-like Zn3V2O8/Ag composite with enhanced visible light driven photocatalytic activity: The triple-functional roles of Ag nanoparticles. New J. Chem. 2019, 43, 7482–7490. [Google Scholar] [CrossRef]
- Zeng, H.; Li, Z.; Li, G.; Cui, X.; Jin, M.; Xie, T.; Liu, L.; Jiang, M.; Zhong, X.; Zhang, Y.; et al. Interfacial engineering of TiO2/Ti3C2 Mxene/Carbon Nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765. [Google Scholar] [CrossRef]
- Wei, X.; Naraginti, S.; Yang, X.; Xu, X.; Li, J.; Zhu, M.; Chen, P.; Jiang, P. Simultaneous degradation of SMX for efficient nitrogen fixation to ammonia and hydrogen evolution using AgVO3@rGO-Ag3PO4 (110) heterojunction. Int. J. Hydrogen Energy 2024, 56, 629–641. [Google Scholar] [CrossRef]
- Yang, K.; Liu, T.; Jin, Z. 3D mesoporous ultra-thin g-C3N4 coupled with monoclinic β-AgVO3 as p-n heterojunction for photocatalytic hydrogen evolution. Mol. Catal. 2021, 513, 111828. [Google Scholar] [CrossRef]
- Konta, R.; Kato, H.; Kobayashi, H.; Kudo, A. Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys. Chem. Chem. Phys. 2003, 5, 3061–3065. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, C.W.; Lee, B.H.; Yu, Y.; Moon, J.; Lee, H.S.; Ko, W.; Bok, J.; Lee, K.; Lee, J.; et al. Cooperative Brønsted acid-single atom photocatalysis in metal–organic framework. J. Am. Chem. Soc. 2025, 147, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Zhang, L.; Li, S.; Song, H.; Fan, Y.; Su, C.Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal–organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2022, 144, 22747–22758. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.H.; Lu, H.Y.; Gu, Z.Z.; Chen, L.Y. Au-nanorod-modified PCN-222 (Cu) for H2 evolution from HCOOH dehydrogenation by photothermally enhanced photocatalysis. Chem. Commun. 2022, 58, 8520–8523. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Zhang, H.; Wang, X.; Gao, L.; Zhang, Y.; Liao, Y.; Meng, J.; Cui, Y.; Dai, W.L. In-situ construction of 3D/2D ZnIn2S4/Ni-MOLs: Highly efficient visible-light-driven photocatalytic heterojunction in hydrogen evolution. Appl. Catal. B Environ. Energy 2025, 361, 124657. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, Y.; Wang, F.; Zhao, Y.; Zhan, W.; Han, X. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 74, 104909. [Google Scholar] [CrossRef]
- Yue, S.; Hu, W.; Wang, J.; Sun, M.; Huang, Z.; Xie, M.; Yu, Y. Dramatically promoted photocatalytic water splitting over InVO4 via extending hole diffusion length by surface polarization. Chem. Eng. J. 2022, 435, 135005. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, H.; Wei, Y.; Liu, M.; Hong, J.; Gao, W.; Zhao, S.; Zhang, S.; Guo, S. Cu2O/2D COFs core/shell nanocubes with antiphotocorrosion ability for efficient photocatalytic hydrogen evolution. ACS Nano 2023, 17, 5994–6001. [Google Scholar] [CrossRef]
- Xi, X.; Lv, L.; Gong, X.; Zhang, Z.; Gao, Y.; Xia, Y.; Wan, S.; Wu, X.; Chen, H.; Yang, D.; et al. Emergence of voronoi-patterned cellular membranes via confinement transformation of self-assembled metal–organic frameworks. J. Am. Chem. Soc. 2025, 147, 6983–6994. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, H.; Dai, J.; Li, B.; Yang, L.; Wang, J.; Zhu, H. Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures. Nat. Commun. 2025, 16, 2601. [Google Scholar] [CrossRef]
- Ilić, N.; Tan, K.; Mayr, F.; Hou, S.; Aumeier, B.M.; Morales, E.M.C.; Hübner, U.; Cookman, J.; Schneemann, A.; Gagliardi, A.; et al. Trace Adsorptive removal of PFAS from water by optimizing the UiO-66 MOF interface. Adv. Mater. 2025, 37, 2413120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yu, J.; Zhang, Y.; Cui, Z.; Sun, Y.; Hou, B. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. B Environ. 2018, 220, 57–66. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Pu, X.; Zhang, L.; Zhang, D.; Jiang, J. Photothermal-enhanced S-scheme heterojunction of hollow core–shell FeNi2S4@ZnIn2S4 toward photocatalytic hydrogen evolution. Small 2024, 20, 2311504. [Google Scholar] [CrossRef]
- Gálvez Barbosa, S.; González, L.A.; Bretado, L.A.; Vento Lujano, E.; Rosas, G. Photocatalytic performance of dual Z-scheme CoFe2O4/α−Fe2O3/Co3O4 ternary heterojunction composite synthesized by Pechini method. Opt. Mater. 2024, 154, 115726. [Google Scholar] [CrossRef]
- Luo, L.; Maggard, P.A. Effect of ligand coordination on the structures and visible-light photocatalytic activity of manganese vanadate hybrids. Cryst. Growth Des. 2013, 13, 5282–5288. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Weng, B.; Xiao, L.; Tian, Z.; Yang, J.; Liu, T.; Lai, F. Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal—Organic frameworks for enhanced photocatalytic hydrogen generation. Chem. Eng. J. 2022, 442, 136144. [Google Scholar] [CrossRef]
- Yin, Y.B.; Liu, Y.; Wang, Z.; Feng, Y.M.; Jiang, B. A ternary composite catalyst α-DMACoPc/UiO-66-NH2/TiO2 for synergistic photocatalytic degradation of dyes. J. Coord. Chem. 2023, 76, 2187–2196. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Z.; Ma, X.; Zhang, Y.; Wang, H. Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production. New J. Chem. 2019, 43, 3609–3618. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Liu, S.; Cui, S.; Zhang, Y.; Deng, P. Iridium complex modified MOFs for enhancing photocatalytic hydrogen evolution. Energy Adv. 2024, 3, 1414–1421. [Google Scholar] [CrossRef]
- Cui, Y.; Neng zi, L.C.; Gou, J.; Huang, Y.; Li, B.; Cheng, X. Fabrication of dual Z-scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance. Sep. Purif. Technol. 2020, 232, 115959. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Frebillot, C.; Kaddoury, Y.; Sufian, S.; Ong, W.J. Bifunctional Z-Scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers. J. Environ. Manag. 2020, 270, 110803. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Yu, H.; Liu, P.; Zhang, G.; Huang, H.; Mei, D. Size-dependent electron injection over sensitized semiconductor heterojunctions for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2022, 308, 121218. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.M.; Yu, L.M. A novel Z-scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution. Sep. Purif. Technol. 2022, 294, 121094. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@Metal−Organic Framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Kinik, F.P.; Ortega Guerrero, A.; Ebrahim, F.M.; Ireland, C.P.; Kadioglu, O.; Mace, A.; Asgari, M.; Smit, B. Toward optimal photocatalytic hydrogen generation from water using pyrene-based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 57118–57131. [Google Scholar] [CrossRef]
- Guo, S.; Cao, X.; Su, J.; Cui, J.; Zhang, B.; Suo, C.; Duan, X.; Li, X.; Wei, B.; Zhang, X.M. Plasmonic honeycomb-like structures with Bernoulli effect and pre-activation effect for enhanced photocatalytic hydrogen production from waste water. Chem. Eng. J. 2024, 500, 157335. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, M.; Yao, K.; Zhang, C.; Wu, Q.; Hu, T.; Shan, S. Dye-sensitized NH2-UiO-66 anchored with copper ions for tandem visible-light-driven hydrogen evolution. J. Environ. Chem. Eng. 2023, 11, 111349. [Google Scholar] [CrossRef]
- Parnicka, P.; Lisowski, W.; Klimczuk, T.; Mikolajczyk, A.; Zaleska Medynska, A. A novel (Ti/Ce)UiO-X MOFs@TiO2 heterojunction for enhanced photocatalytic performance: Boosting via Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators. Appl. Catal. B Environ. 2022, 310, 121349. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, K.; Luo, X.; Cai, Q.; Zeng, J.; He, Y.; Liu, X.; Li, S.; Wei, S. Construction of 2D/2D S-scheme Bi2MoO6/Zn-TCPP heterojunction via in-situ self-assembly growth strategy to enhance interface effect for efficient photocatalytic hydrogen production. J. Colloid Interface Sci. 2025, 677, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cui, D.; Yang, X.; Zhang, T.; Sun, Z.; Li, Q.; Li, F. H3PMo12O40@ZIF-67-derived CoMoC/ZnIn2S4 Schottky heterojunction for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2024, 77, 666–676. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Q.; Wang, X.; Li, B.; Li, X.; Yang, X.; Li, W.; Zhang, H. Integration of platinum nanoparticles and Pd-porphyrin photosensitiser into a metal–organic framework for effective photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 685, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Zhang, L.S.; Chen, Y.; Tian, L.; Jiang, X.H.; Chen, L.S.; Xing, Q.J.; Liu, X.Z.; Wu, D.S.; Zou, J.P. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity. Chin. J. Catal. 2022, 43, 811–819. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Jin, Z. Polymetallic coordination polymers for photocatalytic hydrogen production. ACS Sustain. Chem. Eng. 2023, 11, 16015–16029. [Google Scholar] [CrossRef]
- Deng, B.; Chen, Q.; Liu, Y.; Ullah Khan, A.; Zhang, D.; Jiang, T.; Wang, X.; Liu, N.; Li, H.; Mao, B. Quasi-type-II Cu-In-Zn-S/Ni-MOF heterostructure with prolonged carrier lifetime for photocatalytic hydrogen production. J. Colloid Interface Sci. 2024, 662, 1016–1025. [Google Scholar] [CrossRef]
- Musa, E.N.; Yadav, A.K.; Srichareonkul, M.; Thampetraruk, D.; Frechette, E.; Thiele, H.C.; Stylianou, K.C. What up with MOFs in photocatalysis? Exploring the influence of experimental conditions on the reproducibility of hydrogen evolution rates. ACS Appl. Mater. Interfaces 2024, 16, 70675–70684. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Z.; Niu, X.; Yang, W.; Kang, R.; Lin, Z.; Waseem, A.; Jiao, L.; Jiang, H.L. Linker engineering of sandwich-structured Metal–Organic framework composites for optimized photocatalytic H2 production. Adv. Mater. 2023, 35, 2302512. [Google Scholar] [CrossRef]
- Ding, M.; Li, M.; Wang, J.; Jin, Z. Visible-light-induced photocatalytic hydrogen evolution performance of graphdiyne-alkyne phosphating Mo–Metal-Organic frameworks heterojunction. Sol. RRL 2024, 8, 2400041. [Google Scholar] [CrossRef]
- Yang, H.; Wang, R.; Hou, H.; Li, Y.; Li, Z.; Wang, H.; Zhan, X.; Zhang, D.; Liang, Z.; Luo, Y.; et al. Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution. Sep. Purif. Technol. 2025, 362, 131819. [Google Scholar] [CrossRef]
- Dong, Z.; Li, D.; Han, T.; Zhao, X.; Lei, X. Boosting solar hydrogen generation by growth of UiO-based MOF on metal sulfide surface. J. Environ. Chem. Eng. 2025, 13, 116141. [Google Scholar] [CrossRef]
- Chiu, N.C.; Nord, M.T.; Tang, L.; Lancaster, L.S.; Hirschi, J.S.; Wolff, S.K.; Hutchinson, E.M.; Goulas, K.A.; Stickle, W.F.; Zuehlsdorff, T.J.; et al. Designing dual-functional metal–organic frameworks for photocatalysis. Chem. Mater. 2022, 34, 8798–8807. [Google Scholar] [CrossRef]
- Mao, S.; Shi, J.W.; Sun, G.; Zhang, Y.; Ma, D.; Song, K.; Lv, Y.; Zhou, J.; Wang, H.; Cheng, Y. PdS quantum dots as a hole attractor encapsulated into the MOF@Cd0.5Zn0.5S heterostructure for boosting photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 2022, 14, 48770–48779. [Google Scholar] [CrossRef]
Catalyst | Synthesis Method | Cocatalyst/ Sacrificial Agent | H2 Evolution Rate | Light Source | Ref |
---|---|---|---|---|---|
In2O3/ZnIn2S4 | Solvothermal | Pt/Na2S·Na2SO3 | 920.5 μmol·g−1·h−1 | 300 W Xe lamp | [37] |
M-TBAPy (M: In Al Sc Ti) | Hydrothermal | TEA | 147.5 μmol·g−1·h−1 | 300 W Xe lamp | [69] |
ZnIn2S4-MOF | One-step method | Pt/Na2SO4 | 28.2 mmol·g−1·h−1 | 300 W Xe lamp | [36] |
ZnIn2S4/Ni-MOLs | Hydrothermal | Pt NPs/TEOA | 4.75 mmol·g−1·h−1 | 300 W Xe lamp | [49] |
Au/Ni-MOF | Wet chemical method | Au/Na2SO3 | 7610 μmol·g−1·h−1 | AM 1.5 G | [70] |
EY-6Cu-NU-66 | Impregnation strategy | EY/TEOA | 3579.82 μmol·g−1·h−1 | 300 W Xe lamp | [71] |
Pt/Zr-TCPP(Pd) | Bottom-up method | Pt/Ascorbic acid | 3348 μmol·g−1·h−1 | λ ≥ 400 nm | [58] |
Ti/CeUiOMOFs@TiO2 | Multistep strategy | TEOA | 4724 μmol·g−1·h−1 | UV | [72] |
Bi2MoO6/Zn-TCPP | In situ self-assembly growth | Pt/Ascorbic acid | 10,900.94 μmol·g−1·h−1 | λ ≥ 420 nm | [73] |
CoMoC/ZnIn2S4 | Solvothermal | TEOA | 2232 μmol·g−1·h−1 | 300 W Xe lamp | [74] |
Pt/PdTCPP + UiO-66-(NH2)2 | Mixed-ligand strategy | Pt NPs/TEOA | 1152 μmol·g−1·h−1 | 300 W Xe lamp | [75] |
B-CTF-Ti-MOF | Solvothermal | Pt/TEOA | 1975 μmol·g−1·h−1 | 300 W Xe lamp | [76] |
Pt@CoCuZn-PMCPs-2 | Solvothermal | Pt-EY/TEOA | 1038.8 μmol·g−1·h−1 | λ > 420 nm | [77] |
Cu-In-Zn-S/Ni-MOF | Hydrothermal | Ascorbic acid | 2642 μmol·g−1·h−1 | λ > 420 nm | [78] |
MIL-125-NH2/Ni2P | Solvothermal | Ni2P/TEA | 4327 μmol·g−1·h−1 | 300 W Xe lamp | [79] |
UiO-66-NH2@Pt@UiO-66-H | Self-assemble | Pt NPs/TEA | 2708.2 μmol·g−1·h−1 | 300 W Xe lamp | [80] |
PMF/G-25 | Solvothermal | EY/TEOA pH = 9 | 1688.5 μmol·g−1·h−1 | Multichannel reaction system | [81] |
CdS@N-NiCoO | Solvothermal | Na2S·Na2SO3 | 4632 μmol·g−1·h−1 | 300 W Xe lamp | [82] |
CdS/UiO-67-NH2 | One-step method | TEOA | 487.5 μmol·g−1·h−1 | Visible light | [83] |
Pt/UiO-66-pz | Hydrothermal | Pt NPs/TEA | 329 μmol·g−1·h−1 | Visible light | [84] |
PdS@UiOS@CZS | Solvothermal | Na2S·Na2SO3 | 460.8 μmol·g−1·h−1 | 300 W Xe lamp | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Wei, Y.; Liao, Y.; Meng, J.; Huang, Y.; Wang, X.; Zhang, H.; Dai, W. Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution. Molecules 2025, 30, 2755. https://doi.org/10.3390/molecules30132755
Zhou Q, Wei Y, Liao Y, Meng J, Huang Y, Wang X, Zhang H, Dai W. Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution. Molecules. 2025; 30(13):2755. https://doi.org/10.3390/molecules30132755
Chicago/Turabian StyleZhou, Quanmei, Yuchen Wei, Yifan Liao, Jiayi Meng, Yamei Huang, Xinglin Wang, Huihui Zhang, and Weilin Dai. 2025. "Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution" Molecules 30, no. 13: 2755. https://doi.org/10.3390/molecules30132755
APA StyleZhou, Q., Wei, Y., Liao, Y., Meng, J., Huang, Y., Wang, X., Zhang, H., & Dai, W. (2025). Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution. Molecules, 30(13), 2755. https://doi.org/10.3390/molecules30132755