Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review
Abstract
:1. Introduction
2. Effects of Bioprocessing on the Nutritional Composition and Anti-Nutritional Factors of Bambara Groundnut
Bioprocessing | Moisture | Protein | Ash | Fat | Fibre | Carbohydrate | References |
---|---|---|---|---|---|---|---|
Roasting | Decreased (36.24) | Decreased (4.23) | Decreased (0.46) | Decreased (12.73) | Decreased (14.35) | Increased (6.65) | [27,33] |
Soaking | Decreased (10.69) | Increased (10.61) | Increased (2.07) | Increased (12.69) | Decreased (22.31) | Decreased (1.85) | [34] |
Fermentation | Increased (24.92) | Increased (9.46) | Decreased (17.95) | Decreased (63.57) | Increased (65) | - | [35] |
Germination | Decreased (0.49) | Increased (10.31) | Increased (0.49) | Decreased (20.96) | Increased (13.09) | - | [36] |
Malting | Decreased (23.31) | Increased (7.32) | Decreased (3.94) | Decreased (6.23) | Increased (43.54) | Increased (1.05) | [37] |
Dehulling | Decreased (15.56) | Increased (15.76) | Increased (5.83) | Increased (38) | Increased (2.82) | Decreased (29.76) | [38,39] |
Ultrasonicatin | Decreased (16.55) | Increased (12.49) | Decreased (1.21) | Decreased (21.59) | Increased (53.65) | Decreased (0.74) | [37] |
Cooking | Decreased (54.02) | No change | No change | Increased (14.08) | - | Increased (7.14) | [38] |
Boiling | Increased (120.33) | Decreased (5.68) | Decreased (11.80) | Decreased (27.11) | Decreased (21.20) | Decreased (7.55) | [33] |
2.1. Roasting
2.2. Soaking
2.3. Boiling/Cooking
2.4. Fermentation
2.5. Germination and Malting
2.6. Dehulling
3. Effects of Processing Methods on the Functional Properties of Bambara Groundnut Flour
3.1. Roasting
3.2. Soaking
3.3. Boiling
3.4. Fermentation
3.5. Germination and Malting
3.6. Micronization
3.7. Ultrasonication
4. Effects of Processing Methods on the Metabolites of Bambara Groundnut
5. Selected Methods Used to Measure the Bioactive Compounds of Bambara Groundnut
6. Effect of Bambara Groundnut on the Physicochemical and Sensory Attributes of Food Products
Products Produced | BGN Incorporated (%) | Effects of BGN on Overall Product Quality | Reference |
---|---|---|---|
Fermented maize flour | 30 | Increased protein, fat, fibre, and ash, as well as decreased moisture and CHO content Reduced anti-nutritional level (tannins and trypsin inhibitors) | [170] |
Acha-date palm-based biscuit | 2.19 to 10.94 | Increased protein, fat, ash, and fibre, as well as moisture and CHO, with an increase in their level. | [179] |
Cakes prepared from wheat and raw plantain powder | 2.49 to 12.47 | Increased fat, ash, fibre, and energy, as well as decreasing moisture, CHO | [180] |
Maize flour | 10 to 20 | Increased protein, fat, and fibre content Increased functional properties (bulk density, swelling capacity, water holding and binding capacity) | [181] |
Traditional maize-based snacks: Ipekere Agbado | 10 to 30 | Increased protein, fat, ash, and fibre content | [182] |
Maize-based pudding | 4.81 to 40 | Increased moisture, ash, and protein, as well as decreased CHO and fat content. Increased bulk density, swelling index, and water absorption capacity. Mesophillic bacteria count increased | [183] |
Maize Tortillas | 5 to 20 | Improved total phenolic content, total flavonoid content, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) Increased moisture, ash, protein, fat, and fibre content, as well as decreased CHO content. | [184] |
Maize snack (kokoro) | 0.2 to 30 | Increased protein, moisture, ash, and fat, as well as decreased fat, fibre, and CHO content. Increase bulk density, as well as decrease water absorption capacity, oil absorption capacity, and swelling capacity with an increase in its level. | [66] |
Provitamin A mahewu | 30 | Roasted and germinated flour increased protein, fat, and ash, as well as decreasing CHO and moisture content. All flours increased the amino acid profile. | [185] |
Rice crackers | 9 to 18 | Increased protein, CHO, fat, as well as decreased fibre, moisture, and ash content. Decreased water absorption index, bulk density, oil absorption capacity, forming stability and did not affect forming capacity and true density with increase in its level. | [186] |
Wheat noodles | 20 | Increased protein, fat, fibre, ash, and mineral content (Magnesium, phosphorus, potassium, sodium, and sulphur), as well as decreasing CHO content. | [187] |
Sorghum mahewu | 20 to 30 | Increased protein, fat, and fibre, as well as a decrease in ash content, with an increase in its level. Initially decreased CHO content with its increase (20%), but further decreased with its increase (30%) | [188] |
Wheat bread | 0 to 40 | Increased protein, fat, ash, fibre, and moisture, as well as decreased moisture content. Increased mineral content (sodium, potassium, calcium, phosphorus, and iron) Increased water absorption capacity, foaming capacity and stability, as well as decreasing oil absorption capacity and swelling index | [189] |
Mutton patties | 2.5 to 10 | Enhanced fibre and ash contents, but moisture, protein contents, and carbohydrates were reduced. Delayed lipid oxidation was observed when compared to the control sample. Improved the technological and textural properties such as cooking yield, hardness, and resilience | [190] |
Wheat rusk | 5 to 20 | Enhanced ash, protein, fat, and crude fibre content, physical characteristics such as hardness, loaf volume and specific volume, and fracturability decreased | [191] |
7. Future Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazahib, A.M.; Nuha, M.O.; Salawa, I.S.; Babiker, E.E. Some nutritional attributes of Bambara groundnut as influenced by domestic processing. Int. Food Res. J. 2013, 20, 1165–1171. [Google Scholar]
- Ramatsetse, K.E.; Ramashia, S.E.; Mashau, M.E. A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut (Vigna subterranean). Int. J. Food Prop. 2023, 26, 91–107. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Singh, S.; Adebola, P.O.; Gerrano, A.S.; Amonsou, E.O. Physicochemical properties of starches with variable amylose contents extracted from Bambara groundnut genotypes. Carbohydr. Polym. 2015, 133, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Nwadi, O.M.M.; Uchegbu, N.; Oyeyinka, S.A. Enrichment of food blends with Bambara groundnut flour: Past, present, and future trends. Legume Sci. 2020, 2, e25. [Google Scholar] [CrossRef]
- Diedericks, C.F.; Venema, P.; Mubaiwa, J.; Jideani, V.A.; van der Linden, E. Effect of processing on the microstructure and composition of Bambara groundnut (Vigna subterranea (L.) Verdc.) seeds, flour and protein isolates. Food Hydrocoll. 2020, 108, 1–11. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Gowen, A.A.; Abu-Ghannam, N.; Frias, J.M.; Barat, J.M.; Andres, A.M.; Oliveira, J.C. Comparative study of quality changes occurring on dehydration and rehydration of cooked chickpeas (Cicer arietinum L.) subjected to combined microwave-convective and convective hot air dehydration. J. Food Sci. 2006, 71, E282–E289. [Google Scholar] [CrossRef]
- Calles, T.; Xipsiti, M.; del Castello, R. Legacy of the international year of pulses. Environ. Earth Sci. 2019, 78, 124. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 2021, 138, 110796. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouee, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Oladimeji, B.M.; Adebo, O.A. Properties and metabolite profiling of Bambara groundnut flour as affected by different food processing conditions. Appl. Food Res. 2024, 4, 100389. [Google Scholar] [CrossRef]
- Bamshaiye, O.M.; Adegbola, J.A.; Bamshaiye, E.I. Bambara groundnut: An underutilized nut in Africa. Adv. Agric. Biotechnol. 2011, 1, 60–72. [Google Scholar]
- Nono, C.T. Improvement in the Performances of Voandzou (Vigna subterranea (L.) Verdc.) in Response to Phosphate Deficiency Through Chemical and Biological Fertilization. Ph.D. Thesis, Faculty of Science, University of Yaounde I, Yaounde, Cameroon, 2018; p. 151. [Google Scholar]
- Pretorius, B.; Otto, M.; Schönfeldt, H.C. Antinutrients and metabolomic compounds of Bambara groundnut (Vigna subterranean) as affected by traditional processing by smallholder farmers. J. Food Sci. 2023, 88, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Mbata, T.I.; Ikenebomeh, M.J.; Ezeibe, S. Evaluation of mineral content and functional properties of fermented maize (Generic and specific) flour blended with Bambara groundnut (Vigna subterranean L). Afr. J. Food Sci. 2009, 3, 107–112. [Google Scholar]
- Fasoyiro, S.B.; Taiwo, K.A. Strategies for increasing food production and food security in Nigeria. J. Agric. Food Inf. 2012, 13, 338–355. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Pillay, K.; Siwela, M. Consumer awareness and acceptability of Bambara groundnut as a protein source for use in complementary foods in rural KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2017, 30, 87–92. [Google Scholar] [CrossRef]
- Abiodun, A.; Adepeju, A. Effect of processing on the chemical, pasting and anti-nutritional composition of Bambara nut (Vigna subterranea L. Verdc) flour. Adv. J. Food Sci. Technol. 2011, 3, 224–227. [Google Scholar]
- Adegunwa, M.; Adebowale, A.; Bakare, H.; Kalejaiye, K. Effects of treatments on the antinutritional factors and functional properties of Bambara groundnut (Voandzeia subterranea) Flour. J. Food Process. Preserv. 2014, 38, 1875–1881. [Google Scholar] [CrossRef]
- Unigwe, A.E.; Doria, E.; Adebola, P.; Gerrano, A.S.; Pillay, M. Anti-nutrient analysis of 30 Bambara groundnut (Vigna subterranea) accessions in South Africa. J. Crop Improv. 2018, 32, 208–224. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Ofori, K.; Kumaga, F.K.; Bimi, K.L. Variation in seed size, protein and tannin content of Bambara groundnut (Vigna subterranea). Tropical Sci. 2015, 41, 100–103. [Google Scholar]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Goudoum, A.; Tinkeu, L.S.N.; Madou, C.; Djakissam, W.; Mbofung, C.M. Variation of some chemical and functional properties of Bambara groundnut (Voandzeia subterranean L. Thouars) during sort time storage. Food Sci. Technol. 2016, 36, 290–295. [Google Scholar] [CrossRef]
- Olaleye, A.A.; Adeyeye, E.I.; Adesina, A.J. Chemical composition of Bambara groundnut (V. subterranea L. Verdc) seed parts. Bangladesh J. Sci. Ind. Res. 2013, 48, 167–178. [Google Scholar] [CrossRef]
- Baptista, A.; Pinho, O.; Pinto, E.; Casal, S.; Mota, C.; Ferreira, I.M.P.L.V.O. Characterisation of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and Bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. J. Food Meas. Charact. 2017, 11, 442–450. [Google Scholar] [CrossRef]
- Okafor, J.N.C.; Jideani, V.A.; Meyer, M.; Le Roes-Hill, M. Bioactive components in Bambara groundnut (Vigna subterraenea (L.) Verdc) as a potential source of nutraceutical ingredients. Heliyon 2022, 8, e09024. [Google Scholar] [CrossRef]
- Yao, D.N.; Kouassi, K.N.; Erba, D.; Scazzina, F.; Pellegrini, N.; Casiraghi, M.C. Nutritive evaluation of the Bambara groundnut Ci12 landrace [Vigna subterranea (L.) verdc. (Fabaceae)]. Int. J. Mol. Sci. 2015, 16, 21428–21441. [Google Scholar] [CrossRef]
- Tan, X.L.; Azam-Ali, S.; Goh, E.V.; Mustafa, M.; Chai, H.H.; Ho, W.K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara groundnut: An underutilized leguminous crop for global food security and nutrition. Front. Nutr. 2020, 7, 601496. [Google Scholar] [CrossRef]
- Kaspchak, E.; Silveira, J.L.M.; Igarashi-Mafra, L.; Mafra, M.R. Effect of antinutrients on heat-set gelation of soy, pea, and rice protein isolates. J. Food Sci. Technol. 2020, 57, 4201–4210. [Google Scholar] [CrossRef]
- Bala, K.S.; Rano, N.B. Influence of processing method on the proximate composition and anti-nutrient content of Bambara nut (Vigna subterranea L. ). Niger. J. Anim. Prod. 2022, 5, 92–98. [Google Scholar]
- Halimi, R.A.; Barkla, B.J.; Mayes, S.; King, G.J. The potential of the underutilized pulse Bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J. Food Compos. Anal. 2019, 77, 47–59. [Google Scholar] [CrossRef]
- Ndidi, U.S.; Ndidi, C.U.; Aimola, I.A.; Bassa, O.Y.; Mankilik, M.; Adamu, Z. Effects of processing (boiling and roasting) on the nutritional and antinutritional properties of Bambara groundnuts (Vigna subterranea [L.] Verdc.) from southern Kaduna, Nigeria. J. Food Process. Preserv. 2014, 2024, 472129. [Google Scholar] [CrossRef]
- Omoniyi, S.A.; Mustapha, N.A.; Shukri, R.; Ramli, N.S.; Sulaiman, R. Effect of soaking and high-pressure processing on antioxidant content, functional and pasting properties of Bambara groundnut (Vigna subterranean (L.) Verdc) flour. Food Res. 2024, 8, 36–47. [Google Scholar] [CrossRef]
- Sobowale, S.S.; Bamidele, O.P.; Adebo, J.A. Physicochemical, functional, and antinutritional properties of fermented Bambara groundnut and sorghum flours at different times. Food Chem. Adv. 2024, 4, 100729. [Google Scholar] [CrossRef]
- Chinma, C.E.; Abu, J.O.; Asikwe, B.N.; Sunday, T.; Adebo, O.A. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT 2021, 140, 110749. [Google Scholar] [CrossRef]
- Mudau, M.; Adebo, O.A. Effect of traditional and novel processing technologies on the thermo-pasting, microstructural, nutritional, and antioxidant properties of finger millet and Bambara groundnut flours. Int. J. Food Sci. Technol. 2025, 60, vvae037. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Pillay, K.; Siwela, M. In vitro digestibility, amino acid profile and antioxidant activity of cooked Bambara groundnut grain. Food Biosci. 2019, 31, 100428. [Google Scholar] [CrossRef]
- Yahaya, D.; Seidu, O.A.; Tiesaah, C.H.; Iddrisu, M.B. The role of soaking, steaming, and dehulling on the nutritional quality of Bambara groundnuts (Vigna subterranea (L) Verdc.). Front. Sustain. Food Syst. 2022, 6, 887311. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Functional and physicochemical properties of legume fibers. In Pulse Foods: Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B.M., Eds.; Elsevier Academic Press: Waltham, MA, USA, 2011; pp. 121–156. [Google Scholar]
- Okafor, J.; Okafor, G.; Leelavathi, K.; Bhagya, S.; Elemo, G. Effect of roasted Bambara groundnut (Voandzeia subterranea) fortification on quality and acceptability of biscuits. Pak. J. Nutr. 2015, 14, 653–657. [Google Scholar] [CrossRef]
- Byarugaba, R.; Nabubuya, A.; Muyonga, J.; Mwakha, A. Effects of roasting conditions on the proximate composition and functional properties of common bean (Phaseolus vulgaris) flours. Tanzan. J. Sci. 2023, 49, 546–558. [Google Scholar] [CrossRef]
- Belcadi-Haloui, R.; Zekhnini, A.; El-Alem, Y.; Hatimi, A. Effects of roasting temperature and time on the chemical composition of argan oil. Int. J. Food Sci. 2018, 2018, 7683041. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Ijarotimi, S.O.; Esho, R.T. Comparison of nutritional composition and anti-nutrient status of fermented, germinated and roasted Bambara groundnut seeds (Vigna subterranea). Brit. Food J. 2009, 111, 376–386. [Google Scholar] [CrossRef]
- Maria, M.F.; Hannah, J.I. The impact of processing methods on chemical composition, mineral bioavailability and functional properties of Nigerian-grown cashew flour. Int. J. Food Stud. 2019, 8, 1–13. [Google Scholar] [CrossRef]
- Elmaki, H.B.; Abdel-Rahman, S.M.; Idris, W.H.; Hassan, A.B.; Babiker, E.E.; ElTinay, A.H. Content of antinutritional factors and HCl extractability of mineral from white bean (Phaseolus vulgaris). Cultivars: Influence of soaking and/or cooking. Food Chem. 2007, 100, 362–368. [Google Scholar] [CrossRef]
- Nithya, K.S.; Ramachandramurty, B.; Krishnamoorthy, V.V. Effect of processing methods on nutritional and anti-nutritional qualities of hybrid (COHCU-8) and traditional (CO7) pearl millet varieties of India. J. Biol Sci. 2007, 7, 643–647. [Google Scholar] [CrossRef]
- Okafor, J.N.C.; Ani, J.C.; Okafor, G.I. Effect of processing methods on qualities of Bambara groundnut (Voandzeia subterranea (L.) Thouars) flour and their acceptability in extruded snacks. Am. J. Food Technol. 2014, 9, 350–359. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Kayitesi, E. Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. [Google Scholar] [CrossRef]
- Aremu, M.O.; Ibrahim, H.; Ekanem, B.E. Effect of processing on in–vitro protein digestibility and anti–nutritional properties of three underutilized legumes grown in Nigeria. Br. Biotechnol. J. 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Adeleke, O.R.; Adiamo, O.Q.; Fawale, O.S.; Olamiti, G. Effect of processing methods on antinutrients and oligosaccharides contents and protein digestibility of the flours of two newly developed Bambara groundnut cultivars. Int. Food Res. J. 2017, 24, 1948–1955. [Google Scholar]
- Anaemene, D.; Arisa, N.; Adeoti, D. Nutritional, anti-nutritional and sensory evaluation of snacks produced from germinated maize/Bambara groundnut (Vigna Subterranean) flours. J. Nutr. Food Secur. 2024, 9, 519–528. [Google Scholar] [CrossRef]
- Embaby, H.E.S. Effect of heat treatments on certain antinutrients and in vitro protein digestibility of peanut and sesame seeds. Food Sci. Technol. Res. 2010, 17, 31–38. [Google Scholar] [CrossRef]
- Gwala, S.; Kyomugasho, C.; Wainaina, I.; Rousseau, S.; Hendrickx, M.; Grauwet, T. Ageing, dehulling and cooking of Bambara groundnuts: Consequences for mineral retention and in vitro bio-accessibility. Food Funct. 2020, 11, 2509–2521. [Google Scholar] [CrossRef]
- Mubaiwa, J.; Fogliano, V.; Chidewe, C.; Linnemann, A.R. Bambara groundnut (Vigna subterranea (L.) Verdc.) flour: A functional ingredient to favour the use of an unexploited sustainable protein source. PLoS ONE 2018, 13, e0205776. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.A. Physicochemical properties and consumer acceptability of breakfast cereal made from sorghum (Sorghum bicolour L) soybean (Glycine max), Bambara groundnut (Vigna subterranean) and groundnut (Arachis hypogaea). Asian Food Sci. J. 2021, 20, 25–37. [Google Scholar] [CrossRef]
- Sahni, P.; Sharma, S. Influence of processing treatments on cooking quality, functional properties, antinutrients, bioactive potential and mineral profile of alfalfa. LWT 2020, 132, 109890. [Google Scholar] [CrossRef]
- Ojha, P.; Adhikari, R.; Karki, R.; Mishra, A.; Subedi, U.; Karki, T.B. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Sci. Nutr. 2018, 6, 47–53. [Google Scholar] [CrossRef]
- Do, D.T.; Singh, J. Legume microstructure. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–21. [Google Scholar]
- Nwajagu, I.; Tanimu, A.U.; Kahu, J. Effect of processing on the nutrient, anti-nutrient and functional properties of Mucuna flagellipes (Ox-eyed Bean) seed flour: An underutilized legume in Nigeria. Am. J. Food Nutr. 2021, 9, 49–59. [Google Scholar]
- Kalpanadevi, V.; Mohan, V. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT 2013, 51, 455–461. [Google Scholar] [CrossRef]
- Eltom, H.A.E.; Sulieman, M.A.; Hassan, A.B. Effect of boiling and roasting processing on nutritional quality of two Sudanese peanuts (Arachis hypogaea) cultivars. Legume Sci. 2023, 5, e159. [Google Scholar] [CrossRef]
- Igbabul, B.; Hiikyaa, O.; Amove, J. Effect of fermentation on the proximate composition and functional properties of mahogany bean (Afzelia africana) flour. Curr. Res. Nutr. Food Sci. J. 2014, 2, 01–07. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Pillay, K.; Tesfay, S.; Siwela, M. Physical, nutritional and antioxidant properties of Zimbabwean Bambara groundnut and effects of processing methods on their chemical properties. Int. J. Food Sci. Technol. 2017, 52, 2238–2247. [Google Scholar] [CrossRef]
- Arise, A.K.; Oyeyinka, S.A.; Dauda, A.O.; Malomo, S.A.; Allen, B.O. Quality evaluation of maize snacks fortified with Bambara groundnut flour. Ann. Food Sci. Technol. 2018, 19, 283–291. [Google Scholar]
- Chude, C.; Chidiebere, A.; Ogonna, O.E. Quality evaluation of noodles produced from fermented Bambara groundnut (Vigna Subterranean (L) Verdc.) flour. Food Sci. Qual. Manag. 2018, 73, 38–41. [Google Scholar]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.E.G.; Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 2020, 60, 826–843. [Google Scholar] [CrossRef]
- Mutshinyani, M.; Mashau, M.E.; Jideani, A.I.O. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: Effects of spontaneous fermentation. Int. J. Food Prop. 2020, 23, 1692–1710. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Reale, A.; Konietzny, U.; Coppola, R.; Sorrentino, E.; Greiner, R. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agric. Food Chem. 2007, 55, 2993–2997. [Google Scholar] [CrossRef]
- Onuora, C.C.; Iro, N. Effect of bioprocess on amino acid profile and mineral extractability of Bambara groundnut (Vigna subterranean (L) Verdc.) flour. Glob. Sci. J. 2020, 8, 4562–4572. [Google Scholar]
- Ijarotimi, O.S.; Ogunmola, T.G.; Oluwajuyitan, T.D. Effect of some traditional processing operations on the chemical, functional, antioxidant, glycaemic index and glycaemic load of groundnut (Arachis hypogea L.) seed flour. J. Food Meas. Charact. 2022, 16, 2024–2040. [Google Scholar] [CrossRef]
- Rosa-Sibakov, N.; Re, M.; Karsma, A.; Laitila, A.; Nordlund, E. Phytic acid reduction by bioprocessing as a tool to improve the in vitro digestibility of faba bean protein. J. Agric. Food Chem. 2018, 66, 10394–10399. [Google Scholar] [CrossRef]
- Olukomaiya, O.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT 2020, 127, 109362. [Google Scholar] [CrossRef]
- Zamudio, M.; González, A.; Medina, J.A. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184. [Google Scholar] [CrossRef]
- Farinde, E.O.; Olanipekun, O.T.; Olasupo, R.B. Nutritional composition and antinutrients content of raw and processed lima bean (Phaseolus lunatus). Ann. Food Sci. Technol. 2018, 19, 250–264. [Google Scholar]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food Processing for Increasing Consumption: The Case of Legumes. In Food Processing for Increased Quality and Consumption; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–28. [Google Scholar]
- Adebo, O.A.; Njobeh, P.B.; Kayitesi, E. Fermentation by Lactobacillus fermentum strains (singly and in combination) enhances the properties of ting from two whole grain sorghum types. J. Cereal Sci. 2018, 82, 49–56. [Google Scholar] [CrossRef]
- Emammbux, M.N.; Taylor, J.N. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407. [Google Scholar] [CrossRef]
- Badjona, A.; Bradshaw, R.; Millman, C.; Howarth, M.; Dubey, B. Faba beans protein as an unconventional protein source for the food industry: Processing influence on nutritional, techno-functionality, and bioactivity. Food Rev. Int. 2023, 40, 1999–2023. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Simsek, S.; Hall, C.; Rao, J.; Chen, B. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem. 2019, 295, 579–587. [Google Scholar] [CrossRef]
- Echendu, C.A.; Obizoba, I.C.; Anyika, J.U. Effects of germination on chemical composition of groundbean (Kerstingiella geocarpa harm) seeds. Pak. J. Nutr. 2009, 8, 1849–1854. [Google Scholar] [CrossRef]
- Bulbula, D.; Urga, K. Study on the effect of traditional processing methods on nutritional composition and anti nutritional factors in chickpea (Cicer arietinum). Cogent Food Agric. 2018, 4, 1422370. [Google Scholar] [CrossRef]
- Kewuyemi, Y.O.; Kesa, H.; Adebo, O.A. Biochemical properties, nutritional quality, colour profile and techno-functional properties of whole grain sourdough and malted cowpea and quinoa flours. Int. J. Food Sci. Technol. 2022, 57, 1527–1543. [Google Scholar] [CrossRef]
- Haji, A.; Teka, T.A.; Bereka, T.Y.; Astatkie, T.; Woldemariam, H.W.; Urugo, M.M. Effect of processing methods on the nutrient, antinutrient, functional, and antioxidant properties of pigeon pea (Cajanus cajan (L.) Millsp.) flour. J. Agric. Food Res 2024, 18, 101493. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.C.C.; Udenigwe, C. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Gbashi, S.; Phoku, J.Z.; Kayitesi, E. Fermented pulse-based food products in developing nations as functional foods and ingredients. In Functional Food—Improve Health through Adequate Food; Hueda, M.C., Ed.; InTech: Rijeka, Croatia, 2017; pp. 77–109. [Google Scholar]
- Pal, R.S.; Bhartiya, A.; ArunKumar, R.; Kant, L.; Aditya, J.P.; Bisht, J.K. Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram. J. Food Sci. Technol. 2016, 53, 337–347. [Google Scholar] [CrossRef]
- Kumar, S.R.; Sadiq, M.B.; Anal, A.K. Comparative study of physicochemical and functional properties of soaked, germinated and pressure cooked Faba bean. J. Food Sci. Technol. 2022, 59, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Nti, C.A. Effects of bambara groundnut (Vigna subterranea) variety and processing on the quality and consumer appeal for its products. Int. J. Food Sci. Technol. 2009, 44, 2234–2242. [Google Scholar] [CrossRef]
- Elochukwu, C.U. Effect of processing on the proximate composition of Bambara groundnut flours. Int. J. Adv. Eng. Manag. 2020, 2, 104. [Google Scholar]
- Mananga, M.J.; Karrington, E.N.J.; Charles, K.T.; Didier, K.N.B.; Elie, F. Effect of different processing methods on the nutritional value of red and white bean cultivars (Phaseolus vulgaris L.). J. Food Nutr. Sci. 2022, 10, 27–35. [Google Scholar]
- Collar, C.; Villanueva, M.; Ronda, F. Structuring diluted wheat matrices: Impact of heat-moisture treatment on protein aggregation and viscoelasticity of hydrated composite flours. Food Bioprocess Technol. 2020, 13, 475–487. [Google Scholar] [CrossRef]
- Prayudani, A.P.G.; Saputra, B.; Astawan, M.; Wresdiyati, T.; Sardjono, R.E. Effect of pre-milling method on physicochemical and functional properties of Velvet bean (Mucuna pruriens L.) flour. Food Sci. Technol. 2023, 11, 111–124. [Google Scholar] [CrossRef]
- Benmeziane Derradji, F.; Djermoune Arkoub, L.; Ayat, N.E.H.; Aouf, D. Impact of roasting on the physicochemical, functional properties, antioxidant content and microstructure changes of Algerian lentil (Lens culinaris) flour. J. Food Meas. Charact. 2020, 14, 2840–2853. [Google Scholar] [CrossRef]
- Handa, V.; Kumar, V.; Panghal, A.; Suri, S.; Kaur, J. Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. J. Food Sci. Technol. 2017, 54, 4229–4239. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. J. Food Sci. Technol. 2015, 52, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Mazı, B.G.; Yıldız, D.; Barutçu Mazı, I. Influence of different soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour. J. Food Meas. Charact. 2023, 17, 3625–3643. [Google Scholar] [CrossRef]
- Odedeji, J.O.; Ijale, R.A.; Oluwanisola, R.M.; Owheruo, J.O. Functional and pasting properties of sprouted grains of jack beans (Canavalia ensiformis (L.) DC.) flour at different periods of exposure. J. Und. Leg. 2024, 6, 43–53. [Google Scholar]
- Gandhi, H.; Toor, B.S.; Kaur, A.; Kaur, J. Effect of processing treatments on physicochemical, functional and thermal characteristics of lentils (Lens Culinaris). J. Food Meas. Charact. 2022, 16, 4603–4614. [Google Scholar] [CrossRef]
- Shen, Y.; Tang, X.; Li, Y. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem. 2021, 339, 127823. [Google Scholar] [CrossRef]
- Dereje, B.; Girma, A.; Mamo, D.; Chalchisa, T. Functional properties of sweet potato flour and its role in product development: A review. Int. J. Food Prop. 2020, 23, 1639–1662. [Google Scholar] [CrossRef]
- Adeyoju, O.A.; Adebowale, K.O.; Oluowolabi, B.I.; Chibudike, H.O.; Chibudike, E.C. Nutritional and functional properties of flour and protein isolates from germinated Solojo Cowpea Vigna unguiculata (l.) Walp. J. Food Sci. Nutr. Res. 2021, 4, 161–174. [Google Scholar] [CrossRef]
- Tsamo, A.T.; Ndibewu, P.P.; Dakora, F.D. Phytochemical profile of seeds from 21 Bambara groundnut landraces via UPLC-qTOF-MS. Food Res. Int. 2018, 112, 160–168. [Google Scholar] [CrossRef]
- Sutedja, A.M.; Trisnawati, C.Y.; Wang, R.; Sugianti, C. Boiling time variation through functional characteristics of boiled red kidney beans. E3S Web Conf. 2022, 344, 04004. [Google Scholar] [CrossRef]
- Arise, A.K.; Aliyu, B.N.; Ajidagba, S.D. Effect of thermal processing and fermentation on the chemical composition, protein digestibility and functional properties of Bambara protein isolate. Carpath. J. Food Sci. Technol. 2020, 12, 148–156. [Google Scholar]
- Guemra, I.; Adoui, F.; Sabba, E.; Ferhat, R.; Benatallah, L. Influence of Soaking, boiling, roasting, and germination on the composition and functional properties of Algerian chickpea flour, and the consumer acceptability of chickpea cheese analogue. J. Food Qual. Hazards Control 2024, 11, 71–81. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT 2015, 63, 1317–1324. [Google Scholar] [CrossRef]
- Xiao, Y.S.; Xiong, T.; Peng, Z.; Liu, C.G.; Huang, T.; Yu, H.; Xie, M.Y. Correlation between microbiota and flavours in fermentation of Chinese Sichuan Paocai. Food Res. Int. 2018, 114, 123–132. [Google Scholar] [CrossRef]
- Toor, B.S.; Kaur, A.; Kaur, K. Fermentation of legumes with Rhizopus oligosporus: Effect on physicochemical, functional and microstructural properties. Int. J. Food Sci. Technol. 2022, 57, 1763–1772. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Sullo, A.; Winston, S.; Norton, I.T.; Norton-Welch, A.B. Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 2020, 85, 28–35. [Google Scholar] [CrossRef]
- Pei, F.; Lv, Y.; Cao, X.; Wang, X.; Ren, Y.; Ge, J. Structural characteristics and the antioxidant and hypoglycemic activities of a polysaccharide from Lonicera caerulea L. Pomace. Fermentation 2022, 8, 422. [Google Scholar] [CrossRef]
- Cabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of Fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Igwe, V.S.; Echeta, C.K. The functional properties of foods and flours. Int. J. Adv. Acad. Res. 2019, 5, 139–160. [Google Scholar]
- Obatolu, V.A.; Fasoyiro, S.B.; Ogunsunmi, L. Processing and functional properties of yam beans (Sphenostylis stenocarpa). J. Food Process. Preserv. 2007, 31, 240–249. [Google Scholar] [CrossRef]
- Kumar, Y.; Sharanagat, V.S.; Singh, L.; Mani, S. Effect of germination and roasting on the proximate composition, total phenolics, and functional properties of black chickpea (Cicer arietinum). Legume Sci. 2020, 2, e20. [Google Scholar] [CrossRef]
- Navyashree, N.; Sengar, A.S.; Sunil, C.K.; Venkatachalapathy, N. White finger millet (KMR-340): A comparative study to determine the effect of processing and their characterisation. Food Chem. 2022, 374, 131665. [Google Scholar] [CrossRef] [PubMed]
- Setia, R.; Dai, Z.; Nickerson, M.T.; Sopiwnyk, E.; Malcolmson, L.; Ai, Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 2019, 122, 263–272. [Google Scholar] [CrossRef]
- Lakshmipathy, K.; Buvaneswaran, M.; Rawson, A.; Chidanand, D.V. Effect of dehulling and germination on the functional properties of grass pea (Lathyrus sativus) flour. Food Chem. 2024, 449, 139265. [Google Scholar] [CrossRef]
- Mesfin, N.; Belay, A.; Amare, E. Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder. Heliyon 2021, 7, e08081. [Google Scholar] [CrossRef]
- Atuna, R.A.; Mensah, M.A.S.; Koomson, G.; Akabanda, F.; Dorvlo, S.Y.; Amagloh, F.K. Physico-functional and nutritional characteristics of germinated pigeon pea (Cajanus cajan) flour as a functional food ingredient. Sci. Rep. 2023, 13, 16627. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Muzaffar, K.; Majid, D.; Dar, B.N. Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. Int. J. Gastron. Food Sci. 2020, 22, 100258. [Google Scholar] [CrossRef]
- Kamani, M.H.; Semwal, J.; Meera, M.S. Functional modification of protein extracted from black gram by-product: Effect of ultrasonication and micronization techniques. LWT 2021, 144, 111193. [Google Scholar] [CrossRef]
- Ogundele, O.M.; Minnaar, A.; Emmambux, M.N. Effects of micronisation and dehulling of pre-soaked Bambara groundnut seeds on microstructure and functionality of the resulting flours. Food Chem. 2017, 214, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Mukwevho, P.; Emmambux, M.N. Effect of infrared and microwave treatments alone and in combination on the functional properties of resulting flours from Bambara groundnut seeds. LWT 2022, 153, 112448. [Google Scholar] [CrossRef]
- Lai, S.; Chen, Z.; Zhang, Y.; Li, G.; Wang, Y.; Cui, Q. Micronization effects on structural, functional, and antioxidant properties of wheat bran. Foods 2022, 12, 98. [Google Scholar] [CrossRef]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Paciulli, M.; Mefleh, M.; Boukid, F. Corn and barley protein concentrates: Effects of fractionation and micronization on the chemical, functional, and thermal properties. Eur. Food Res. Technol. 2024, 250, 2363–2373. [Google Scholar] [CrossRef]
- Guldiken, B.; Franczyk, A.; Boyd, L.; Wang, N.; Choo, K.; Sopiwnyk, E.; House, J.; Paliwal, J.; Nickerson, M. Physicochemical, nutritional and functional properties of chickpea (Cicer arietinum) and navy bean (Phaseolus vulgaris) flours from different mills. Eur. Food Res. Technol. 2022, 248, 1847–1858. [Google Scholar] [CrossRef]
- Guldiken, B.; Konieczny, D.; Franczyk, A.; Satiro, V.; Pickard, M.; Wang, N.; House, J.; Nickerson, M.T. Impacts of infrared heating and tempering on the chemical composition, morphological, functional properties of navy bean and chickpea flours. Eur. Food Res. Technol. 2022, 248, 767–781. [Google Scholar] [CrossRef]
- Ampofo, J.; Ngadi, M. Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrason. Sonochemistry 2022, 84, 105955. [Google Scholar] [CrossRef]
- Salehi, F.; Inanloodoghouz, M. Effects of gum-based coatings combined with ultrasonic pretreatment before drying on quality of sour cherries. Ultrason. Sonochemistry 2023, 100, 106633. [Google Scholar] [CrossRef]
- Roobab, U.; Chen, B.R.; Madni, G.M.; Guo, S.M.; Zeng, X.A.; Abdi, G.; Aadil, R.M. Enhancing chicken breast meat quality through ultrasonication: Physicochemical, palatability, and amino acid profiles. Ultrason. Sonochemistry 2024, 104, 106824. [Google Scholar] [CrossRef]
- Thalía Flores-Jiménez, N.; Armando Ulloa, J.; Esmeralda Urías-Silvas, J.; Carmen Ramírez-Ramírez, J.; Ulises Bautista-Rosales, P.; Gutiérrez-Leyva, R. Influence of high-intensity ultrasound on physicochemical and functional properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate. Ultrason. Sonochemistry 2022, 84, 105976. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Smith, B. The functional modification of legume proteins by ultrasonication: A review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Loushigam, G.; Shanmugam, A. Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound-assisted extraction. Ultrason. Sonochemistry 2023, 97, 106448. [Google Scholar] [CrossRef]
- Choudhary, C.; Vignesh, S.; Chidanand, D.V.; Baskaran, N. Effect of different processing methods on nutritional, phytochemicals composition, and microbial quality of pearl millet. Food Humanity 2025, 4, 100513. [Google Scholar] [CrossRef]
- Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel protein sources for applications in meat-alternative products-insight and challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef]
- Udeh, E.L.; Nyila, M.A.; Kanu, S.A. Nutraceutical and antimicrobial potentials of Bambara groundnut (Vigna subterranean): A review. Heliyon 2020, 6, e05205. [Google Scholar] [CrossRef]
- Nyau, V.; Prakash, S.; Rodrigues, J.; Farrant, J. Antioxidant activities of Bambara groundnuts as assessed by FRAP and DPPH assays. Am. J. Food and Nutr. 2015, 3, 7–11. [Google Scholar]
- Harris, T.; Jideani, V.; Le Roes-Hill, M. Flavonoids and tannin composition of Bambara groundnut (Vigna subterranea) of Mpumalanga, South Africa. Heliyon 2018, 4, e00833. [Google Scholar] [CrossRef]
- Mudau, M.; Chinma, C.E.; Ledbetter, M.; Wilkin, J.; Adebo, O.A. Gas chromatography–mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J. Food Sci. 2024, 89, 6394–6412. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Chinma, C.E.; Green, E.; Adebo, O.A. Metabolite data of germinated Bambara groundnut flour and starch extracted with two different solvents. Data Brief 2021, 38, 107288. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020, 25, 4613. [Google Scholar] [CrossRef]
- Chen, X.; Lv, Q.; Li, H.; Wang, Z. Dodecanoic acid induces oxidative stress-mediated death in liver cancer cells through the mitochondrial pathway. Biosci. J. 2024, 40, e40036. [Google Scholar] [CrossRef]
- Li, R.; He, Z.; Yan, W.; Yu, H.; Yi, X.; Sha, Y.; Pang, W. Tricaprylin, a medium-chain triglyceride, aggravates high-fat diet-induced fat deposition but improves intestinal health. Food Funct. 2023, 14, 8797–8813. [Google Scholar] [CrossRef]
- Villaseñor-Granados, T.O.; Montes-Tolentino, P.; Rodríguez-López, G.; Sánchez-Ruiz, S.A.; Flores-Parra, A. Structural analysis of tris(5-methyl-[1, 3, 5]-dithiazinan-2-yl)stibine, its reactions with chalcogens: Intramolecular chalcogen-bonding interactions. J. Mol. Struct. 2020, 1200, 127050. [Google Scholar] [CrossRef]
- Ferrari, C.K. Anti-atherosclerotic and cardiovascular protective benefits of Brazilian nuts. Front. Biosci. 2020, 12, 38–56. [Google Scholar] [CrossRef]
- Lahlou, Y.; Moujabbir, S.; Aboukhalaf, A.; El Amraoui, B.; Bamhaoud, T. Antibacterial activity of essential oils of Salvia Officinalis growing in Morocco. Rocz. Państw. Zakł. Hig. 2023, 74, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, Z.; Yang, X.; Liu, Q.S.; Zhang, J.; Zhou, Q.; Jiang, G. 3-tert-Butyl-4-hydroxyanisole impairs hepatic lipid metabolism in male mice fed with a high-fat diet. Environ. Sci. Technol. 2022, 56, 3204–3213. [Google Scholar] [CrossRef]
- Javed, M.R.; Salman, M.; Tariq, A.; Tawab, A.; Zahoor, M.K.; Naheed, S.; Shahid, M.; Ijaz, A.; Ali, H. The antibacterial and larvicidal potential of bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules 2022, 27, 7220. [Google Scholar] [CrossRef]
- Guven, H.; Arici, A.; Simsek, O. Flavonoids in our foods: A short review. J. Basic Clin. Health Sci. 2019, 3, 96–106. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Aguilar-Toalá, J.E.; Hall, F.G.; Urbizo-Reyes, U.C.; Liceaga, A.M.; Hernandez-Mendoza, A.; García, H.S. Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 160–180. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Yuan, M.; Guo, B.; Lin, J.; Yan, S.; Huang, H.; Chen, J.-L.; Wang, S.; Ma, Y. Citric acid promotes immune function by modulating the intestinal barrier. Int. J. Mol. Sci. 2024, 25, 1239. [Google Scholar] [CrossRef]
- Owheruo, J.O.; Ifesan, B.O.T.; Kolawole, A.O. Physicochemical properties of malted finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Sci. Nutr. 2018, 7, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Perales-Sánchez, J.X.; Reyes-Moreno, C.; Gómez-Favela, M.A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods Hum. Nutr. 2014, 69, 196–202. [Google Scholar] [CrossRef]
- Adebo, O.A.; Medina-Meza, I.E. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed]
- Adedayo, B.C.; Anyasi, T.A.; Taylor, M.J.C.; Rautenbauch, F.; Le Roes-Hill, M.; Jideani, V.A. Phytochemical composition and antioxidant properties of methanolic extracts of whole and dehulled Bambara groundnut (Vigna subterranea) seeds. Sci. Rep. 2021, 11, 14116. [Google Scholar] [CrossRef]
- Marathe, S.A.; Rajalakshmi, V.; Jamdar, S.N.; Sharma, A. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 2011, 49, 2005–2012. [Google Scholar] [CrossRef]
- Gujral, H.S.; Sharma, P.; Gupta, N.; Wani, A.A. Antioxidant properties of legumes and their morphological fractions as affected by cooking. Food Sci. Biotechnol. 2013, 22, 187–194. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef]
- Denhere, S. The Effect of Adding Bambara Groundnut (Vignia substerranea L.) on the Nutritional, Functional and Sensory Quality of a Provitamin a-Biofortified Maize Complementary Instant Porridge. MS.c. Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2016. [Google Scholar]
- Siegrist, M. Consumer Attitudes to Food Innovation and Technology Understanding Consumers of Food Products; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 122–138. [Google Scholar]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Choe, J.Y.; Cho, M.S. Food neophobia and willingness to try non-traditional foods for Koreans. Food Qual. Prefer. 2011, 22, 671–677. [Google Scholar] [CrossRef]
- Camara, A.K.F.I.; Okuro, P.K.; Santos, M.; Paglarini, C.D.; da Cunha, R.L.; Ruiz-Capillas, C.; Herrero, A.M.; Pollonio, M.A.R. Understanding the role of chia (Salvia Hispanica L.) muci oil-based emulsion gels as a new fat substitute in emulsified meat products. Eur. Food Res. Technol. 2020, 246, 909–922. [Google Scholar] [CrossRef]
- Ayo, J.A.; Andrew, E. Effect of added Bambara groundnut on the quality of acha-date palm based biscuit. Int. J. Biotechnol. Food Sci. 2016, 4, 34–38. [Google Scholar]
- Oyeyinka, S.A.; Tijani, T.S.; Oyeyinka, A.T.; Arise, A.K.; Balogun, M.A.; Kolawole, F.L.; Obalowu, M.A.; Joseph, J.K. Value added snacks produced from Bambara groundnut (Vigna subterranea) paste or flour. LWT 2018, 88, 126–131. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Keshinro, O.O. Formulation and nutritional quality of infant formula produced from germinated popcorn, Bambara groundnut and African locust bean flour. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1358–1388. [Google Scholar]
- Mashau, M.E.; Mukwevho, T.A.; Ramashia, S.E.; Siwela, M. The influence of Bambara groundnut (Vigna subterranean) flour on the nutritional, physical and antioxidant properties of steamed bread. CyTA—J. Food. 2022, 20, 259–270. [Google Scholar] [CrossRef]
- Hama-Ba, F.; Ouattara, F.; Aly Savadogo, A.; Simpore, M.; Diawara, B. Study of the nutritional quality and acceptability of millet biscuits (Pennissetum glaucum L.) supplemented with cowpea (Vigna unguiculate) and Bambara groundnut (Vigna subterranea L.). J. Agri. Sci. Food Res. 2018, 9, 202. [Google Scholar]
- Abdualrahman, M.A.; Ali, A.O.; Elkhalifa, E.A.; Sulieman, A.E. Effect of Bambara groundnut flour (Vigna subterranea (L.) Verdc.) supplementation on chemical, physical, nutritional and sensory evaluation of wheat bread. Pak. J. Biol. Sci. 2012, 15, 845–849. [Google Scholar]
- Olapade, A.A.; Babalola, Y.O.; Aworh, O.C. Quality attributes of fufu (fermented cassava) flour supplemented with Bambara flour. Int. Food Res. J. 2014, 21, 2025–2032. [Google Scholar]
- Atoyebia, J.O.; Osilesib, O.; Adebawob, O. Sensory Evaluation of Bambara Groundnut (Vigna subterranea (L.) Verdc.) food products in Ibadan, Nigeria. Int. J. Agric. Innov. Res. 2017, 5, 2319–2473. [Google Scholar]
- Bravo-Nuñez, A.; Gómez, M. Assessing the influence of vegetal protein source on the physicochemical properties of maize flour. J. Food Meas. Charact. 2019, 13, 3340–3348. [Google Scholar] [CrossRef]
- Mbata, T.I.; Ikenebomeh, M.J.; Alaneme, J.C. Studies on the microbiological, nutrient composition and anti-nutritional contents of fermented maize flour fortified with Bambara groundnut (Vigna subterranean L). Afr. J. Food Sci. 2009, 3, 165–171. [Google Scholar]
- Kiin-Kabari, D.B.; Giami, S.Y. Physico chemical properties and in-vitro protein digestibility of non-wheat cookies prepared from plantain flour and Bambara groundnut protein concentrate. J. Food Res. 2015, 4, 78–86. [Google Scholar] [CrossRef]
- Ujiroghene, O.J.; Izuwa, I.; Jennifer, A. Evaluation of the quality characteristics of complementary food from whole maize fortified with Bambara groundnut and tiger nut. Asian Food Sci. J. 2021, 20, 41–51. [Google Scholar] [CrossRef]
- Oluwamukomi, M.O.; Oluwajuyitan, T.D.; Makinde, O.T. Quality evaluation and storage properties of traditional maize-based snacks: Ipekere Agbado enriched with Bambara groundnut. Bull. Natl. Res. Cent. 2021, 45, 165. [Google Scholar] [CrossRef]
- Arise, A.K.; Akintayo, O.O.; Dauda, A.O.; Adeleke, B.A. Chemical, functional and sensory qualities of Abari (maize-based pudding) Nutritionally improved with Bambara groundnut (Vigna subterranea). Ife J. Sci. 2019, 21, 165–173. [Google Scholar] [CrossRef]
- Mashau, M.E.; Mabodze, T.; Tshiakhatho, O.J.; Silungwe, H.; Ramashia, S.E. Evaluation of the content of polyphenols, antioxidant activity and physicochemical properties of tortillas added with Bambara groundnut flour. Molecules 2020, 25, 3035. [Google Scholar] [CrossRef]
- Awobusuyi, T.D.; Siwela, M. Nutritional properties and consumer’s acceptance of provitamin A-biofortified amahewu combined with Bambara groundnut (Vigna subterranea) flour. Nutrients 2019, 11, 1476. [Google Scholar] [CrossRef]
- Yeboah-Awudzi, M.; Lutterodt, H.E.; Kyereh, E.; Reyes, V.; Sathivel, S.; King, J.M. Effect of Bambara groundnut supplementation on the physicochemical properties of rice flour and crackers. J. Food Sci. Technol. 2018, 55, 3556–3563. [Google Scholar] [CrossRef]
- Hussin, H.; Gregory, P.J.; Julkifle, A.L.; Sethuraman, G.; Tan, X.L.; Razi, F.; Azam-Ali, S.N. Enhancing the nutritional profile of noodles with Bambara groundnut (Vigna subterranea) and Moringa (Moringa oleifera): A food system approach. Front. Sustain Food Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Qaku, X.W.; Adetunji, A.; Dlamini, B.C. Fermentability and nutritional characteristics of sorghum Mahewu supplemented with Bambara groundnut. J. Food Sci. 2020, 85, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Ejeh, D.D. Production of Bambara groundnut substituted whole wheat bread: Functional properties and quality characteristics. J. Nutr. Food Sci. 2018, 8, 1000731. [Google Scholar] [CrossRef]
- Ramatsetse, K.E.; Ramashia, S.E.; Mashau, M.E. Effect of partial mutton meat substitution with Bambara groundnut (Vigna subterranea (L.) Verdc.) flour on physicochemical properties, lipid oxidation, and sensory acceptability of low-fat patties. Food Sci. Nutr. 2024, 12, 4019–4037. [Google Scholar] [CrossRef]
- Ramashia, S.E.; Sikhipha, R.C.; Olamiti, G.; Mashau, M.E. Nutritional, antioxidant and structural properties of rusk developed from wheat–Bambara groundnut (Vigna subterranean) flour. Legume Sci. 2024, 6, e70015. [Google Scholar] [CrossRef]
- Alakali, J.S.; Irtwange, S.V.; Mzer, M.T. Quality evaluation of beef patties formulated with Bambara groundnut (Vigna subterranean L.) seed flour. Meat Sci. 2010, 85, 215–223. [Google Scholar] [CrossRef]
- Argel, N.S.; Ranalli, N.; Califano, A.N.; Andrés, S.C. Influence of partial pork meat replacement by pulse flour on physicochemical and sensory characteristics of low-fat burgers. J. Sci. Food Agric. 2020, 100, 3932–3941. [Google Scholar] [CrossRef]
- Akanni, G.B.; Qaku, X.W.; Adetunji, A.; Dlamini, B.C. Consumer acceptability, metabolite profile analysis and storage stability of sorghum-Bambara groundnut mahewu. Int. J. Food Sci. Technol. 2024, 59, 1363–1374. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Luo, J.; Johnson, S.; Fang, Z. Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. J. Cereal Sci. 2019, 85, 6–14. [Google Scholar] [CrossRef]
- Arise, A.K.; Oriade, K.F.; Asogwa, T.N.; Nwachukwu, I. Amino acid profile, physicochemical and sensory properties of noodles produced from wheat-Bambara protein isolate. Meas. Food. 2022, 5, 100020. [Google Scholar] [CrossRef]
- Adebanke, B.M.; Kemisola, A.A.; Lola, K.F.; Mayowa, I. Effect of partial substitution of cow milk with Bambara groundnut milk on the chemical composition, acceptability and shelf life of yoghurt. Ann. Food Sci. Technol. 2017, 18, 92–99. [Google Scholar]
- Chinma, C.E.; Ezeocha, V.C.; Adedeji, O.E.; Ayo-Omogie, H.N.; Oganah-Ikujenyo, B.C.; Anumba, N.L.; Enimola, G.E.; Adegoke, D.O.; Alhassan, R.; Adebo, O.A. Germinated Bambara groundnut (Vigna subterranea) flour as an ingredient in wheat bread: Physicochemical, nutritional, and sensory properties of bread. J. Food Sci. 2023, 88, 2368–2384. [Google Scholar] [CrossRef] [PubMed]
Processing Methods | Oxalate (mg/100 g) | Tannins (mg/100 g) | Phytate (mg/100 g) | Trypsin Inhibitors (mg/100) | Saponin (mg/100 g) | References |
---|---|---|---|---|---|---|
Roasting | Decreased (56.76 and 4.97) | Decreased (73.68) | Decreased (49.90, 30.59, and 1.98) | Decreased (73.42, and 37.51) | - | [33,49,50] |
Soaking | Decreased (97.44) | Decreased (99.39) | Decreased (68.25) | Decreased (43) | Decreased (63.81) | [33,51] |
Boiling | Decreased (81.30 and 23.34) | Decreased (73.68) | Decreased (5.91) | Decreased (67.31) | Decreased (36.67) | [14,51] |
Fermentation | Decreased (59.11) | - | Decreased (25.58) | Decreased (75) | - | [52] |
Germination | - | Decreased (63.74, 20.97, and 18.92) | Decreased (51.16, 24.71, and 15.91) | Decreased (73.75, 17.21, and 27.47) | - | [36,52,53] |
Malting | Decreased (84.62) | Decreased (66.67) | Decreased (34.94) | Decreased (93.51) | Decreased (48.81) | [51] |
Dehulling | Decreased (21.65 and 92.54) | Decreased (50) | Decreased (2.45 and 54.75%) | Decreased (5.32) | - | [18,39] |
Processing Methods | WAC (%) | OAC (g/g) | FC (%) | FS (%) | EC (%) | BD (g/mL) | References |
---|---|---|---|---|---|---|---|
Roasting | Increased (81.04) | No change | Decreased (27.93) | - | Decreased (40.85) | Decreased (7.5) | [19,50,56] |
Soaking | Increased (33.20) | Increased (2.09) | Increased (57.60) | - | Decreased (18.76) | Decreased (7.94) | [19,34,56] |
Boiling | Increased (47.43) | - | Decreased (17.59) | - | Decreased (39.09) | Decreased (20) | [19] |
Fermentation | Increased (16.18) | Decreased (13.61) | Decreased (45.19) | Increased (38.58) | Decreased (18.38) | [35] | |
Germination | Increased (42.5) | Decreased (18.67) | Increased (8.89) | Decreased (24.30) | Increased (2.96) | Decreased (40.26) | [36] |
Processing Method | Compounds | Detected or Destroyed | Increase or Decrease | Functions | References |
---|---|---|---|---|---|
Steeping | Polyphenols | - | - Increased | Possess anti-cancer, neuroprotective, antioxidant, and cardiovascular properties | [11,147] |
Infrared | 1. 9-Octadecene and Dodecanoic acid 2. Glycerol tricaprylate 3. 3-tert-Butyl-4-hydroxyanisole | 1. Detected 2. Detected 3. Detected | Dodecanoic acid serves as a source of energy. Glycerol tricaprylate lowers the quantity of dangerous gut microbes and the amounts of inflammatory factors. | [11,148,149] | |
Fermentation | 1. Esters 2. Dicyclohexyldisulfide, Benzene acetaldehyde, ß-Sitosterol, 2-Pyrrolidone carboxylic acid, 2-Hydroxybutyric acid, 4-Aminobutanoic acid, Azelaic acid, and 3-Pyridinol 3. Citric acid | - 2. Detected 3. ND | 1. Increased | Dicyclohexyldisulfide is an industrial chemical that is frequently utilised to flavour foods. ß-Sitosterol is used to treat patients with malignancy or those with high cholesterol level. | [11,145,150,151] |
Malting | 1. Esters 2. Benzene acetaldehyde; (1H) Pyrrole-2-carboxaldehyde, 4-(trichloroacetyl)-; (Hexahydropyrrolizin-3-ylidene)-acetaldehyde 3. 3-tert-Butyl-4-hydroxyanisole 4. Glycerol 5. Bis(2-ethylhexyl) phthalate | - 2. Detected 3. Detected 4. ND 5. Detected | 1. Decreased | Benzene and acetaldehyde inhibit microbial growth and are used to add aroma to food products. 3-tert-Butylhydroxyanisole (3-BHA) is a type of antioxidant that may modulate chemical oncogenesis. Bis(2-ethylhexyl) phthalate protects against harmful microbes that cause illnesses and regulates a variety of biological vectors. | [11,145,152,153,154] |
Roasting | Esters, phenols, benzenes, and carboxylic acids | Decreased | [11] | ||
Dehulling | 1. Flavonoids (Catechin hexoside A, and B, Catechin, Quercetin-3-O-glucoside, Quercetin, Rutin, Medioresinol) 2. Phenolic acids (2,6-Dimethoxybenzoic acid, Protocatechuic acid, Vanillic acid, Syringic acid, Syringaldehyde, Gallic acid, Trans-cinnamic acid, p-coumaric acid, Caffeic acid, and Ferulic acid). 3. Syringic acid | - - 3. Destroyed | 1. Decreased 2. Decreased - | Flavonoids possess positive well-being effects as they chelate trace elements that participate in the generation of free radicals, neutralising reactive oxygen scavengers or defending against antioxidants. | [49,155] |
Ultrasonication | 1. Butanal, 2. D-Glucuronic acid 3. Lactic acid, citric acid, phosphoric acid, and Glycerol monostearate | 1. Detected | 2. Decreased 3. Increased | Lactic acid improves food safety and nutritional content of products while also having a good effect on digestion and entire gastro-intestinal wellness. | [145,156,157] |
Cooking | 1. Catechin | 1. Increased (Cream, orange and purple) 2. Decreased (Brown) | Citric acid inhibits viruses from replicating by raising the antioxidant levels as well as protecting intestinal wall by strengthening junctions that are tight and decreasing inflammation. | [14] | |
2. Epicatechin | 1. Increased (Cream, ad purple) 2. Decreased (Orange and brown) | Cardio and neuro protective, and anticancer | [14] | ||
3. Procyanidin | 1 Increased (Brown and purple) 2. Decreased (orange and cream) | Anti-inflamatory and antidiabetic activity | [14] | ||
4. Citric acid | 1. Increased (Cream, orange, and purple 2. Decreased (Brown) | Anti-inflammatory, anticancer, cardioprotective | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashau, M.E.; Ramatsetse, K.E.; Takalani, T.; Bamidele, O.P.; Ramashia, S.E. Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review. Molecules 2025, 30, 2356. https://doi.org/10.3390/molecules30112356
Mashau ME, Ramatsetse KE, Takalani T, Bamidele OP, Ramashia SE. Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review. Molecules. 2025; 30(11):2356. https://doi.org/10.3390/molecules30112356
Chicago/Turabian StyleMashau, Mpho Edward, Kgaogelo Edwin Ramatsetse, Thakhani Takalani, Oluwaseun Peter Bamidele, and Shonisani Eugenia Ramashia. 2025. "Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review" Molecules 30, no. 11: 2356. https://doi.org/10.3390/molecules30112356
APA StyleMashau, M. E., Ramatsetse, K. E., Takalani, T., Bamidele, O. P., & Ramashia, S. E. (2025). Effect of Bioprocessing on the Nutritional Composition, Antinutrients, Functional Properties, and Metabolites of Bambara Groundnut and Its Prospective Food Applications: A Review. Molecules, 30(11), 2356. https://doi.org/10.3390/molecules30112356