Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications
Abstract
1. Introduction
1.1. General Presentation of Azobenzenes and Phenolic Compounds
1.1.1. Azobenzene Properties
1.1.2. Phenolic Properties
1.2. Objectives and Scope of This Review
2. Chemistry of Phenolic Azobenzenes
2.1. Structure and General Properties of Hydroxyazobenzenes
2.2. Solvatochromism and Complexation Effects of Azo–Schiff Bases and Hydroxyl-Azobenzenes
3. General Synthetic Methods for Azobenzenes and Hydroxyazobenzenes
3.1. Azo Coupling Reaction
3.2. Baeyer–Mills Reaction
3.3. Oxidation of Anilines
3.4. Reduction Reaction of Azoxybenzenes
3.5. Reductive Coupling of Aromatic Nitro Derivatives
4. Complexation and Crystal Structures
- Cu–O: 1.917 Å.
- Cu–N: (quinoline): 2.008 Å.
- Cu–N: (azo): 1.945 Å.
- Cu–Cl: 2.280 Å.
- Cu1–O1: 1.944 Å.
- Cu1–O1A: 2.061 Å.
- Cu1–O4: 1.920 Å.
- Cu1–O6: 2.140 Å.
- Cu1–N2: 1.925 Å.
- Cu1–O2: 1.854 Å.
- Cu1–O3: 1.885 Å.
- Cu1–N1: 1.957 Å.
- Cu1–N3: 1.913 Å.
5. Applications of Phenolic Azobenzene Complexes
5.1. Colorimetric Sensors
5.2. Smart Materials and DSSCs
EHOMO (eV) | ELUMO (eV) | ΔE (eV) | Absorption Range/λmax (nm) | Reference | |
---|---|---|---|---|---|
1 | −5.85 | −3.13 | 2.72 | 387–679 | [103] |
2 | −5.74 | −3.11 | 2.73 | 440–727 | [103] |
3 | −5.92 | −3.18 | 2.74 | 472–752 | [103] |
4 | −6.64 | −4.02 | 2.62 | 511–790 | [103] |
5 | −5.483 | −3.429 | 2.234 | 368 | [106] |
6 | −5.312 | −3.785 | 1.527 | 387 | [106] |
7 | −5.579 | −3.279 | 2.282 | 352 | [106] |
8 | −4.36 | −3.73 | 0.63 | 450 | [105] |
9 | −4.36 | −3.83 | 0.53 | 402 | [105] |
5.3. Catalysis and Coordination Chemistry
R | Catalyst | Yield (%) |
CH3 | 12 | 95 |
13 | 88 | |
14 | 97 | |
15 | 91 | |
16 | 95 | |
17 | 90 | |
OMe | 12 | 96 |
13 | 98 | |
14 | 98 | |
15 | 96 | |
16 | 93 | |
17 | 97 | |
C(O)CH3 | 12 | 99 |
13 | 99 | |
14 | 99 | |
15 | 97 | |
16 | 98 | |
17 | 94 | |
CHO | 12 | 94 |
13 | 92 | |
14 | 86 | |
15 | 95 | |
16 | 94 | |
17 | 94 |
5.4. Biomedical and Environmental Applications
Micro-Organisms | ZOI | MIC | Ref | |
---|---|---|---|---|
Salmonella typhimurium | 19a | - | 125 µM/mL | [127] |
19b | - | 250 µM/mL | [127] | |
19c | - | 125 µM/mL | [127] | |
21a | 11.13 mm | - | [129] | |
Staphylococcus aureus | 19a | - | 7.81 µM/mL | [127] |
19b | - | 15.63 µM/mL | [127] | |
19c | - | 3.90 µM/mL | [127] | |
20a | 15 mm(Cu), 12 mm (Ni) | - | [128] | |
20b | 17 mm (Cu), 13 mm (Ni) | - | [128] | |
20c | 17 mm (Cu), 12 mm (Ni) | - | [128] | |
20d | 16 mm (Cu), 14 mm (Ni) | - | [128] | |
21b | 11.97 mm | - | [129] | |
22a | 13 mm | 128 µg/mL | [130] | |
22b | 11 mm | 256 µg/mL | [130] | |
Escherichia coli | 19a | - | 62.5 µM/mL | [127] |
19b | - | 250 µM/mL | [127] | |
19c | - | 62.5 µM/mL | [127] | |
20a | 15 mm (Cu), 20 mm (Ni) | - | [128] | |
20b | 19 mm (Cu), 14 mm (Ni) | - | [128] | |
20c | 20 (Cu) | - | [128] | |
20d | 12 mm (Cu), 14 mm (Ni) | - | [128] | |
22a | 15 mm | 64 µg/mL | [130] | |
22b | 17 mm | 256 µg/mL | [130] | |
Bacillus subtilis | 19a | - | 7.81 µM/mL | [127] |
19b | - | 31.25 µM/mL | [127] | |
19c | - | 7.81 µM/mL | [127] | |
Enterococcus faecalis | 20a | 12 mm (Cu), 14 mm (Ni) | - | [128] |
20b | 18 mm (Cu), 15 mm (Ni) | - | [128] | |
20c | 14 mm (Cu) | - | [128] | |
20d | 17 mm (Cu), 17 mm (Ni) | - | [128] | |
Enterobacter cloacae | 20a | 12 mm (Cu), 22 mm (Ni) | - | [128] |
20b | 15 mm (Cu), 15 mm (Ni) | - | [128] | |
20c | 17 mm (Cu), 12 mm (Ni) | - | [128] | |
20d | 13 mm (Cu), 16 mm (Ni) | - | [128] | |
Micrococcus luteus | 20a | 13 mm (Cu), 14 mm (Ni) | - | [128] |
20b | 21 mm (Cu), 17 mm (Ni) | - | [128] | |
20c | 19 mm (Cu), 14 mm (Ni) | - | [128] | |
20d | 18 mm (Cu), 16 mm (Ni) | - | [128] |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griffiths, J., II. Photochemistry of Azobenzene and Its Derivatives. Chem. Soc. Rev. 1972, 1, 481–493. [Google Scholar] [CrossRef]
- Wang, X. trans-cis Isomerization. In Azo Polymers: Synthesis, Functions and Applications; Wang, X., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 19–56. ISBN 978-3-662-53424-3. [Google Scholar]
- Aggarwal, A.; Rajyan, A.; Ramachandran, C.N. Substitution-Induced Band Shifts and Relative Population of cis-trans Azobenzene. Theor. Chem. Acc. 2024, 143, 62. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W.; Lin, Y.; Xie, Y.; Liu, S.H.; Yin, J. Visible and Near-Infrared Light Activated Azo Dyes. Chin. Chem. Lett. 2021, 32, 2359–2368. [Google Scholar] [CrossRef]
- Chandrappa, S.; Vinaya, K.; Ramakrishnappa, T.; Rangappa, K. An Efficient Method for Aryl Nitro Reduction and Cleavage of Azo Compounds Using Iron Powder/Calcium Chloride. Synlett 2010, 2010, 3019–3022. [Google Scholar] [CrossRef]
- Gong, D.; Kong, D.; Li, Y.; Gao, C.; Zhao, L. Ni(II)-Catalyzed Transfer Hydrogenation of Azoarenes with NH3 BH3. Org. Lett. 2023, 25, 4198–4202. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Yang, Y.; Xie, S.; Wang, Q.; Chen, W.; Wang, S.; Zhang, F.; Shao, Y. Cobalt-Catalyzed Borylative Reduction of Azobenzenes to Hydrazobenzenes via a Diborylated-Hydrazine Intermediate. J. Org. Chem. 2024, 89, 9265–9274. [Google Scholar] [CrossRef]
- Zhou, H.; Fan, R.; Yang, J.; Sun, X.; Liu, X.; Wang, X.-C. N, N-Diisopropylethylamine-Mediated Electrochemical Reduction of Azobenzenes in Dichloromethane. J. Org. Chem. 2022, 87, 14536–14543. [Google Scholar] [CrossRef]
- Gong, D.; Kong, D.; Xu, N.; Hua, Y.; Liu, B.; Xu, Z. Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Azoarenes to Hydrazoarenes with Ethanol. Org. Lett. 2022, 24, 7339–7343. [Google Scholar] [CrossRef]
- Léonard, E.; Mangin, F.; Villette, C.; Billamboz, M.; Len, C. Azobenzenes and Catalysis. Catal. Sci. Technol. 2016, 6, 379–398. [Google Scholar] [CrossRef]
- Nikolaeva, M.V.; Puzyk, A.M.; Puzyk, M.V. Azobenzene Pd(II) Complexes with N^N- and N^O-Type Ligands. Opt. Spectrosc. 2017, 122, 715–722. [Google Scholar] [CrossRef]
- Babić, D.; Ćurić, M.; Molčanov, K.; Ilc, G.; Plavec, J. Synthesis and Characterization of Dicyclopalladated Complexes of Azobenzene Derivatives by Experimental and Computational Methods. Inorg. Chem. 2008, 47, 10446–10454. [Google Scholar] [CrossRef] [PubMed]
- Deo, C.; Bogliotti, N.; Métivier, R.; Retailleau, P.; Xie, J. Photoswitchable Arene Ruthenium Complexes Containing O-Sulfonamide Azobenzene Ligands. Organometallics 2015, 34, 5775–5784. [Google Scholar] [CrossRef]
- Liu, F.; Dong, H.; Zhong, S.; Wu, X.; Wang, T.; Wang, X.; Liu, Y.; Zhu, M.; Lo, I.M.C.; Zhan, S.; et al. Selective Electrocatalytic Transformation of Highly Toxic Phenols in Wastewater to Para-Benzoquinone at Ambient Conditions. Water Res. 2024, 251, 121106. [Google Scholar] [CrossRef] [PubMed]
- Serpone, N.; Terzian, R.; Colarusso, P.; Minero, C.; Pelizzetti, E.; Hidaka, H. Sonochemical Oxidation of Phenol and Three of Its Intermediate Products in Aqueous Media: Catechol, Hydroquinone, and Benzoquinone. Kinetic and Mechanistic Aspects. Res. Chem. Intermed. 1993, 18, 183–202. [Google Scholar] [CrossRef]
- Trevisan, L.; Bond, A.D.; Hunter, C.A. Quantitative Measurement of Cooperativity in H-Bonded Networks. J. Am. Chem. Soc. 2022, 144, 19499–19507. [Google Scholar] [CrossRef]
- Geng, H.; Zhong, Q.-Z.; Li, J.; Lin, Z.; Cui, J.; Caruso, F.; Hao, J. Metal Ion-Directed Functional Metal–Phenolic Materials. Chem. Rev. 2022, 122, 11432–11473. [Google Scholar] [CrossRef]
- Alhashmialameer, D.; Collins, J.; Hattenhauer, K.; Kerton, F.M. Iron Amino-Bis(Phenolate) Complexes for the Formation of Organic Carbonates from CO2 and Oxiranes. Catal. Sci. Technol. 2016, 6, 5364–5373. [Google Scholar] [CrossRef]
- Roy Chowdhury, R.K.; Crane, A.; Fowler, C.; Kwong, P.M.; Kozak, C. Iron(III) Amine-Bis(Phenolate) Complexes as Catalysts for the Coupling of Alkyl Halides with Aryl Grignard Reagents. Chem. Commun. 2008, 1, 94–96. [Google Scholar] [CrossRef]
- Steinwand, S.; Halbritter, T.; Rastädter, D.; Ortiz-Sánchez, J.M.; Burghardt, I.; Heckel, A.; Wachtveitl, J. Ultrafast Spectroscopy of Hydroxy-Substituted Azobenzenes in Water. Chem. Eur. J. 2015, 21, 15720–15731. [Google Scholar] [CrossRef]
- Guan, P.-J.; Cui, G.; Fang, Q. Computational Photochemistry of the Azobenzene Scaffold of Sudan I and Orange II Dyes: Excited-State Proton Transfer and Deactivation via Conical Intersections. ChemPhysChem 2015, 16, 805–811. [Google Scholar] [CrossRef]
- Das, S.K.; Krishnamoorthy, G.; Dogra, S.K. Excited State Intramolecular Proton Transfer in 2-(2’-Hydroxyphenyl)-1H-Naphth-[2,3-d]-Imidazole: Effects of Solvents and pH. Can. J. Chem. 2000, 78, 191–205. [Google Scholar] [CrossRef]
- García-Amorós, J.; Velasco, D. Recent Advances towards Azobenzene-Based Light-Driven Real-Time Information-Transmitting Materials. Beilstein J. Org. Chem. 2012, 8, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Colinese, D.; Ibbitson, D.; Stone, C. Dipole Moments and Infrared Spectra of a Series of 4′-Substituted 4-Hydroxyazobenzenes. J. Chem. Soc. B Phys. Org. 1971, 570–574. [Google Scholar] [CrossRef]
- Rospenk, M.; Majewska, P.; Czarnik-Matusewicz, B.; Sobczyk, L. Polarized IR Spectra of Resonance Assisted Hydrogen Bond (RAHB) in 2-Hydroxyazobenzenes. Chem. Phys. 2006, 326, 458–464. [Google Scholar] [CrossRef]
- Sahu, M.; Saha, M.B.; Bera, S.C. Azo-Hydrazo Tautomerization and Cis-Trans Isomerization of 2-Carboxy-2′-Hydroxy-4′-Methyl Azobenzene. J. Photochem. Photobiol. A Chem. 1995, 89, 19–24. [Google Scholar] [CrossRef]
- Gentili, P.L.; Capaccioni, A.; Germani, R.; Fantacci, S. The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene. Molecules 2023, 28, 1183. [Google Scholar] [CrossRef]
- Emond, M.; Sun, J.; Grégoire, J.; Maurin, S.; Tribet, C.; Jullien, L. Photoinduced pH Drops in Water. Phys. Chem. Chem. Phys. 2011, 13, 6493–6499. [Google Scholar] [CrossRef]
- Shaghaghi, Z. Spectroscopic Properties of Some New Azo–Azomethine Ligands in the Presence of Cu2+, Pb2+, Hg2+, Co2+, Ni2+, Cd2+ and Zn2+ and Their Antioxidant Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 67–71. [Google Scholar] [CrossRef]
- Shaabani, B.; Shaghaghi, Z.; Khandar, A.A. Optical Spectroscopy Studies of the Complexation of Bis(Azophenol)Calix[4]Arene Possessing Chromogenic Donors with Ni2+, Co2+, Cu2+, Pb2+ and Hg2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 98, 81–85. [Google Scholar] [CrossRef]
- Bal, S. A Novel Azo-Schiff Base Ligand and Its Cobalt, Copper, Nickel Complexes: Synthesis, Characterization, Antimicrobial, Catalytic and Electrochemical Features. Univ. J. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 315–326. [Google Scholar] [CrossRef]
- Özdemir, Ö. Synthesis of Novel Azo Linkage-Based Schiff Bases Including Anthranilic Acid and Hexanoic Acid Moieties: Investigation of Azo-Hydrazone and Phenol-Keto Tautomerism, Solvatochromism, and Ionochromism. Turk. J. Chem. 2019, 43, 266–285. [Google Scholar] [CrossRef]
- Patel, A.R.; Patel, G.; Srivastava, A.; Banerjee, S. A Review on Traditional and Modern Methods for the Synthesis of Aromatic AzoCompounds. Curr. Org. Chem. 2023, 27, 1611–1628. [Google Scholar] [CrossRef]
- Kurup, S.S.; Groysman, S. Catalytic Synthesis of Azoarenes via Metal-Mediated Nitrene Coupling. Dalton Trans. 2022, 51, 4577–4589. [Google Scholar] [CrossRef] [PubMed]
- Jerca, F.A.; Jerca, V.V.; Hoogenboom, R. Advances and Opportunities in the Exciting World of Azobenzenes. Nat. Rev. Chem. 2022, 6, 51–69. [Google Scholar] [CrossRef]
- Finck, L.; Oestreich, M. Synthesis of Non-Symmetric Azoarenes by Palladium-Catalyzed Cross-Coupling of Silicon-Masked Diazenyl Anions and (Hetero)Aryl Halides. Angew. Chem. Int. Ed. Engl. 2022, 61, e202210907. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’Rabet, S.; El Harfi, A. Classifications, Properties, Recent Synthesis and Applications of Azo Dyes. Heliyon 2020, 6, e03271. [Google Scholar] [CrossRef]
- Eltaboni, F.; Bader, N.; El-Kailany, R.; Elsharif, N.; Ahmida, A. Issue 4 Chemistry and Applications of Azo Dyes: A Comprehensive Review. J. Chem. Rev. 2022, 2, 313–330. [Google Scholar] [CrossRef]
- Merino, E. Synthesis of Azobenzenes: The Coloured Pieces of Molecular Materials. Chem. Soc. Rev. 2011, 40, 3835–3853. [Google Scholar] [CrossRef]
- Rasheed, O.; Rasheed, O.; Raftery, J.; Quayle, P. A New Benzannulation Reaction of Azoaromatics. Synlett 2015, 26, 2806–2810. [Google Scholar] [CrossRef]
- McCormack, A.T.; Stephens, J.C. The Continuous Flow Synthesis of Azos. J. Flow Chem. 2024, 14, 377–396. [Google Scholar] [CrossRef]
- Xie, C.; Yuan, Y.; Wang, B.; Du, L. Research on the Decomposition Kinetics and Thermal Hazards of Aniline Diazonium Salt. Thermochim. Acta 2022, 709, 179156. [Google Scholar] [CrossRef]
- Ikumi, A.; Nakamura, T. Method for Producing Nitrobenzene Compound. EP3015451B1, 17 January 2018. [Google Scholar]
- Schotten, C.; Leprevost, S.K.; Yong, L.M.; Hughes, C.E.; Harris, K.D.M.; Browne, D.L. Comparison of the Thermal Stabilities of Diazonium Salts and Their Corresponding Triazenes. Org. Process Res. Dev. 2020, 24, 2336–2341. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, Y.; Liu, Y.; Fu, W.; Gan, X.; Gao, W.; Tang, B. One-Pot Difunctionalization of Aryldiazonium Salts for Synthesis of Para-Azophenols. Front. Chem. 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Griwatz, J.H.; Campi, C.E.; Kunz, A.; Wegner, H.A. In-Situ Oxidation and Coupling of Anilines towards Unsymmetric Azobenzenes Using Flow Chemistry. ChemSusChem 2024, 17, e202301714. [Google Scholar] [CrossRef]
- Griwatz, J.H.; Kunz, A.; Wegner, H.A. Continuous Flow Synthesis of Azobenzenes via Baeyer–Mills Reaction. Beilstein J. Org. Chem. 2022, 18, 781–787. [Google Scholar] [CrossRef]
- Dommaschk, M.; Peters, M.; Gutzeit, F.; Schütt, C.; Näther, C.; Sönnichsen, F.D.; Tiwari, S.; Riedel, C.; Boretius, S.; Herges, R. Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch. J. Am. Chem. Soc. 2015, 137, 7552–7555. [Google Scholar] [CrossRef]
- Priewisch, B.; Ruck-Braun, K. Efficient Preparation of Nitrosoarenes for the Synthesis of Azobenzenes. J. Org. Chem. 2005, 70, 2350–2352. [Google Scholar] [CrossRef]
- Tombari, R.J.; Tuck, J.R.; Yardeny, N.; Gingrich, P.W.; Tantillo, D.J.; Olson, D.E. Calculated Oxidation Potentials Predict Reactivity in Baeyer–Mills Reactions. Org. Biomol. Chem. 2021, 19, 7575–7580. [Google Scholar] [CrossRef]
- Trautwein, G.; El Bakkali, B.; Alcañiz-Monge, J.; Artetxe, B.; Reinoso, S.; Gutiérrez-Zorrilla, J.M. Dimeric Assemblies of Lanthanide-Stabilised Dilacunary Keggin Tungstogermanates: A New Class of Catalysts for the Selective Oxidation of Aniline. J. Catal. 2015, 331, 110–117. [Google Scholar] [CrossRef]
- Monir, K.; Ghosh, M.; Mishra, S.; Majee, A.; Hajra, A. Phenyliodine(III) Diacetate (PIDA) Mediated Synthesis of Aromatic Azo Compounds through Oxidative Dehydrogenative Coupling of Anilines: Scope and Mechanism. Eur. J. Org. Chem. 2014, 2014, 1096–1102. [Google Scholar] [CrossRef]
- Zhao, M.-Y.; Tang, Y.-F.; Han, G.-Z. Recent Advances in the Synthesis of Aromatic Azo Compounds. Molecules 2023, 28, 6741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiao, N. Copper-Catalyzed Aerobic Oxidative Dehydrogenative Coupling of Anilines Leading to Aromatic Azo Compounds Using Dioxygen as an Oxidant. Angew. Chem. Int. Ed. Engl. 2010, 49, 6174–6177. [Google Scholar] [CrossRef] [PubMed]
- Wawzonek, S.; McIntyre, T.W. Electrolytic Preparation of Azobenzenes. J. Electrochem. Soc. 1972, 119, 1350. [Google Scholar] [CrossRef]
- Olsen, H.; Snyder, J.P. Cis-Azoxyalkanes. 8. Concerted Thermal Cycloreversion of Unsaturated Azo N-Oxides. J. Am. Chem. Soc. 1977, 99, 1524–1536. [Google Scholar] [CrossRef]
- Ortiz, B.; Villanueva, P.; Walls, F. Silver(II) Oxide as a Reagent. Reactions with Aromatic Amines and Miscellaneous Related Compounds. J. Org. Chem. 1972, 37, 2748–2750. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Vessal, B.; Naderi, M. Bispyridinesilver Permanganate[Ag(C5H5N)2]MnO4: An Efficient Oxidizing Reagent for Organic Substrates. Tetrahedron Lett. 1982, 23, 1847–1850. [Google Scholar] [CrossRef]
- Laha, S.; Luthy, R.G. Oxidation of Aniline and Other Primary Aromatic Amines by Manganese Dioxide. Environ. Sci. Technol. 1990, 24, 363–373. [Google Scholar] [CrossRef]
- Crank, G.; Makin, M. Oxidations of Aromatic Amines by Superoxide Ion. Aust. J. Chem. 1984, 37, 845. [Google Scholar] [CrossRef]
- Mehta, S.M.; Vakilwala, M.V. Sodium Perborate as a Reagent in Organic Chemistry. I. Preparation of Azo-Compounds. J. Am. Chem. Soc. 1952, 74, 563–564. [Google Scholar] [CrossRef]
- Baer, E.; Tosoni, A.L. Formation of Symmetric Azo-Compounds from Primary Aromatic Amines by Lead Tetraacetate. J. Am. Chem. Soc. 1956, 78, 2857–2858. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Mostafavipoor, Z. Barium Manganate. A Versatile Oxidant in Organic Synthesis. Bull. Chem. Soc. Jpn. 1983, 56, 914–917. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N. Ceric Trihydroxy Hydroperoxide Ce(OH)3O2H, A Regenerable, Mild, and A Versatile Reagent for the Oxidation of Organic Compounds. Synth. Commun. 1984, 14, 875–882. [Google Scholar] [CrossRef]
- Qin, J.; Long, Y.; Sun, F.; Zhou, P.P.; Wang, W.D.; Luo, N.; Ma, J. Zr(OH)(4)-Catalyzed Controllable Selective Oxidation of Anilines to Azoxybenzenes, Azobenzenes and Nitrosobenzenes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202112907. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, W.; Wang, L.; Jia, Y.; Cui, Q.; Wen, B.; Chen, X. Controllable Selective Oxidation of Anilines to Azoxybenzenes and Nitrobenzenes by Regulating the Base. ACS Omega 2024, 9, 39715–39723. [Google Scholar] [CrossRef]
- Grirrane, A.; Corma, A.; García, H. Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science 2008, 322, 1661–1664. [Google Scholar] [CrossRef]
- Deng, X.; Liu, X.; Xia, S.; Zhao, H.; Liu, Y.; Ding, Q.; Zhang, H. Selective Oxidation of Anilines to Azobenzenes by an Ag Nanoparticles Photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132352. [Google Scholar] [CrossRef]
- Wang, M.; Ma, J.; Yu, M.; Zhang, Z.; Wang, F. Oxidative Coupling of Anilines to Azobenzenes Using Heterogeneous Manganese Oxide Catalysts. Catal. Sci. Technol. 2016, 6, 1940–1945. [Google Scholar] [CrossRef]
- Furst, A.; Berlo, R.C.; Hooton, S. Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chem. Rev. 1965, 65, 51–68. [Google Scholar] [CrossRef]
- Nanjundaswamy, H.; Pasha, M. Facile, Product-Selective Reduction of Azoxyarenes into Azoarenes or Hydrazoarenes by Aluminum/Hydrazine Hydrate. Synth. Commun. 2005, 35, 2163–2168. [Google Scholar] [CrossRef]
- Singh, S.K.; Srinivasa Reddy, M.; Mangle, M.; Ravi Ganesh, K. Cu(I)-Mediated Deoxygenation of N-Oxides to Amines. Tetrahedron 2007, 63, 126–130. [Google Scholar] [CrossRef]
- Tanikaga, R. Photoreduction of Azoxybenzene to Azobenzene. Bull. Chem. Soc. Jpn. 1968, 41, 1664–1668. [Google Scholar] [CrossRef]
- Saini, A.; Kumar, S.; Sandhu, J. An Efficient and General Method for the Deoxygenation of Organic N-Oxides Using Zn(OTf)2 and Cu(OTf)2. Synlett 2006, 2006, 395–398. [Google Scholar] [CrossRef]
- Hamon, F.; Djedaini-Pilard, F.; Barbot, F.; Len, C. Azobenzenes—Synthesis and Carbohydrate Applications. Tetrahedron 2009, 65, 10105–10123. [Google Scholar] [CrossRef]
- Mikheev, Y.A. Adjusting Mechanisms of the Wallach Rearrangement and Side Reactions. Russ. J. Phys. Chem. 2021, 95, 1803–1810. [Google Scholar] [CrossRef]
- Lalitha, A.; Pitchumani, K.; Srinivasan, C. Thermal and Photochemical Wallach Rearrangement of Azoxybenzene in Zeolite Cages. J. Mol. Catal. A Chem. 2000, 160, 429–435. [Google Scholar] [CrossRef]
- Gore, P.; Hughes, G. Studies of the Wallach Transformation. I. The Products of the Reaction. Aust. J. Chem. 1950, 3, 136. [Google Scholar] [CrossRef]
- Shimao, I.; Oae, S. The Wallach Rearrangement of Some 4,4′-Disubstituted Azoxybenzenes. Bull. Chem. Soc. Jpn. 1983, 56, 643–644. [Google Scholar] [CrossRef]
- Shah, H.U.R.; Ahmad, K.; Naseem, H.A.; Parveen, S.; Ashfaq, M.; Aziz, T.; Shaheen, S.; Babras, A.; Shahzad, A. Synthetic Routes of Azo Derivatives: A Brief Overview. J. Mol. Struct. 2021, 1244, 131181. [Google Scholar] [CrossRef]
- Yadav, G.D.; Mewada, R.K. Novelties of Azobenzene Synthesis via Selective Hydrogenation of Nitrobenzene over Nano-Fibrous Ag-OMS-2–Mechanism and Kinetics. Chem. Eng. J. 2013, 221, 500–511. [Google Scholar] [CrossRef]
- Yang, X.; Liang, M.; Jia, J.; Wu, H. Insights into the Mechanism for the Catalytic Transfer Hydrogenation of Nitrobenzene to Azobenzene on Au (1 0 0) Surface under Alkaline Condition. Appl. Surf. Sci. 2021, 568, 150869. [Google Scholar] [CrossRef]
- Gund, S.H.; Shelkar, R.S.; Nagarkar, J.M. An Efficient Catalyst-Free and Chemoselective Synthesis of Azobenzenes from Nitrobenzenes. RSC Adv. 2014, 4, 42947–42951. [Google Scholar] [CrossRef]
- Opolonick, N. Reduction of Nitrobenzene with Dextrose in Alkaline Solutions. Ind. Eng. Chem. 1935, 27, 1045–1046. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Xiao, Q.; Zhu, H. Selective Reduction of Nitroaromatics to Azoxy Compounds on Supported Ag–Cu Alloy Nanoparticles through Visible Light Irradiation. Green Chem. 2016, 18, 817–825. [Google Scholar] [CrossRef]
- Guo, W.; Zheng, Y.; Xiang, W.; Zhang, Y. Advances in the Catalysis of Reduction of Nitroaromatics and Its Mechanism: A Tutorial Review. RSC Sustain. 2025, 3, 243–254. [Google Scholar] [CrossRef]
- Pyo, S.-H.; Han, B.-H. Reduction of Nitroarenes by Activated Metals. Bull. Korean Chem. Soc. 1995, 16, 181–183. [Google Scholar] [CrossRef]
- Dai, Y.; Li, C.; Shen, Y.; Lim, T.; Xu, J.; Li, Y.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-Tuned Selective Photosynthesis of Azo- and Azoxy-Aromatics Using Graphitic C3N4. Nat. Commun. 2018, 9, 60. [Google Scholar] [CrossRef]
- Liss, T.A.; Baer, D.R. Metal Complexes of Azo Dyes. I. Quadridentate Complexes from Bidentate Azo Compounds and Alkanediamines or Ethanolamine. Inorg. Chem. 1969, 8, 1328–1336. [Google Scholar] [CrossRef]
- Kachi-Terajima, C.; Hagiwara, S. Synthesis, Crystal Structure and Photophysical Properties of Chlorido[(E)-3-Hydroxy-2-Methyl-6-(Quinolin-8-Yldiazenyl)Phenolato]Copper(II) Monohydrate. Acta Crystallogr. E Cryst. Commun. 2022, 78, 473–476. [Google Scholar] [CrossRef]
- Qian, H.-F.; Feng, Y.-N.; Wang, Y.-Y.; Zhao, X.-L.; Huang, W. Preparation of Ortho Hydroxyl Azobenzene Dyes by Cu(II)/H2O2 Catalytic Oxidation and Complexation and the Following Demetallization. Dyes Pigment. 2017, 146, 37–46. [Google Scholar] [CrossRef]
- Kajiwara, K.; Pradhan, S.; Haraguchi, T.; Sinha, C.; Parida, R.; Giri, S.; Roymahaptra, G.; Akitsu, T. Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode. Symmetry 2020, 12, 797. [Google Scholar] [CrossRef]
- Lolage, S.R.; Pawal, S.B.; Chavan, S.S. Azobenzene Based Zn(II)/Ru(II) Coordination-Organometallic Hybrid Complexes: Influence of π-Conjugation, Donor/Acceptor Substituent’s and Coligands on Electrochemical, Luminescence and NLO Properties. Opt. Mater. 2017, 67, 162–171. [Google Scholar] [CrossRef]
- Leonard, E.; Takeda, C.; Akitsu, T. Azobenzene-Containing Schiff-Bases—Syntheses and Dyes Applications. Colorants 2024, 3, 53–72. [Google Scholar] [CrossRef]
- Mabhai, S.; Dolai, M.; Dey, S.K.; Dhara, A.; Choudhury, S.M.; Das, B.; Dey, S.; Jana, A. Rhodamine-Azobenzene Based Single Molecular Probe for Multiple Ions Sensing: Cu2+, Al3+, Cr3+ and Its Imaging in Human Lymphocyte Cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Arabahmadi, R.; Orojloo, M.; Amani, S. Azo Schiff Bases as Colorimetric and Fluorescent Sensors for Recognition of F−, Cd2+ and Hg2+ Ions. Anal. Methods 2014, 6, 7384–7393. [Google Scholar] [CrossRef]
- Banerjee, S.; Brandão, P.; Saha, A. A Robust Fluorescent Chemosensor for Aluminium Ion Detection Based on a Schiff Base Ligand with an Azo Arm and Application in a Molecular Logic Gate. RSC Adv. 2016, 6, 101924–101936. [Google Scholar] [CrossRef]
- Azadbakht, R.; Chidan, N.; Menati, S.; Koolivand, M. A New Azo-Schiff Base Dual-Mode Chemosensor: Colorimetric Detection of Cobalt Ions and Fluorometric Detection of Aluminum Ions in Aqueous Ethanol Solution. J. Fluoresc. 2023, 33, 527–538. [Google Scholar] [CrossRef]
- Song, G.; Sun, R.; Du, J.; Chen, M.; Tian, Y. A Highly Selective, Colorimetric, and Environment-Sensitive Optical Potassium Ion Sensor. Chem. Commun. 2017, 53, 5602–5605. [Google Scholar] [CrossRef]
- Paderni, D.; Macedi, E.; Lvova, L.; Ambrosi, G.; Formica, M.; Giorgi, L.; Paolesse, R.; Fusi, V. Selective Detection of Mg2+ for Sensing Applications in Drinking Water. Chem. Eur. J. 2022, 28, e202201062. [Google Scholar] [CrossRef]
- Aglan, R.F.; Hamed, M.M.; Saleh, H.M. Selective and Sensitive Determination of Cd(II) Ions in Various Samples Using a Novel Modified Carbon Paste Electrode. J. Anal. Sci. Technol. 2019, 10, 7. [Google Scholar] [CrossRef]
- Misra, A.; Shahid, M. Chromo and Fluorogenic Properties of Some Azo-Phenol Derivatives and Recognition of Hg2+ Ion in Aqueous Medium by Enhanced Fluorescence. J. Phys. Chem. C 2010, 114, 16726–16739. [Google Scholar] [CrossRef]
- Shatir, T.M.; Aly, K.A.; Ebrahium, M.M.; Saddeek, Y.B.; Ranjith Kumar, E. Linear and Non-Linear Optical and Dielectric Properties of Transition Metals Complexes Films Derived from Azo-Schiff Base for Photovoltaic Applications. J. Mol. Liq. 2024, 401, 124636. [Google Scholar] [CrossRef]
- Poormoradkhan Melal, S.; Khalili, B.; Mahmoodi, N.O.; Pasandideh Nadamani, M. A Novel Azo-Triazolopyridine-Based Dual Naked-Eye Chemosensor for the Selective Detection of CN− and Cu2+ Ions. J. Photochem. Photobiol. A Chem. 2025, 460, 116140. [Google Scholar] [CrossRef]
- Asiri, S.; Kassem, M.A.; Eltaher, M.A.; Saad, K.M. Novel Coordination Compounds Based on Copper Complexes with New Synthesized Schiff Bases and Azo-Dyes as Sensitizers for Dye-Sensitized Solar Cells: Spectral and Electrochemical Studies. Int. J. Electrochem. Sci. 2020, 15, 6508–6521. [Google Scholar] [CrossRef]
- Tanaka, S.; Sato, H.; Ishida, Y.; Deng, Y.; Haraguchi, T.; Akitsu, T.; Sugiyama, M.; Hara, M.; Moon, D. Photo-Control of Adsorption of Dye Metal Complexes Incorporating Chiral Schiff Base Ligands Containing Azo-Groups on TiO2. J. Korean Chem. Soc. 2018, 62, 328–332. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, G.-Y.; Ma, J. Tuning the Absorption Spectra and Nonlinear Optical Properties of D-π-A Azobenzene Derivatives by Changing the Dipole Moment and Conjugation Length: A Theoretical Study. J. Phys. Org. Chem. 2011, 24, 568–577. [Google Scholar] [CrossRef]
- Zhang, L.; Cole, J.M.; Dai, C. Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO2 Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups. ACS Appl. Mater. Interfaces 2014, 6, 7535–7546. [Google Scholar] [CrossRef]
- Al-Barody, S.M. Characterization and Thermal Study of Schiff-Base Monomers and Its Transition Metal Polychelates and Their Photovoltaic Performance on Dye Sensitized Solar Cells. J. Struct. Chem. 2018, 59, 53–63. [Google Scholar] [CrossRef]
- Gencer Imer, A.; Syan, R.H.B.; Gülcan, M.; Ocak, Y.S.; Tombak, A. The Novel Pyridine Based Symmetrical Schiff Base Ligand and Its Transition Metal Complexes: Synthesis, Spectral Definitions and Application in Dye Sensitized Solar Cells (DSSCs). J. Mater. Sci. Mater. Electron. 2018, 29, 898–905. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Open-Circuit Voltage in Organic Solar Cells. J. Mater. Chem. 2012, 22, 24315–24325. [Google Scholar] [CrossRef]
- Fetouh, H.A.; Dissouky, A.E.; Salem, H.A.; Fathy, M.; Anis, B.; Hady Kashyout, A.E. Synthesis, Characterization and Evaluation of New Alternative Ruthenium Complex for Dye Sensitized Solar Cells. Sci. Rep. 2024, 14, 16718. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Yu, Z.; Gurzadyan, G.G.; Cheng, M.; Zhang, F.; Cong, J.; Wang, W.; Wang, H.; Li, X.; et al. Efficient Dye-Sensitized Solar Cells with [Copper(6,6′-Dimethyl-2,2′-Bipyridine)2]2+/1+ Redox Shuttle. RSC Adv. 2017, 7, 4611–4615. [Google Scholar] [CrossRef]
- Lashanizadegan, M.; Asna Ashari, H.; Sarkheil, M.; Anafcheh, M.; Jahangiry, S. New Cu(II), Co(II) and Ni(II) Azo-Schiff Base Complexes: Synthesis, Characterization, Catalytic Oxidation of Alkenes and DFT Study. Polyhedron 2021, 200, 115148. [Google Scholar] [CrossRef]
- Inan Duyar, A.; Sünbül, A.B.; Serin, S.; Ulu, Ö.D.; Ozdemir, I.; Ikiz, M.; Köse, M.; Ispir, E. Synthesis, Characterization, DFT Quantum Chemical Calculations and Catalytic Properties of Azobenzene-Bearing Schiff Base Palladium(II) Complexes for the Suzuki-Miyaura Cross-Coupling Reaction in Aqueous Solvent. J. Mol. Struct. 2025, 1328, 141296. [Google Scholar] [CrossRef]
- Bains, A.K.; Kundu, A.; Yadav, S.; Adhikari, D. Borrowing Hydrogen-Mediated N-Alkylation Reactions by a Well-Defined Homogeneous Nickel Catalyst. ACS Catal. 2019, 9, 9051–9059. [Google Scholar] [CrossRef]
- Tanaka, R.; Viehmann, P.; Hecht, S. Bis(Phenoxy-Azo)Titanium(IV) Complexes: Synthesis, Structure, and Catalytic Activity in Styrene Polymerization. Organometallics 2012, 31, 4216–4220. [Google Scholar] [CrossRef]
- Ji, G.; Yang, Z.; Zhang, H.; Zhao, Y.; Yu, B.; Ma, Z.; Liu, Z. Hierarchically Mesoporous O-Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion. Angew. Chem. Int. Ed. 2016, 55, 9685–9689. [Google Scholar] [CrossRef]
- Sweeney, E.E.; McDaniel, R.E.; Maximov, P.Y.; Fan, P.; Jordan, V.C. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations. Horm. Mol. Biol. Clin. Investig. 2012, 9, 143–163. [Google Scholar] [CrossRef]
- Bullinger, D.; Neubauer, H.; Fehm, T.; Laufer, S.; Gleiter, C.H.; Kammerer, B. Metabolic Signature of Breast Cancer Cell Line MCF-7: Profiling of Modified Nucleosides via LC-IT MS Coupling. BMC Biochem. 2007, 8, 25. [Google Scholar] [CrossRef]
- Baptiste, D.; Caviness-Ashe, N.; Josiah, N.; Commodore-Mensah, Y.; Arscott, J.; Wilson, P.R.; Starks, S. Henrietta Lacks and America’s Dark History of Research Involving African Americans. Nurs. Open 2022, 9, 2236–2238. [Google Scholar] [CrossRef]
- Varsha, D.S.; Nirmala, G.S.; Santhekadur, P.K. Our Shero HeLa and Her Immortal Life. Reson 2022, 27, 1731–1736. [Google Scholar] [CrossRef]
- Rana, L.; Bisht, S.; Dheeraj; Biswas, M.; Garai, S. Copper (II) Complexes of Azo Phenolate Ligands: Synthesis, Crystal Structure, Functional Mimetic, and Anticancer Study. Inorg. Chem. Commun. 2025, 177, 114357. [Google Scholar] [CrossRef]
- Li, Y.; Han, X.; Song, Y. An Azo-Phenol Derivative Probe: Colorimetric and “Turn-on” Fluorescent Detection of Copper(Ii) Ions and pH Value in Aqueous Solution. RSC Adv. 2017, 7, 20537–20541. [Google Scholar] [CrossRef]
- Dev, S.; Mitra, D.; Sinha, C.; Das, G.; Murmu, N.; Maity, A.R.; Pandey, S. High Anticancer Activity in Short Response Time Exhibited by a New Azobenzene Derivative and Its Copper Complex. Appl. Organom Chem. 2024, 38, e7510. [Google Scholar] [CrossRef]
- Pervaiz, M.; Sadiq, S.; Sadiq, A.; Younas, U.; Ashraf, A.; Saeed, Z.; Zuber, M.; Adnan, A. Azo-Schiff Base Derivatives of Transition Metal Complexes as Antimicrobial Agents. Coord. Chem. Rev. 2021, 447, 214128. [Google Scholar] [CrossRef]
- Kasare, M.S.; Dhavan, P.P.; Jadhav, B.L.; Pawar, S.D. Synthesis of Azo Schiff Base Ligands and Their Ni(II), Cu(II) and Zn(II) Metal Complexes as Highly-Active Antibacterial Agents. ChemistrySelect 2019, 4, 10792–10797. [Google Scholar] [CrossRef]
- Bal, S.; Bal, S.; Erener, A.; Halipci, H.; Akar, S. Synthesis, Thermal Stability, Electronic Features, and Antimicrobial Activity of Phenolic Azo Dyes and Their Ni(II) and Cu(II) Complexes. Chem. Pap. 2014, 68, 352–361. [Google Scholar] [CrossRef]
- Saad, F.A.; El-Ghamry, H.A.; Kassem, M.A.; Khedr, A.M. Nano-Synthesis, Biological Efficiency and DNA Binding Affinity of New Homo-Binuclear Metal Complexes with Sulfa Azo Dye Based Ligand for Further Pharmaceutical Applications. J. Inorg. Organomet. Polym. 2019, 29, 1337–1348. [Google Scholar] [CrossRef]
- Azam, M.; Al-Resayes, S.I.; Wabaidur, S.M.; Altaf, M.; Chaurasia, B.; Alam, M.; Shukla, S.N.; Gaur, P.; Albaqami, N.T.M.; Islam, M.S.; et al. Synthesis, Structural Characterization and Antimicrobial Activity of Cu(II) and Fe(III) Complexes Incorporating Azo-Azomethine Ligand. Molecules 2018, 23, 813. [Google Scholar] [CrossRef]
Property | Azobenzenes | Phenolic Compounds |
---|---|---|
Acid or Base Behaviour | Stable but protonated under strong acid conditions | Weak acids, form phenoxide anions in base conditions |
Electronic Effects | Azo (-N=N-) bond conjugation influences absorption | -OH is electron-donating, affects reactivity |
Photoisomerization | UV–visible light-induced trans-cis switching | No isomerization, but light can degrade phenols |
Redox Chemistry | Reduced to hydrazo (-NH-NH-) under mild conditions | Oxidized to quinones in oxidative media |
Electrophilic Substitution | Substituent-dependent reactivity | Highly activated towards substitution reactions |
Metal Coordination | Forms transition metal complexes | Coordinates metal ions (e.g., Fe3+, Cu2+) |
Solvent | Yield [%] |
Methanol | 46 |
Ethanol | 42 |
Acetonitrile | 40 |
Acetone | 41 |
Dichloromethane | 0 |
Methanol–H2O = 1:1 | 80 |
Methanol–H2O = 3:1 | 89 |
Methanol–H2O = 9:1 | 63 |
R | Azobenzene yield [%] | Azoxybenzene yield [%] |
p-NMe2 | 34 | 45 |
p-NH2 | 28 | 43 |
o-NH2 | 8 | 91 |
p-OMe | ≥95 | 5 |
2,6-dimethoxy | 46 | 35 |
p-NHCO2tBu | 87 | 6 |
p-OH | 34 | 69 |
o-OMe | 82 | 13 |
p-Me | 95 | ≤5 |
o-NHCO2tBu | 85 | 12 |
o-Et | 77 | 20 |
p-I | ≥95 | ≤5 |
H | ≥95 | ≤5 |
o-Br | 49 | 8 |
p-CO2Me | 82 | 6 |
2,6-difluoro | 12 | ≤5 |
p-CN | 64 | 7 |
p-CF3 | ≥95 | ≤5 |
o-NO2 | ≤5 | ≤5 |
p-NO2 | 19 | ≤5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hočevar, J.; Iskra, J.; Leonard, E. Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications. Molecules 2025, 30, 2499. https://doi.org/10.3390/molecules30122499
Hočevar J, Iskra J, Leonard E. Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications. Molecules. 2025; 30(12):2499. https://doi.org/10.3390/molecules30122499
Chicago/Turabian StyleHočevar, Jan, Jernej Iskra, and Estelle Leonard. 2025. "Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications" Molecules 30, no. 12: 2499. https://doi.org/10.3390/molecules30122499
APA StyleHočevar, J., Iskra, J., & Leonard, E. (2025). Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications. Molecules, 30(12), 2499. https://doi.org/10.3390/molecules30122499