Unveiling the Chemical Composition, Bioactive Profile and Antioxidant Capacity of Dried Egyptian Jew’s Mallow Stems as a Promising Anticancer Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Sugar Content
2.3. Mineral Content
2.4. Vitamin Content
2.5. Bioactive Profile
2.6. Identification of Phenolic, Flavonoid and Isoflavone Compounds
2.7. Antioxidant Capacity %
2.8. Anticancer Effects of Dried Mallow Stem
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Estimation of the Chemical Constituents of Dried Stems
3.3. Estimation of Chlorophyll a, b and β-Carotene
3.4. Estimation of Total Phenolic Compounds (TPC)
3.5. Estimation of Free Radical-Scavenging Activity
3.6. High-Performance Liquid Chromatography (HPLC) Methods
3.6.1. Estimation of Sugar Compounds
3.6.2. Estimation of Vitamin B Complex Content
3.6.3. Estimation of Vitamin C Content
3.6.4. Estimation of Phenolic and Flavonoid Compounds
3.6.5. Estimation of Isoflavone Compounds
3.7. Cytotoxicity Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biswas, A.; Dey, S.; Huang, S.; Deng, Y.; Birhanie, Z.M.; Zhang, J.; Akhter, D.; Liu, L.; Li, D. A Comprehensive Review of C. capsularis and C. olitorius: A Source of Nutrition, Essential Phytoconstituents and Pharmacological Activities. Antioxidants 2022, 11, 1358. [Google Scholar] [CrossRef]
- Elmastas, M.; Ozturk, L.; Gokce, I.; Erenler, R.; Aboul-Enein, H.Y. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett. 2004, 37, 1859–1869. [Google Scholar] [CrossRef]
- Ökten, S.; Cakmak, O.; Erenler, R.; Şahin, Ö.Y.; Tekin, Ş. Simple and convenient preparation of novel 6, 8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem. 2013, 37, 896–908. [Google Scholar] [CrossRef]
- Elmastaş, M.; Telci, İ.; Akşit, H.; Erenler, R. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices/Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması. Turk. J. Biochem. 2015, 40, 456–462. [Google Scholar] [CrossRef]
- Erenler, R.; Telci, I.; Ulutas, M.; Demirtas, I.; Gul, F.; Elmastas, M.; Kayir, O. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem. 2015, 39, 622–630. [Google Scholar] [CrossRef]
- Atalar, M.N.; Erenler, R.; Turkan, F.; Alma, M.H.; Demirtas, I.; Baran, A.; Saltan, F.Z. Phytochemical analysis and biological activity of Corchorus olitorius L.: Quantitative analysis of bioactive compounds byLC–MS/MS, antibacterial, enzyme inhibition, and cytotoxic activities. Eur. J. Integr. Med. 2023, 62, 102290. [Google Scholar] [CrossRef]
- Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol. 2017, 55, 1646–1653. [Google Scholar] [CrossRef]
- Erenler, R.; Telci, I.; Elmastaş, M.; Akşit, H.; Gül, F.; Tufekcy, A.R.; Kayir, Ö. Quantification of flavonoids isolated from Mentha spicata in selected clones of Turkish mint landraces. Turk. J. Chem. 2018, 42, 1695–1705. [Google Scholar] [CrossRef]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant activity of an Anatolian herbal tea—Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef]
- Karan, T.; Erenler, R. Fatty acid constituents and anticancer activity of Cladophora fracta (OF Müller ex Vahl) Kützing. Trop. J. Pharm. Res. 2018, 17, 1977–1982. [Google Scholar] [CrossRef]
- Erenler, R.; Genç, N.; Elmastaş, M.; Eminağaoğlu, Ö. Evaluation of antioxidant capacity with total phenolic content of Galanthus krasnovii (Amaryllidaceae). Turk. J. Biodivers. 2019, 2, 13–17. [Google Scholar] [CrossRef]
- Beyene, B.; Beyene, B.; Deribe, H. Review on application and management of medicinal plants for the livelihood of the local community. J. Resour. Dev. Manag. 2016, 22, 33–39. [Google Scholar]
- Shityakov, S.; Bigdelian, E.; Hussein, A.A.; Hussain, M.B.; Tripathi, Y.C.; Khan, M.U.; Shariati, M.A. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur. J. Med. Chem. 2019, 176, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, I.M.; El-Araby, S.M. Effect of organic manure source and biofertilizer type on growth, productivity and chemical composition of Jew’s Mallow (Corchorus olitorious L.) plants. J Agric. Env. Sci. Alex. Univ. Egypt 2003, 2, 88–105. [Google Scholar]
- Zakaria, Z.A.; Somchit, M.N.; Zaiton, H.; Mat Jais, A.M.; Sulaiman, M.R.; Farah, W.O.; Nazaratulmawarina, R.; Fatimah, C.A. The in vitro antibacterial activity of Corchorus olitorius extracts. Int. J. Pharmacol. 2006, 2, 213–215. [Google Scholar] [CrossRef]
- Mohamed, A.R.; Magda, M.H.; Shafeek, M.R.; Aisha, H.A. Growth, yield and leaf content of Jews mallow plant (Corchorus olitorius) by soil fertilizer with different level of compost manure and chemical fertilizer. Middle East J. Agric. Res. 2014, 3, 543–548. [Google Scholar]
- Choudhary, S.B.; Sharma, H.K.; Karmakar, P.G.; Kumar, A.A.; Saha, A.R.; Hazra, P.; Mahapatra, B.S. Nutritional profile of cultivated and wild jute (‘Corchorus’) species. Australian J. Crop Sci. 2013, 7, 1973–1982. [Google Scholar]
- Choudhary, S.B.; Sharma, H.K.; Anil Kumar, A.; Maruthi, R.T.; Karmakar, P.G. The genus Corchorus L. (Malvaceae) in India: Species distribution and ethnobotany. Genet. Resour. Crop Evol. 2017, 64, 1675–1686. [Google Scholar] [CrossRef]
- Oboh, G.; Raddatz, H.; Henle, T. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. Int. J. Food Sci. Nutr. 2009, 60, 124–134. [Google Scholar] [CrossRef]
- Giro, A.; Ferrante, A. Yield and quality of Corchorus olitorius baby leaf grown in a floating system. J. Hortic. Sci. Biotechnol. 2016, 91, 603–610. [Google Scholar] [CrossRef]
- Ghellam, M.; Fatena, B.; Koca, İ. Physical and chemical characterization of Corchorus olitorius leaves dried by different drying techniques. Discov. Food 2022, 2, 14. [Google Scholar] [CrossRef]
- Morsy, N.E.; Rayan, A.M.; Youssef, K.M. Physicochemical properties, antioxidant activity, phytochemicals and sensory evaluation of rice-based extrudates containing dried Corchorus olitorius L. leaves. J. Food Process. Technol. 2015, 6, 1000408. [Google Scholar] [CrossRef]
- Youssef, K.M.; Mokhtar, S.; Morsy, N. Effect of hot air drying variables on phytochemicals and antioxidant capacity of Jew’s mallow (Corchorus olitorius L.) leaves. Suez Canal Univ. J. Food Sci. 2014, 2, 11–18. [Google Scholar] [CrossRef]
- Taiwo, B.J.; Taiwo, G.O.; Olubiyi, O.O.; Fatokun, A.A. Polyphenolic compounds with anti-tumour potential from Corchorus olitorius (L.) Tiliaceae, a Nigerian leaf veget. Bioorganic Med. Chem. Lett. 2016, 26, 3404–3410. [Google Scholar] [CrossRef] [PubMed]
- Soykut, G.; Becer, E.; Calis, I.; Yucecan, S.; Vatansever, S. Apoptotic effects of Corchorus olitorius L. leaf extracts in colon adenocarcinoma cell lines. Prog. Nutr. 2018, 20, 689–698. [Google Scholar] [CrossRef]
- Abuzaid, H.; Amin, E.; Moawad, A.; Abdelmohsen, U.R.; Hetta, M.; Mohammed, R. Liquid chromatography high-resolution mass spectrometry analysis, phytochemical and biological study of two aizoaceae plants: A new kaempferol derivative from Trianthema portulacastrum L. Pharmacogn. Res. 2020, 12, 212–218. [Google Scholar] [CrossRef]
- Ndlovu, J.; Afolayan, A.J. Nutritional analysis of the South African wild vegetable Corchorus olitorius L. Asian J. Plant Sci. 2008, 7, 615–618. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Amina, M.; Ahamad, S.R. Comparative study on the chemical composition of Corchorus olitoriusl leaf and stem dry oils. Biomed. Res. 2017, 28, 4581–4587. [Google Scholar]
- Yakoub, A.R.B.; Abdehedi, O.; Jridi, M.; Elfalleh, W.; Nasri, M.; Ferchichi, A. Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind. Crops Prod. 2018, 118, 206–213. [Google Scholar] [CrossRef]
- Isuosuo, C.; Akaneme, F.; Abu, N. Nutritional evaluation of the seeds of Corchorus olitorius: A neglected and underutilized species in Nigeria. Pak. J. Nutr. 2019, 18, 692–703. [Google Scholar] [CrossRef]
- Labib, A.S.; Somaia, A.; Helmy, O. Quality indices of Jew’s mallow and spinach during frozen storage. Plant Foods Hum. Nutr. 1997, 50, 333–347. [Google Scholar] [CrossRef]
- Haridy, A.G.; Abbas, H.S.; Mousa, A.A. Growth and Yield of Some Jew’s Mallow (Corchorus olitorius L.) Ecotypes as Affected by Planting Dates and Foliar Application of Gibberellic and Humic Acids. Assiut J. Agric. Sci. 2019, 50, 107–124. [Google Scholar] [CrossRef]
- Abdalla, M.M.; Attia, M.; Yousef, M.I.; Abd el-Aal, M.H. Effect of cooking on nutritive value of Jew’s mallow (Corchorus olitorius L.) and mallow (Malva parviflora L.) leaves. Alex. J. Food Sci. Technol. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Abbasi, A.M.; Shah, M.H.; Khan, M.A. Nutritional Contents of Wild Edible Vegetables. In Wild Edible Vegetables of Lesser Himalayas; Ethnobotanical and Nutraceutical Aspects; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 141–167. [Google Scholar] [CrossRef]
- Elsayed, A.; Ezzat, S.; Khalil, M.; Seham, S. Chemical composition and evaluation of possible alpha-glucosidase inhibitory activity of eight Aloe species. J. Med. Plants Res. 2016, 10, 167–178. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium Compounds as Novel Potential Anticancer Agents. Int. J. Mol. Sci. 2021, 22, 1009. [Google Scholar] [CrossRef] [PubMed]
- Frajese, G.V.; Benvenuto, M.; Fantini, M.; Ambrosin, E.; Sacchetti, P.; Masuelli, L.; Giganti, M.G.; Modesti, A.; Bei, R. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro. Oncol. Lett. 2016, 11, 4224–4234. [Google Scholar] [CrossRef] [PubMed]
- Croci, S.; Bruni, L.; Bussolati, S.; Castaldo, M.; Dondi, M. Potassium bicarbonate and D-ribose effects on A72 canine and HTB-126 human cancer cell line proliferation in vitro. Cancer Cell Int. 2011, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Chen, T.S.; Ma, C.Y.; Meng, Y.B.; Zhang, Y.F.; Chen, Y.W.; Zhou, Y.H. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality: A PRISMA-compliant cumulative meta-analysis of randomized controlled trials. Medicine 2016, 95, e3485. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Hafez, H.A.; Kamel, M.A.; Ghamry, H.I.; Shukry, M.; Farag, M.A. Dietary Vitamin B Complex: Orchestration in Human Nutrition throughout Life with Sex Differences. Nutrients 2022, 14, 3940. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Vivar, J.A.; Tan, M.G.S.; Shen, C.C. Chemical constituents of Corchorus olitorius L. Int. J. Pharmacognf. Phytochem. Res. 2016, 8, 2085–2089. [Google Scholar]
- Pawlowska, E.; Szczepanska, J.; Blasiak, J. Pro- and Antioxidant Effects of Vitamin C in Cancer in Correspondence to Its Dietary and Pharmacological Concentrations. Oxidative Med. Cell. Longev. 2019, 24, 7286737. [Google Scholar] [CrossRef]
- Beghdad, M.C.; Chahid, B.; Fatima, B.; Fatima-Zohra, S.; Meriem, B.; Farid, C. Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow (Malva sylvestris L.) from North Western of Algeria. Afr. J. Biotechnol. 2014, 13, 486–491. [Google Scholar] [CrossRef]
- Mouas, T.N.; Kabouche, Z.; Benabid, N.; Bendal, M. Investigations on Bioactive Compounds and In Vitro Biological Potent of Corchorus olitorius. L. from Algerian Cultivar. Proceedings 2021, 65. [Google Scholar] [CrossRef]
- Ben Yakoub, A.R.; Abdehedi, O.; Jridi, M.; Elfalleh, W.; Bkhairia, I.; Nasri, M.; Ferchichi, A. Bioactive polysaccharides and their soluble fraction from Tossa jute (Corchorus olitorius L.) leaves. Food Biosci. 2020, 37, 100741. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Plant pigments as dietary anticancer agents. Int. J. Green Pharm. (IJGP) 2018, 12, S93–S107. [Google Scholar]
- Khan, M.; Bano, S.; Javed, M.A.; Mueed, A. A comprehensive review on the chemistry and pharmacology of Corchorus species—A source of cardiac glycosides, triterpenoids, ionones, flavonoids, coumarins, steroids and some other compounds. J. Sci. Ind. Res. 2006, 65, 283–298. [Google Scholar]
- Chen, C.C.; Agrawal, D.C.; Lee, M.R.; Lee, R.J.; Kuo, C.L.; Wu, C.R.; Tsay, H.S. Influence of LED light spectra on in v intro somatic embryogenesis and LC–MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: Amedicinal herb. Bot. Stud. 2016, 57, 9. [Google Scholar] [CrossRef] [PubMed]
- Lan, W. Effect of chlorogenic acid on antioxidant activity of Flos Lonicerae extracts. J. Zhejiang Univ. Sci. B 2007, 8, 673–679. [Google Scholar]
- Yoon, G.A.; Park, S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract. 2014, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, M.H.; Muthugounder, S.; Presser, N.; Viswanathan, S. Anticancer therapeutic potential of soy isoflavone, genistein. Adv. Exp. Med. Biol. 2004, 546, 121–165. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Alruwad, M.I.; Sabry, M.M.; Gendy, A.M.; El-Dine, R.S.; El Hefnawy, H.M. In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis. Plants 2023, 12, 1626. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, R.; Khan, M.S.; Altwaijry, N.; Asghar, M.N.; Raza, S.S.; Khan, R. Enhanced Antioxidant Effects of Naringenin Nanoparticles Synthesized using the High-Energy Ball Milling Method. ACS Omega 2022, 7, 34476–34484. [Google Scholar] [CrossRef]
- Sawa, T.; Nakao, M.; Akaike, T.; Ono, K.; Maeda, H. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: Implications for the anti-tumor-promoter effect of vegetables. J. Agric. Food Chem. 1999, 47, 397–402. [Google Scholar] [CrossRef]
- Sierens, J.; Hartley, J.A.; Campbell, M.J.; Leathem, A.J.; Woodside, J.V. In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog. Carcinog. Mutagen. 2002, 22, 227–234. [Google Scholar] [CrossRef]
- Hanachi, P.; Fakhrnezhad, F.R.; Zarringhalami, R.; Orhan, I.E. Cytotoxicity of Ocimum basilicum and Impatiens walleriana Extracts on AGS and SKOV-3 cancer cell lines by flow cytometry analysis. Int. J. Cancer Manag. 2021, 14, e102610. [Google Scholar] [CrossRef]
- Omoruyi, S.I.; Kangwa, T.S.; Ibrakaw, A.S.; Cupido, C.N.; Marnewick, J.L.; Ekpo, O.E.; Hussein, A.A. Cytotoxic activities of selected plants of the family Amaryllidaceaeon brain tumour cell lines. S. Afr. J. Bot. 2021, 136, 118–125. [Google Scholar] [CrossRef]
- Sarkar, F.H.; Li, Y. Soy isoflavones and cancer prevention. Cancer Investig. 2003, 21, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Elwakil, H.D.M.; Gomaa, S.E.; FM Zaitoun, A.; El-kader, A.; Bassant, G.M.; Abdelsalam, N.R. Morphological, Biochemical and Barcoding Analysis of Different Egyptian Jew’s mallow (Corchorus olitorius L.) Landraces. J. Adv. Agric. Res. 2023, 28, 582–596. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 19th ed.; AOAC: Arlington, VA, USA, 2010. [Google Scholar]
- El-Beltagi, H.S.; El-Mogy, M.M.; Parmar, A.; Mansour, A.T.; Shalaby, T.A.; Ali, M.R. Phytochemical Characterization and Utilization of Dried Red Beetroot (Beta vulgaris) Peels Extract in Maintaining the Quality of Nile Tilapia Fish Fillet. Antioxidants 2022, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, A.A.F.; Braga, C.M.; Demiate, I.M.; Beltrane, F.L.; Nogueira, A.; Wosiacki, G. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stage. Food Sci. Technol. 2014, 34, 38–43. [Google Scholar] [CrossRef]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef]
- Antakli, S.; Sarkees, N.; Sarraf, T. Determination of water-soluble vitamins B1, B2, B3, B6, B9, B12 and C on C18 column with particle size 3um in some manufactured food products by HPLC with UV-DAD/FLD detection. Int. J. Pharm. Pharm. Sci. 2015, 7, 219–224. [Google Scholar]
- Romeu-Nadal, M.; Morera-Pons, S.; Castellote, A.I.; Lopez-Sabater, M.C. Rapid high-performance liquid chromatographic method for Vitamin C determination in human milk versus an enzymatic method. J. Chromatogr. B 2006, 830, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- da Silva Padilha, C.V.; Miskinis, G.A.; de Souza, M.E.A.O.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; dos Santos Lima, M. Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem. 2017, 228, 106–115. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Duke, J.A.; Brielmann, H.; Boik, J.; Hoyt, J.E. A comparative survey of leguminous plants as sources of the isoflavones; genistyein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 1997, 3, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 11, 77–85. [Google Scholar] [CrossRef]
Sugar Types | Unit (g 100 g−1) | Vitamins | Unit (mg kg−1) | Minerals | Unit (μg kg−1) |
---|---|---|---|---|---|
Stachyose | 6.25 | Thiamin (B1) | 5.62 | Fe | 225.20 |
Sucrose | 9.23 | Riboflavin (B2) | 67.52 | Ca | 1.85 |
Maltose | 0.59 | Pyridoxine (B6) | 9.31 | Mg | 0.83 |
Galacturonic | 0.52 | Folic (B9) | 25.68 | P | 0.21 |
Glucose | 0.62 | Cobalamin (B12) | 146.80 | K | 2.12 |
Xylose | 0.27 | Vitamin C | 6.49 | Se | <0.20 |
Sorbose | 0.20 | ||||
Galactose | 0.39 | ||||
Rhamnose | 0.93 | ||||
Mannose | 0.97 | ||||
Fructose | 0.46 | ||||
Arabinose | 0.06 | ||||
Mannitol | 0.01 | ||||
Ribose | 0.01 |
Phenolic | Concentration | Flavonoids | Concentration | Isoflavones | Concentration |
---|---|---|---|---|---|
Pyrogallol | 2785.25 | Apigenin–6—arabinose—8 galactoside | 2747.54 | Isorhamnetin | 5502 |
Gallic acid | 115.07 | Apigenin—6—rhamnose—8 glucoside | 3078.87 | Daidzein | 59.91 |
3-hydroxytyrosol | 50.52 | Rutin | 1944.6 | Genistein | 34.96 |
Catechol | 394.82 | Naringin | 4296.94 | Isoorientin | 57.57 |
p-aminobenzoic acid | 338.67 | Luteolin-7-O-glucoside | 4314.48 | Biochanin | 1.77 |
Rosmarinic acid | 2538.82 | Catechin | 1787.88 | ||
Chlorogenic acid | 3757.08 | Quercetin | 1744.11 | ||
p-hydroxybenzoic acid | 586.76 | Apigenin-7-glucoside | 790.23 | ||
Benzoic acid | 403.47 | Quercetin-3-glucoside | 1791.38 | ||
Caffeic acid | 359.08 | Naringenin | 691.14 | ||
Vanillic acid | 345.66 | Kaempferol 3-(2-p-coumaroyl) glucoside | 1780.45 | ||
Caffeine | 903.28 | Kaempferol | 1585.73 | ||
Ferulic acid | 3628.29 | Apigenin | 868.74 | ||
Ellagic acid | 4905.26 | ||||
Salicylic acid | 706.69 | ||||
Coumarin | 135.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.R.; Ibrahim, H.H.; Salah-Eldin, A.A. Unveiling the Chemical Composition, Bioactive Profile and Antioxidant Capacity of Dried Egyptian Jew’s Mallow Stems as a Promising Anticancer Agent. Molecules 2024, 29, 1377. https://doi.org/10.3390/molecules29061377
Ali MR, Ibrahim HH, Salah-Eldin AA. Unveiling the Chemical Composition, Bioactive Profile and Antioxidant Capacity of Dried Egyptian Jew’s Mallow Stems as a Promising Anticancer Agent. Molecules. 2024; 29(6):1377. https://doi.org/10.3390/molecules29061377
Chicago/Turabian StyleAli, Marwa Rashad, Huda Hassan Ibrahim, and Aziza Ali Salah-Eldin. 2024. "Unveiling the Chemical Composition, Bioactive Profile and Antioxidant Capacity of Dried Egyptian Jew’s Mallow Stems as a Promising Anticancer Agent" Molecules 29, no. 6: 1377. https://doi.org/10.3390/molecules29061377
APA StyleAli, M. R., Ibrahim, H. H., & Salah-Eldin, A. A. (2024). Unveiling the Chemical Composition, Bioactive Profile and Antioxidant Capacity of Dried Egyptian Jew’s Mallow Stems as a Promising Anticancer Agent. Molecules, 29(6), 1377. https://doi.org/10.3390/molecules29061377