# Dielectric and Magnetoelectric Properties of TGS–Magnetite Composite

^{1}

^{2}

^{*}

## Abstract

**:**

_{3}O

_{4}, to obtain a magnetoelectric composite. The ferroelectric (E) part, i.e., TGS, was a hybrid organic–inorganic crystal, which we obtained as a pure single crystal from an aqueous solution using a static water evaporation method. The magnetic (M) part of the composite was commercially available magnetite. The samples used for the dielectric and magnetoelectric measurements were cold-pressed and made in the form of a circular tablet. The measuring electrodes were made of silver-based conductive paste and were attached to the sample. We measured the temperature dependencies of selected electrical parameters (e.g., dielectric permittivity, electrical capacity, and loss angle tangent). We used the dynamic lock-in method to check whether magnetoelectric coupling existed between the E and M phases. In this paper, we present the dielectric properties of pure monocrystalline TGS as a reference sample and compare the results for TGS powder, TGS + carbon powder, and TGS + Fe

_{3}O

_{4}powder. The magnetoelectric coupling presumably appeared for the composite TGS + 10 wt. % Fe

_{3}O

_{4}, as evidenced by the shift in the phase transition temperature in the TGS. Moreover, the theoretical interpretation of the effect is proposed.

## 1. Introduction

^{2}); and (ii) type-II, where the transition temperatures are low and ${T}_{c}$≈${T}_{FM}$, the coupling between the ferroelectricity and magnetism is strong, and the value of the electric polarization is small (P $\sim {10}^{-2}$$\mathsf{\mu}$C/cm

^{2}) [1]. It should be noted that not every multiferroic material is a magnetoelectric material. In composites, the ME coupling is the result of piezoelectric and magnetostrictive properties of the components. The most famous ferroelectric/piezoelectric materials are barium titanate $BaTi{O}_{3}$ and lead zirconate titanate (PZT) $PbZ{r}_{x}T{i}_{1-x}{O}_{3}$, while Terfenol-D ($T{b}_{1-x}D{y}_{x}F{e}_{2}$ alloy) or $CoFe{O}_{4}$ compounds are good magnetostrictive and piezomagnetic materials, respectively.

## 2. Results and Discussion

#### 2.1. Results of Dielectric Measurements

- G1—monocrystalline TGS samples;
- G2—samples made of powdered TGS (grain size ≤ 5 $\mathsf{\mu}$m);
- G3—composite samples doped with carbon powder, which is a non-magnetic material (grain size ≤ 5 $\mathsf{\mu}$m);
- G4—composite samples doped with $F{e}_{3}{O}_{4}$ magnetite (grain size ≤ 5 $\mathsf{\mu}$m).

#### 2.2. Results of Magnetoelectric Coupling Measurements

## 3. Materials and Methods

#### 3.1. Magnetic Part of the Composite

#### 3.2. Electric Part of the Composite

#### 3.3. Composite Fabrication

#### 3.4. Measurements Methods

## 4. Theoretical Model

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Khomskii, D. Classyfying multiferroics: Mechanisms and effects. Physics
**2009**, 2, 20–28. [Google Scholar] [CrossRef] - Fiebig, M. Revival of the magnetoelectric effect. Topical Review. J. Phys. D Appl. Phys.
**2005**, 38, R123–R152. [Google Scholar] [CrossRef] - Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater.
**2016**, 1, 1–11. [Google Scholar] [CrossRef] - Cheong, S.-W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater.
**2007**, 6, 13–20. [Google Scholar] [CrossRef] - Spaldin, N.A.; Cheong, S.W.; Ramesh, R. Multiferroics: Past, present, and future. Phys. Today
**2010**, 63, 38–43. [Google Scholar] [CrossRef] - Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater.
**2007**, 6, 21–29. [Google Scholar] [CrossRef] - Eerenstein, W.; Mathur, N.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature
**2006**, 442, 759–765. [Google Scholar] [CrossRef] [PubMed] - Khomeriki, R.; Chotorlishvili, L.; Tralle, I.; Berakdar, J. Positive–negative birefringence in multiferroic layered metasurfaces. Nano Lett.
**2016**, 16, 7290–7294. [Google Scholar] [CrossRef] - Stagraczyński, S.; Chotorlishvili, L.; Schüler, M.; Mierzejewski, M.; Berakdar, J. Many-body localization phase in a spin-driven chiral multiferroic chain. Phys. Rev. B
**2017**, 96, 054440–054447. [Google Scholar] [CrossRef] - Khomeriki, R.; Chotorlishvili, L.; Malomed, B.A.; Berakdar, J. Creation and amplification of electro-magnon solitons by electric field in nanostructured multiferroics. Phys. Rev. B
**2015**, 91, 041408(R)–041412(R). [Google Scholar] [CrossRef] - Pradhan, D.K.; Puli, V.S.; Kumari, S.; Sahoo, S.; Das, P.T.; Pradhan, K.; Pradhan, D.K.; Scott, J.F.; Katiyar, R.S. Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites. J. Phys. Chem. C
**2016**, 120, 1936–1944. [Google Scholar] [CrossRef] - Evans, D.M.; Alexe, M.; Schilling, A.; Kumar, A.; Sanchez, D.; Ortega, N.; Katiyar, R.S.; Scott, F.; Gregg, J.M. The nature of magnetoelectric coupling in Pb(Zr,Ti)O
_{3}-Pb(Fe,Ta)O_{3}. Adv. Mater.**2015**, 27, 6068–6073. [Google Scholar] [CrossRef] [PubMed] - Tripathy, S.N.; Pradhan, D.K.; Mishra, K.K.; Sen, S.; Palai, R.; Paulch, M.; Scott, J.F.; Katiyar, R.S.; Pradhan, D.K. Phase transition and enhanced magneto-dielectric response in BiFeO
_{3}.-DyMnO_{3}. multiferroics. J. Appl. Phys.**2015**, 117, 144103. [Google Scholar] [CrossRef] - Ovchinnikova, G.I.; Eremeev, A.P.; Belugina, N.V.; Gainutdinov, R.V.; Ivanova, E.S.; Tolstikhina, A.L. Dielectric Losses in the Triglycine Sulfate Crystal under Heating and Cooling. Phys. Wave Phenom.
**2017**, 25, 231–237. [Google Scholar] [CrossRef] - Bartkowska, J.A.; Dercz, J. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi
_{5}.Ti_{3}.FeO_{15}. J. Exp. Theor. Phys.**2013**, 117, 875–878. [Google Scholar] [CrossRef] - Bartkowska, J. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite. J. Magn. Magn. Mater.
**2015**, 374, 703–706. [Google Scholar] [CrossRef] - Mufti, N.; Blake, G.R.; Mostovoy, M.; Riyadi, S.; Nugroho, A.A.; Palstra, T.T. Magnetoelectric coupling in MnTiO
_{3}. Phys. Rev. B**2011**, 83, 104416–104425. [Google Scholar] [CrossRef] - Kąkol, Z.; Kozłowski, A. Possible influence of electron-lattice interactions on the Verwey transition in magnetite. Solid State Sci.
**2000**, 2, 737–746. [Google Scholar] [CrossRef] - Saragi, T.; Permana, B.; Therigan, A.; Hidayat, S.; Syakir, N.; Risdiana, R. Physical Properties of Encapsulated Iron Oxide, Materials Science Forum. Trans. Tech. Publ.
**2019**, 966, 277–281. [Google Scholar] - Puspita, D.A.; Rohman, L.; Arkundato, A.; Syarifah, R.D. Phase Transition of Fe
_{3}O_{4}Magnetic Material Based on Observation of Curie Temperature and Hysteresis Curve: Micromagnetic Simulation Study. Eur. J. Appl. Phys.**2021**, 3, 3–10. [Google Scholar] [CrossRef] - Wang, Y.; Li, T.; Zhao, L.; Hu, Z.; Gu, Y. Research Progress on Nanostructured Radar Absorbing Materials. Energy Power Eng.
**2011**, 3, 580–584. [Google Scholar] [CrossRef] - ASM. Metal Handbook, Material Characterization; ASM International: Almere, The Netherlands, 1992; Volume 10. [Google Scholar]
- Tauxe, L. Paleomagnetic Principles, and Practice; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1998. [Google Scholar]
- Chen, F.; Ilyas, N.; Liu, X.; Li, Z.; Yan, S.; Fu, H. Size Effect of Fe
_{3}O_{4}Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid. Front. Energy Res.**2021**, 9, 780008. [Google Scholar] [CrossRef] - Pandian, M.S.; Ramasamy, P.; Kumar, B. A comparative study of ferroelectric triglycine sulfate (TGS) crystals grown by conventional slow evaporation and unidirectional method. Mater. Res. Bull.
**2012**, 47, 1587–1597. [Google Scholar] [CrossRef] - Hudspeth, J.M.; Goossens, D.J.; Welberry, T.R.; Gutmann, M.J. Diffuse scattering and the mechanism for the phase transition in triglycine sulphate. J. Mater. Sci.
**2013**, 48, 6605–6612. [Google Scholar] [CrossRef] - Trybus, M.; Paszkiewicz, T.; Woś, B. Dynamics of Hydrogen Bonds in TGS Crystals Observed by Means of Measurements of Pyroelectric Currents Induced by Linear Changes of Temperature. Acta Phys. Pol. Ser.
**2017**, 132, 161–163. [Google Scholar] [CrossRef] - Ghandhe, A.R.; Sannakki, B. Growth of single and its electrical properties of ferroelectric TGS crystals. Mater. Today Proc.
**2020**, 26, 1506–1513. [Google Scholar] [CrossRef] - Muzaffar Iqbal Khan, M.I.; Upadhyay, T.C. Theoretical Study of Temperature Dependence of Ferroelectric Mode Frequency, Dielectric Constant and Loss Tangent Properties in hydrogen-bonded Triglycine Sulphate Crystal (TGS). Aip Conf. Proc.
**2020**, 2220, 040040. [Google Scholar] - Trybus, M. Phase Transition in Triglycine Sulphate Investigated Using Two-Phase Bridge Measurements. Infrared Phys. Technol.
**2020**, 109, 103409. [Google Scholar] [CrossRef] - Trybus, M. Pyroelectric effect in Tryglicyne Sulphate single crystals—Differential measurement method. Infrared Phys. Technol.
**2018**, 91, 72–77. [Google Scholar] [CrossRef] - Narayanasamy, D.; Kumaresan, P.; Anbarasan, P.M. Effect of Dyes on TGS Crystals for IR Detector Applications. Int. J. Adv. Res. Phys. Sci.
**2015**, 2, 19–24. [Google Scholar] - Khanum, F.; Podder, J. Crystallization and Characterization of Triglycine Sulfate (TGS) Crystal Doped with NiSO4. J. Cryst. Process. Technol.
**2011**, 1, 49–54. [Google Scholar] [CrossRef] - Muralidharan, R.; Mohankumar, R.; Ushasree, P.M.; Jayavel, R.; Ramasamy, P. Effect of rare-earth dopants on the growth and properties of triglycine sulphate single crystals. J. Cryst. Growth
**2002**, 234, 545–550. [Google Scholar] [CrossRef] - Mai, B.D.; Nguyen, H.T.; Ta, D.H. Effects of Moisture on Structure and Electrophysical Properties of a Ferroelectric Composite from Nanoparticles of Cellulose and Triglycine Sulfate. Braz. J. Phys.
**2019**, 49, 333–340. [Google Scholar] - Amin, M.; Balloomal, L.S.; Osman, H.; Ibrahim, S.S. Electrical properties of TGS-PVA composites. Ferroelectrics
**2011**, 109, 211–216. [Google Scholar] [CrossRef] - Shehap, A.M.; Mahmoud, K.; El-Kader, M.F.A.; El-Basheer, T.M. Preparation and Thermal Properties of Gelatin/TGS Composite Films. Middle East J. Appl. Sci.
**2015**, 5, 157–170. [Google Scholar] - Yang, Y.; Chan, H.L.; Choy, C.L. Properties of triglycine sulfate/poly(vinylidene fluoride-trifluoroethylene) 0–3 composites. J. Mater. Sci.
**2006**, 41, 251–258. [Google Scholar] - Nguen, K.T. Dielectric Properties of Composites Based on Nanocrystalline Cellulose with Triglycine Sulfate. Phys. Solid State
**2015**, 57, 503–506. [Google Scholar] [CrossRef] - Rysiakiewicz-Pasek, E.; Poprawski, R.; Polanska, J.; Sieradzki, A.; Radojewska, E.B. Ferroelectric phase transition in triglycine sulphate embedded into porous glasses. J. Non-Cryst. Solids
**2005**, 351, 2703–2709. [Google Scholar] [CrossRef] - Golitsyna, O.M.; Drozhdin, S.N. Influence of a static magnetic field on the dielectric properties of triglycine sulfate. Ferroelectrics
**2020**, 567, 244–263. [Google Scholar] [CrossRef] - Pandian, M.S.; Verma, S.; Karuppasamy, P.; Padmanabhan, V.; Ramasamy, P.; Tiwari, V.S.; Karnal, A.K. TGS crystal growth below and above Curie temperature (Tc). J. Cryst. Growth
**2020**, 546, 125793. [Google Scholar] [CrossRef] - Choudhury, R.R.; Chitra, R.; Ramanadham, M. Effect of isotope substitution and pressure on the phase transition in triglycine sulphate. In Solid State Physics; Division, Bhabha Atomic Research Center: Trombay, Mumbai, 2005; p. 400085. [Google Scholar] [CrossRef]
- Petrzhik, E.A.; Ivanova, E.S.; Alshits, V.I. Changes in the microhardness and dielectric permittivity of TGS crystals after their exposure to a static magnetic field or ultralow crossed fields in the EPR scheme. Bull. Russ. Acad. Sci. Phys.
**2014**, 78, 1052–1057. [Google Scholar] [CrossRef] - Jartych, E.; Pikula, T.; Kowal, K.; Dzik, J.; Guzdek, P.; Czekaj, D. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite. Nanoscale Res. Lett.
**2016**, 11, 234. [Google Scholar] [CrossRef] [PubMed] - Grotel, J.; Pikula, T. Mech R.: Application of the Lock-In Technique in Magnetoelectric Coupling Measurements of the PZT/Terfenol-D Composite. Appl. Sci.
**2023**, 13, 9543. [Google Scholar] [CrossRef] - Schiebl, M.; Shuvaev, A.; Pimenov, A.; Johnstone, G.E.; Dziom, V.; Mukhin, A.A.; Ivanov, V.Y.; Pimenov, A. Order-disorder type critical behavior at the magnetoelectric phase transition in multiferroic. Phys. Rev. B.
**2015**, 91, 224205–224215. [Google Scholar] [CrossRef] - Risken, H. The Fokker–Planck Equation. In Methods of Solution and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 56–59. [Google Scholar]
- Chotorlishvili, L.; Toklikishvili, Z.; Wang, X.-G.; Dugaev, V.K.; Barnaś, J.; Berakdar, J. Stratonovich-ito integration scheme in ultrafast spin caloritronics. Phys. Rev. B
**2020**, 102, 024413–024419. [Google Scholar] [CrossRef]

**Figure 1.**Real and imaginary components of complex dielectric constant $\u03f5$ for TGS + 10 wt. % $F{e}_{3}{O}_{4}$—heating process.

**Figure 2.**Real and imaginary components of complex dielectric constant $\u03f5$ for TGS + 10 wt. % $F{e}_{3}{O}_{4}$—cooling process.

**Figure 3.**TGS single crystal and TGS powder samples: complex dielectric constant $\u03f5$ components for 1 kHz heating and cooling processes. Arrows indicate the direction of the process that was started at 303 K.

**Figure 4.**TGS powder composite samples: complex dielectric constant $\u03f5$ components for the 1 kHz heating and cooling processes. Arrows indicate the direction of the process that was started at 303 K.

**Figure 5.**G4—TGS + 10 wt. % $F{e}_{3}{O}_{4}$ powder composite samples: complex dielectric constant $\u03f5$ components for 1 kHz (

**a**) heating and (

**b**) cooling processes.

**Figure 6.**G4—TGS + 20 wt. % $F{e}_{3}{O}_{4}$ powder composite samples: complex dielectric constant $\u03f5$ components for 1 kHz heating and cooling processes.

**Figure 7.**ME coupling measurements. Pin normal—the holder was an element of the BNC plug, pin reversed—the sample was turned 180°.

**Figure 10.**The block diagram of ME coupling effect measuring system [45].

**Table 1.**Critical values of dielectric constant at selected temperatures measured for TGS + 10 wt. % $F{e}_{3}{O}_{4}$ sample during heating and cooling processes.

Heating | $\mathit{\u03f5}$’ | $\mathit{\u03f5}$” |
---|---|---|

303 K static | 48 | 16 |

303 K infinity | 90 | 0.3 |

326 K static | 350 | 800 |

326 K infinity | 21 | 0.2 |

338 K static | 330 | 2300 |

338 K infinity | 20 | 0.5 |

Cooling | ${\u03f5}^{\prime}$ | ${\u03f5}^{\u2033}$ |

338 K static | 330 | 2300 |

338 K infinity | 20 | 1.5 |

326 K static | 360 | 760 |

326 K infinity | 22 | 0.3 |

303 K static | 48 | 75 |

303 K infinity | 17 | 0.3 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Trybus, M.; Chotorlishvili, L.; Jartych, E.
Dielectric and Magnetoelectric Properties of TGS–Magnetite Composite. *Molecules* **2024**, *29*, 1378.
https://doi.org/10.3390/molecules29061378

**AMA Style**

Trybus M, Chotorlishvili L, Jartych E.
Dielectric and Magnetoelectric Properties of TGS–Magnetite Composite. *Molecules*. 2024; 29(6):1378.
https://doi.org/10.3390/molecules29061378

**Chicago/Turabian Style**

Trybus, Mariusz, Levan Chotorlishvili, and Elżbieta Jartych.
2024. "Dielectric and Magnetoelectric Properties of TGS–Magnetite Composite" *Molecules* 29, no. 6: 1378.
https://doi.org/10.3390/molecules29061378