Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Hydrothermal Carbons
3.3. Characterization of Solid Catalysts
3.4. Typical Protocols for Catalyzed Aza-Michael Reactions
- (a)
- Reactions with K10 and ionic liquid [Cho][Pro]
- (b)
- Reactions with solid catalysts
- (c) Hydrothermal carbon-catalyzed reactions. Large-scale procedure
- (d) Hydrothermal carbon-catalyzed reactions. Recycling procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anastas, P.T.; Kirchhoff, M.M.; Williamson, T.C. Catalysis as a Foundational Pillar of Green Chemistry. Appl. Catal. A Gen. 2001, 221, 3–13. [Google Scholar] [CrossRef]
- Horváth, I.T.; Anastas, P.T. Innovations and Green Chemistry. Chem. Rev. 2007, 107, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Sharma, P.; Rowinski, L.; Le, H.C.; Le, D.T.N.; Osman, S.M.; Le, H.S.; Truong, T.H.; Nguyen, P.Q.P.; Cao, D.N. Biochar-based Catalysts Derived from Biomass Waste: Production, Characterization, and Application for Liquid Biofuel Synthesis. Biofuels Bioprod. Biorefining 2024, 18, 594–616. [Google Scholar] [CrossRef]
- Rulev, A.Y. Aza-Michael Reaction: Achievements and Prospects. Russ. Chem. Rev. 2011, 80, 197–218. [Google Scholar] [CrossRef]
- Rulev, A.Y. Aza-Michael Reaction: A Decade Later—Is the Research Over? Eur. J. Org. Chem. 2023, 26, e202300451. [Google Scholar] [CrossRef]
- Genest, A.; Portinha, D.; Fleury, E.; Ganachaud, F. The Aza-Michael Reaction as an Alternative Strategy to Generate Advanced Silicon-Based (Macro)Molecules and Materials. Prog. Polym. Sci. 2017, 72, 61–110. [Google Scholar] [CrossRef]
- Peyrton, J.; Avérous, L. Aza-Michael Reaction as a Greener, Safer, and More Sustainable Approach to Biobased Polyurethane Thermosets. ACS Sustain. Chem. Eng. 2021, 9, 4872–4884. [Google Scholar] [CrossRef]
- Sánchez-Roselló, M.; Aceña, J.L.; Simón-Fuentes, A.; del Pozo, C. A General Overview of the Organocatalytic Intramolecular Aza-Michael Reaction. Chem. Soc. Rev. 2014, 43, 7430–7453. [Google Scholar] [CrossRef]
- Sharma, P.; Gupta, R.; Bansal, R.K. Recent Advances in Organocatalytic Asymmetric Aza-Michael Reactions of Amines and Amides. Beilstein J. Org. Chem. 2021, 17, 2585–2610. [Google Scholar] [CrossRef]
- Sánchez-Roselló, M.; Escolano, M.; Gaviña, D.; Pozo, C. Two Decades of Progress in the Asymmetric Intramolecular Aza-Michael Reaction. Chem. Rec. 2022, 22, e202100161. [Google Scholar] [CrossRef] [PubMed]
- Ying, A.; Zheng, M.; Xu, H.; Qiu, F.; Ge, C. Guanidine-Based Task-Specific Ionic Liquids as Catalysts for Aza-Michael Addition under Solvent-Free Conditions. Res. Chem. Intermed. 2011, 37, 883–890. [Google Scholar] [CrossRef]
- Chelghoum, M.; Bahnous, M.; Bouraiou, A.; Bouacida, S.; Belfaitah, A. An Efficient and Rapid Intramolecular Aza-Michael Addition of 2′-Aminochalcones Using Ionic Liquids as Recyclable Reaction Media. Tetrahedron Lett. 2012, 53, 4059–4061. [Google Scholar] [CrossRef]
- Ying, A.; Li, Z.; Yang, J.; Liu, S.; Xu, S.; Yan, H.; Wu, C. DABCO-Based Ionic Liquids: Recyclable Catalysts for Aza-Michael Addition of α,β-Unsaturated Amides under Solvent-Free Conditions. J. Org. Chem. 2014, 79, 6510–6516. [Google Scholar] [CrossRef]
- Hou, H.L.; Qiu, F.L.; Ying, A.G.; Xu, S.L. DABCO-Based Ionic Liquids: Green and Efficient Catalysts with a Dual Catalytic Role for Aza-Michael Addition. Chin. Chem. Lett. 2015, 26, 377–381. [Google Scholar] [CrossRef]
- Ghasemi, M.H.; Kowsari, E.; Shafiee, A. Aza-Michael-Type Addition Reaction Catalysed by a Supported Ionic Liquid Phase Incorporating an Anionic Heteropoly Acid. Tetrahedron Lett. 2016, 57, 1150–1153. [Google Scholar] [CrossRef]
- Szánti-Pintér, E.; Maksó, L.; Gömöry, Á.; Wouters, J.; Herman, B.E.; Szécsi, M.; Mikle, G.; Kollár, L.; Skoda-Földes, R. Synthesis of 16α-Amino-Pregnenolone Derivatives via Ionic Liquid-Catalyzed Aza-Michael Addition and Their Evaluation as C17,20-Lyase Inhibitors. Steroids 2017, 123, 61–66. [Google Scholar] [CrossRef]
- Boruah, K.; Borah, R. Design of Water Stable 1,3-Dialkyl- 2-Methyl Imidazolium Basic Ionic Liquids as Reusable Homogeneous Catalysts for Aza-Michael Reaction in Neat Condition. ChemistrySelect 2019, 4, 3479–3485. [Google Scholar] [CrossRef]
- Kantam, M.L.; Neeraja, V.; Kavita, B.; Neelima, B.; Chaudhuri, M.K.; Hussain, S. Cu(Acac)2 Immobilized in Ionic Liquids: A Recoverable and Reusable Catalytic System for Aza-Michael Reactions. Adv. Synth. Catal. 2005, 347, 763–766. [Google Scholar] [CrossRef]
- Yang, L.; Xu, L.W.; Zhou, W.; Li, L.; Xia, C.G. Highly Efficient Aza-Michael Reactions of Aromatic Amines and N-Heterocycles Catalyzed by a Basic Ionic Liquid under Solvent-Free Conditions. Tetrahedron Lett. 2006, 47, 7723–7726. [Google Scholar] [CrossRef]
- Verma, A.K.; Attri, P.; Chopra, V.; Tiwari, R.K.; Chandra, R. Triethylammonium Acetate (TEAA): A Recyclable Inexpensive Ionic Liquid Promotes the Chemoselective Aza- and Thia-Michael Reactions. Monatshefte Für Chem. Chem. Mon. 2008, 139, 1041–1047. [Google Scholar] [CrossRef]
- Liu, X.-B.; Lu, M.; Lu, T.-T.; Gu, G.-L. Functionalized Ionic Liquid Promoted Aza-Michael Addition of Aromatic Amines. J. Chin. Chem. Soc. 2010, 57, 1221–1226. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Song, H.; Qian, Y.; Wang, F. Solvent-Free Aza-Markovnikov and Aza-Michael Additions Promoted by a Catalytic Amount of Imidazolide Basic Ionic Liquids. Tetrahedron Lett. 2011, 52, 3588–3591. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Miao, S.; Atkin, R.; Warr, G. Design and Applications of Biocompatible Choline Amino Acid Ionic Liquids. Green Chem. 2022, 24, 7281–7304. [Google Scholar] [CrossRef]
- Gontrani, L. Choline-Amino Acid Ionic Liquids: Past and Recent Achievements about the Structure and Properties of These Really “Green” Chemicals. Biophys. Rev. 2018, 10, 873–880. [Google Scholar] [CrossRef]
- Campetella, M.; Bodo, E.; Caminiti, R.; Martino, A.; D’Apuzzo, F.; Lupi, S.; Gontrani, L. Interaction and Dynamics of Ionic Liquids Based on Choline and Amino Acid Anions. J. Chem. Phys. 2015, 142, 234502. [Google Scholar] [CrossRef]
- Campetella, M.; Le Donne, A.; Daniele, M.; Gontrani, L.; Lupi, S.; Bodo, E.; Leonelli, F. Hydrogen Bonding Features in Cholinium-Based Protic Ionic Liquids from Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 2635–2645. [Google Scholar] [CrossRef]
- Miao, S.; Atkin, R.; Warr, G.G. Amphiphilic Nanostructure in Choline Carboxylate and Amino Acid Ionic Liquids and Solutions. Phys. Chem. Chem. Phys. 2020, 22, 3490–3498. [Google Scholar] [CrossRef]
- Izquierdo, S.; Cintas, P.; Durán-Valle, C.J.; de la Concepción, J.G.; López-Coca, I.M. Reinvigorating Aza-Michael Reactions under Ionic Liquid Catalysis: A Greener Approach. Org. Biomol. Chem. 2024, 22, 2423–2434. [Google Scholar] [CrossRef]
- Izquierdo Nieto, S.; López-Coca Martín, I. Método de Adición Aza-Michael de Aminas y Compuestos α,β-Insaturados. Spanish Patent ES-2904628, 2 November 2022. [Google Scholar]
- Nicolae, S.A.; Au, H.; Modugno, P.; Luo, H.; Szego, A.E.; Qiao, M.; Li, L.; Yin, W.; Heeres, H.J.; Berge, N.; et al. Recent Advances in Hydrothermal Carbonisation: From Tailored Carbon Materials and Biochemicals to Applications and Bioenergy. Green Chem. 2020, 22, 4747–4800. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.; Balasubramanian, R. Synthesis, Formation Mechanisms and Applications of Biomass-Derived Carbonaceous Materials: A Critical Review. J. Mater. Chem. A 2021, 9, 24759–24802. [Google Scholar] [CrossRef]
- Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 Montmorillonite Clays as Environmentally Benign Catalysts for Organic Reactions. Catal. Sci. Technol. 2014, 4, 2378–2396. [Google Scholar] [CrossRef]
- Hechelski, M.; Ghinet, A.; Louvel, B.; Dufrénoy, P.; Rigo, B.; Daïch, A.; Waterlot, C. From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Eco-Friendly Plant-Based Catalysts Used as Green Lewis Acids. ChemSusChem 2018, 11, 1249–1277. [Google Scholar] [CrossRef]
- Izquierdo, S.; Pacheco, N.; Durán-Valle, C.J.; López-Coca, I.M. From Waste to Resource: Utilizing Sweet Chestnut Waste to Produce Hydrothermal Carbon for Water Decontamination. C 2023, 9, 57. [Google Scholar] [CrossRef]
- López-Coca, I.M.; Pacheco, N.; Izquierdo, S.; Durán-Valle, C.J. Preparación de Carbones Activados y Aplicación a La Depuración de Agua Contaminada Por Ácido Perfluorooctanoico. In La Transferencia de los Resultados de la Investigación Para el Desarrollo Territorial Sostenible.; Gallego, J.A.G., Schnabel, S., Contador, J.F.L., Serrano, J.C., Eds.; Dykinson: Madrid, Spain, 2022; pp. 396–432. ISBN 9788411224314. [Google Scholar]
- Kaur, K.; Kaur, R.; Kaur, H. A Systematic Review of Lignocellulosic Biomass for Remediation of Environmental Pollutants. Appl. Surf. Sci. Adv. 2024, 19, 100547. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Dumbre, D.K.; Patil, S.K. FeCl 3 /Montmorillonite K10 as an Efficient Catalyst for Solvent-Free Aza-Michael Reaction between Amine and α,β-Unsaturated Compounds. RSC Adv. 2012, 2, 7061–7065. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sutapa, I.W.; Taba, P.; Shiomori, K.; Taipabu, M.I.; Kamari, A. Impregnation Process and Kinetics Studies of MgO Nanocatalyst/Montmorilonite-K10 for Biodiesel Production from Cerbera Odollam Oil in Modified-Microwave Reactor. Kuwait J. Sci. 2024, 51, 100209. [Google Scholar] [CrossRef]
- Sharaby, M.R.; Soliman, E.A.; Khalil, R. Halochromic Smart Packaging Film Based on Montmorillonite/Polyvinyl Alcohol-High Amylose Starch Nanocomposite for Monitoring Chicken Meat Freshness. Int. J. Biol. Macromol. 2024, 258, 128910. [Google Scholar] [CrossRef]
- Alekseeva, O.; Noskov, A.; Grishina, E.; Ramenskaya, L.; Kudryakova, N.; Ivanov, V.; Agafonov, A. Structural and Thermal Properties of Montmorillonite/Ionic Liquid Composites. Materials 2019, 12, 2578. [Google Scholar] [CrossRef] [PubMed]
- Noskov, A.V.; Alekseeva, O.V.; Shibaeva, V.D.; Agafonov, A.V. Synthesis, Structure and Thermal Properties of Montmorillonite/Ionic Liquid Ionogels. RSC Adv. 2020, 10, 34885–34894. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fan, L.; Zhou, M.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors. Adv. Mater. 2010, 22, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Titirici, M.-M.; Antonietti, M.; Baccile, N. Hydrothermal Carbon from Biomass: A Comparison of the Local Structure from Poly- to Monosaccharides and Pentoses/Hexoses. Green Chem. 2008, 10, 1204. [Google Scholar] [CrossRef]
- Li, B.; Lei, Z.; Huang, Z. Surface-Treated Activated Carbon for Removal of Aromatic Compounds from Water. Chem. Eng. Technol. 2009, 32, 763–770. [Google Scholar] [CrossRef]
- Kim, J.-H.; Hwang, S.Y.; Park, J.E.; Lee, G.B.; Kim, H.; Kim, S.; Hong, B.U. Impact of the Oxygen Functional Group of Nitric Acid-Treated Activated Carbon on KOH Activation Reaction. Carbon Lett. 2019, 29, 281–287. [Google Scholar] [CrossRef]
- Moreno, L.; Pardo-Botello, R.; Durán-Valle, C.J.; Adame-Pereira, M.; Cintas, P.; Chan, L.; Cantillo, D.; Martínez, R.F. Catalytic Screening for 1,2-Diol Protection: A Saccharose-Derived Hydrothermal Carbon Showcases Enhanced Performance. Appl. Sci. 2025, 15, 807. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.R.; Silvestre, S.; Durán-Valle, C.J. Adsorption of Aqueous Mercury(II) Species by Commercial Activated Carbon Fibres with and without Surface Modification. Adsorpt. Sci. Technol. 2007, 25, 199–215. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Durán-Valle, C.J.; Adame-Pereira, M. Unlocking the Potential of Chemically Modified Carbon Gels in Gallic Acid Adsorption. Gels 2024, 10, 123. [Google Scholar] [CrossRef]
- Román, I.; Pardo-Botello, R.; Durán-Valle, C.J.; Cintas, P.; Fernando Martínez, R. An Eco-Friendly and Switchable Carbon-Based Catalyst for Protection-Deprotection of Vicinal Diols. ChemCatChem 2023, 15, e202300555. [Google Scholar] [CrossRef]
- Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2016, 93, 753–756. [Google Scholar] [CrossRef]
- Still, W.C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Guo, X.; Ji, T.; Chen, L.; Yuan, R.; Brisbin, L.; Wang, H.; Zhu, J. Non-Corrosive Green Lubricants: Strengthened Lignin–[Choline][Amino Acid] Ionic Liquids Interaction via Reciprocal Hydrogen Bonding. RSC Adv. 2015, 5, 66067–66072. [Google Scholar] [CrossRef]
- Valente Nabais, J.M.; Carrott, P.J.M. Chemical Characterization of Activated Carbon Fibers and Activated Carbons. J. Chem. Educ. 2006, 83, 436. [Google Scholar] [CrossRef]
Catalyst | Specific Surface a m2 g−1 | Vmicro b cm3 g−1 | Vmeso c cm3 g−1 |
---|---|---|---|
K10 | 279.5 | 0.107 | 0.078 |
HCB | 42.3 | 0.007 | 0.061 |
HCC | 53.2 | 0.007 | 0.061 |
Oxide | Concentration, % |
---|---|
SiO2 | 67.36 |
Al2O3 | 12.10 |
Fe2O3 | 3.05 |
K2O | 1.70 |
MgO | 1.37 |
TiO2 | 0.537 |
Na2O | 0.29 |
CaO | 0.221 |
ZrO2 | 0.0338 |
CuO | 0.0131 |
ZnO | 0.0106 |
Sample | C, % | H, % | N, % | S, % | O, % | Ash, % |
---|---|---|---|---|---|---|
HCB | 61.70 | 5.93 | 0.58 | 0.05 | 31.55 | 0.19 |
HCC | 63.70 | 5.89 | 1.06 | 0.05 | 28.46 | 0.84 |
Material | C, % | Reference |
---|---|---|
Activated carbons prepared from mineral coal | >88 | [47] |
Activated carbon obtained from wood treated with nitric acid and activated with KOH | 79 | [48] |
Activated charcoal obtained from coconut shells treated with nitric acid and activated with KOH | 85–89 | [48] |
Commercial activated carbon | 89–92 | [49] |
Acid modified activated carbon | 83–87 | [49] |
Hydrothermal (from sucrose) carbon | 64 | [49] |
Acid modified hydrothermal (from sucrose) carbon | 60 | [49] |
Commercial activated fiber carbon | 73 | [50] |
Modified fiber carbon | 68–80 | [50] |
Material | PZC |
---|---|
K10 | 3.5 |
HCB | 3.8 |
HCC | 4.8 |
Sample | Material Description | PZC | Reference |
---|---|---|---|
N | Commercial activated carbon | 9.1 | [49] |
N-Zr | “N” with ZrO2 | 7.2 | [49] |
N-Zr-S1 | “N-Zr” treated with H2SO4 | 4.9 | [49] |
N-HT | “N” + sucrose, hydrothermal treatment | 9.2 | [49] |
N-HT-S | “N-HT” treated with H2SO4 | 4.4 | [49] |
M | Commercial activated carbon | 10.0 | [49] |
M-N | “M” treated with HNO3 | 7.4 | [49] |
M-S | “M” treated with H2SO4 | 3.8 | [49] |
HT | Hydrothermal (from sucrose) carbon | 2.8 | [49] |
HT-S | “HT” treated with H2SO4 | 1.9 | [49] |
C-X | Carbon xerogel | 7.2 | [51] |
C-X-S | “C-X” treated with H2SO4 | 2.5 | [51] |
C-X-N | “C-X” treated with HNO3 | 3.4 | [51] |
N | Commercial activated carbon * | 7.1 | [52] |
NS | “N” treated with H2SO4 | 2.8 | [52] |
NN | “N” treated with HNO3 | 3.8 | [52] |
Catalyst | C 1s | O 1s | N 1s |
---|---|---|---|
HCB | 71.83 | 27.39 | 0.79 |
HCC | 71.30 | 27.45 | 1.25 |
Entry | Alkene | Amine | Product | Catalyst | Yield c | |||||
---|---|---|---|---|---|---|---|---|---|---|
HCB | HCC | K10 | K10+[Cho][Pro] | [Cho][Pro] d | --- e | |||||
Reaction Time (min) f,g | ||||||||||
1 | 1 | 3a | 5 | 5 | 40 | 20 | 5 | 75 | ||
2 | 1 | 3b | 5 | 5 | 30 | 5 | 5 | 95 | ||
3 | 1 | 3c | 15 | 15 | 30 | 5 | 5 | 92 | ||
4 | 1 | 3d | --- h | --- h | 150 | 10 | 10 | 85 | ||
5 | 1 | 3e | 30 | 30 | 40 | 10 | 10 | 85 | ||
6 | 2 | 3a | 180 | 180 | 90 | 50 | 10 | --- h | 70 | |
7 | 2 | 3b | 10 | 15 | 30 | 10 | 10 | 20 | 99 | |
8 | 2 | 3c | 10 | 5 | 10 | 15 | 10 | 15 | 90 | |
9 | 2 | 3d | 25 | 30 | 30 | 30 | 10 | --- h | 78 | |
10 | 2 | 3e | 15 | 10 | 30 | 30 | 5 | 90 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izquierdo, S.; Durán-Valle, C.J.; Cintas, P.; López-Coca, I.M. Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches. Molecules 2025, 30, 2674. https://doi.org/10.3390/molecules30132674
Izquierdo S, Durán-Valle CJ, Cintas P, López-Coca IM. Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches. Molecules. 2025; 30(13):2674. https://doi.org/10.3390/molecules30132674
Chicago/Turabian StyleIzquierdo, Silvia, Carlos J. Durán-Valle, Pedro Cintas, and Ignacio M. López-Coca. 2025. "Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches" Molecules 30, no. 13: 2674. https://doi.org/10.3390/molecules30132674
APA StyleIzquierdo, S., Durán-Valle, C. J., Cintas, P., & López-Coca, I. M. (2025). Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches. Molecules, 30(13), 2674. https://doi.org/10.3390/molecules30132674