Design of Physicochemical Properties of Eggs as a Result of Modification of the Fat Fraction of Laying Feed
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experiment 1
2.2. Experiment 2
2.3. Comparative Analysis between Experiments 1 and 2
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sampling Procedure
3.2.2. Physicochemical Properties of Raw Eggs
- (a)
- Weight: using the Mettler Toledo PB 602-S/FACT balance, with an accuracy of 0.01 g;
- (b)
- Egg shape index [60]: the length (long axis) and width (short axis) of the egg were measured using electronic calipers. The ratio of width to length, expressed as a percentage, was the egg shape index;
- (c)
- Shell surface (Ps) [61]: according to Paganelli et al., using the following equation:
- (d)
- Haugh’s units (Hu) [62]: according to Williams et al., using the equation
- (e)
- Albumen index (WI) [63]: the length and width of the dense egg white were measured with a caliper, and the height of the dense egg white was measured with a caliper depth gauge. WI was calculated as the height of dense egg white in mm divided by the arithmetic mean of the length and width of the dense egg white in mm;
- (f)
- Yolk index (YI) [63]: yolk length and width were measured with a caliper, and yolk height was measured with a using a caliper depth gauge so as not to damage the vitelline membrane of the of the yolk. WI was calculated as height of the egg yolk in mm divided by the arithmetic mean of the length and width of the egg yolk in mm.
- (g)
- Percentage of egg white, yolk, and shell were calculated based on the weight of the individual components of the egg, i.e., egg white, yolk, shell, g, and weight of whole egg with shell, g;
- (h)
- The egg albumen and yolk pH values were measured by means of the Elmetron CP-411pH-meter with the OSH 10-00 electrode type;
- (i)
- Yolk color [4] was calculated based on a 15-degree LaRoche scale, using the Yolk Color Fan from DSM Nutritional Products.
- (j)
- Yolk color was also determined using an instrumental method [64] using a CM-3500d spectrophotometer from Konica Minolta, in the CIE system. The following parameters were determined from the measurement: L*—color brightness (L* = 0 black, L* = 100 white), a*—proportion of green (a* < 0) or red (a* > 0), b*—share of blue (b* < 0) or yellow (b* > 0) color. In order to interpret the color changes of yolks depending on the level of CLnA in the laying hens’ feed, the absolute color differences ΔE were calculated.
3.2.3. Basic Chemical Composition of Raw Eggs
- (a)
- Moisture of yolk and white was established by drying the samples in a conventional oven at 98 °C for 24 h according to AOAC method [65].
- (b)
- The total fat content in the egg white and yolk was assessed by the use of CO2 supercritical extraction: pump pressure—9000 PSI; cell temperature—100 °C; carbon dioxide flow rate—1.3 L/min; static time—5 min; dynamic time—45 min (TFE2000 analyzer, LECO, Saint Joseph, MI, USA USA) [66].
- (c)
- In order to analyse the protein content, the nitrogen amount was analyzed using the the TruSpec N LECO Company Analyzer. The analysis was performed by means of the Dumas method, according to PN-EN ISO 16634-1:2008 [67], where values of N% were multiplied by 6.25 in order to calculate the protein %.
- (d)
- The ash content was analysed by ashing the samples using a muffle furnace oven at 525 °C for 12 h [68].
3.2.4. Fatty Acids Analysis
3.2.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Myers, M.; Ruxton, C.H.S. Eggs: Healthy or Risky? A Review of Evidence from High Quality Studies on Hen’s Eggs. Nutrients 2023, 15, 2657. [Google Scholar] [CrossRef] [PubMed]
- Puertas, G.; Vázquez, M. Advances in Techniques for Reducing Cholesterol in Egg Yolk: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2276–2286. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhai, J.; Gu, L.; Su, Y.; Gong, L.; Yang, Y.; Chang, C. Hen Egg Yolk in Food Industry—A Review of Emerging Functional Modifications and Applications. Trends Food Sci. Technol. 2021, 115, 12–21. [Google Scholar] [CrossRef]
- Kostogrys, R.B.; Filipiak-Florkiewicz, A.; Dereń, K.; Drahun, A.; Czyżyńska-Cichoń, I.; Cieślik, E.; Szymczyk, B.; Franczyk-Żarów, M. Effect of Dietary Pomegranate Seed Oil on Laying Hen Performance and Physicochemical Properties of Eggs. Food Chem. 2017, 221, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching Laying Hens Eggs by Feeding Diets with Different Fatty Acid Composition and Antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Dajnowska, A.; Tomaszewska, E.; Świątkiewicz, S.; Arczewska-Włosek, A.; Dobrowolski, P.; Domaradzki, P.; Rudyk, H.; Brezvyn, O.; Muzyka, V.; Kotsyumbas, I.; et al. Yolk Fatty Acid Profile and Amino Acid Composition in Eggs from Hens Supplemented with SS-Hydroxy-ß-Methylbutyrate. Foods 2023, 12, 3733. [Google Scholar] [CrossRef]
- Tadesse, D.; Retta, N.; Girma, M.; Ndiwa, N.; Dessie, T.; Hanotte, O.; Getachew, P.; Dannenberger, D.; Maak, S. Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts. Foods 2023, 12, 1819. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Galović, O.; Hanžek, D.; Biazik, E. Fatty Acid Profile of Eggs Produced by Laying Hens Fed Diets Containing Different Shares of Fish Oil. Poult. Sci. 2021, 100, 101379. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.B.; Kim, D.-H.; Lee, D.-W.; Lee, H.-G.; Jha, R.; Lee, K.-W. Dietary Soluble Flaxseed Oils as a Source of Omega-3 Polyunsaturated Fatty Acids for Laying Hens. Poult. Sci. 2021, 100, 101276. [Google Scholar] [CrossRef]
- Kralik, Z.; Kralik, G.; Grčević, M.; Hanžek, D.; Biazik, E. Designer Eggs with an Increased Content of Omega-3 Fatty Acids and Pigments—Production and Health Benefits of Their Consumption. Poljoprivreda 2021, 27, 67–74. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Dhama, K.; Patra, A. Nutritional Significance and Health Benefits of Designer Eggs. World’s Poult. Sci. J. 2018, 74, 317–330. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Arczewska-Włosek, A.; Domaradzki, P.; Pyz-Łukasik, R.; Donaldson, J.; Świątkiewicz, S. Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods 2021, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Perić, J.; Drinić, M. Enriching Table Eggs with Omega-3 Fatty Acids by Using Ground Flaxseed or a Combination of Flax Cake and Flaxseed Oil in the Diet of Laying Hens. Vet. Arh. 2021, 91, 399–409. [Google Scholar] [CrossRef]
- Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Chapter 33—Supplemental Linseed on Egg Production. In Egg Innovations and Strategies for Improvements; Hester, P.Y., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 349–363. ISBN 978-0-12-800879-9. [Google Scholar]
- Javed, A.; Imran, M.; Ahmad, N.; Hussain, A.I. Fatty Acids Characterization and Oxidative Stability of Spray Dried Designer Egg Powder. Lipids Health Dis. 2018, 17, 282. [Google Scholar] [CrossRef] [PubMed]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Panaite, T.D.; Saracila, M. Rosehip (Rosa canina L.) Meal as a Natural Antioxidant on Lipid and Protein Quality and Shelf-Life of Polyunsaturated Fatty Acids Enriched Eggs. Antioxidants 2022, 11, 1948. [Google Scholar] [CrossRef]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Viktoronova, F.M.; Seidavi, A.; Laudadio, V. Effect of Dietary Flaxseed Meal Supplemented with Dried Tomato and Grape Pomace on Performance Traits and Antioxidant Status of Laying Hens. Anim. Biotechnol. 2022, 33, 1525–1532. [Google Scholar] [CrossRef]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary Enrichment of Eggs with Omega-3 Fatty Acids: A Review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- Kralik, Z.; Kralik, G.; Košević, M.; Galović, O.; Samardžić, M. Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals 2023, 13, 321. [Google Scholar] [CrossRef]
- Kralik, G.; Grčević, M.; Hanžek, D.; Margeta, P.; Galović, O.; Kralik, Z. Feeding to Produce N-3 Fatty Acid-Enriched Table Eggs. J. Poult. Sci. 2020, 57, 138–147. [Google Scholar] [CrossRef]
- Sanlier, N.; Üstün, D. Egg Consumption and Health Effects: A Narrative Review. J. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Ngo Njembe, M.T.; Dejonghe, L.; Verstraelen, E.; Mignolet, E.; Leclercq, M.; Dailly, H.; Gardin, C.; Buchet, M.; Waingeh Nain, C.; Larondelle, Y. The Egg Yolk Content in ω-3 and Conjugated Fatty Acids Can Be Sustainably Increased upon Long-Term Feeding of Laying Hens with a Diet Containing Flaxseeds and Pomegranate Seed Oil. Foods 2021, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Domagała, D.; Leszczyńska, T.; Koronowicz, A.; Domagała, B.; Drozdowska, M.; Piasna-Słupecka, E. Mechanisms of Anticancer Activity of a Fatty Acid Mixture Extracted from Hen Egg Yolks Enriched in Conjugated Linoleic Acid Diene (CLA) against WM793 Melanoma Cells. Nutrients 2021, 13, 2348. [Google Scholar] [CrossRef]
- Franczyk-Zarów, M.; Kostogrys, R.B.; Szymczyk, B.; Jawień, J.; Gajda, M.; Cichocki, T.; Wojnar, L.; Chlopicki, S.; Pisulewski, P.M. Functional Effects of Eggs, Naturally Enriched with Conjugated Linoleic Acid, on the Blood Lipid Profile, Development of Atherosclerosis and Composition of Atherosclerotic Plaque in Apolipoprotein E and Low-Density Lipoprotein Receptor Double-Knockout Mice (apoE/LDLR−/−). Br. J. Nutr. 2008, 99, 49–58. [Google Scholar] [CrossRef]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Maximiliano, J.-E.; et al. Conjugated Linoleic Acid (CLA) as a Functional Food: Is It Beneficial or Not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef]
- Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The Effects of Conjugated Linoleic Acids on Cancer. Processes 2021, 9, 454. [Google Scholar] [CrossRef]
- Fontes, A.L.; Pimentel, L.L.; Simões, C.D.; Gomes, A.M.P.; Rodríguez-Alcalá, L.M. Evidences and Perspectives in the Utilization of CLNA Isomers as Bioactive Compounds in Foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 2611–2622. [Google Scholar] [CrossRef]
- Yuan, G. Chapter 16—Conjugated Linolenic Acids and Their Bioactivities. In Advances in Dietary Lipids and Human Health; Li, D., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 251–271. ISBN 978-0-12-823914-8. [Google Scholar]
- Goldschmidt, R.; Byrdwell, W. GC Analysis of Seven Seed Oils Containing Conjugated Fatty Acids. Separations 2021, 8, 51. [Google Scholar] [CrossRef]
- Cairone, F.; Salvitti, C.; Iazzetti, A.; Fabrizi, G.; Troiani, A.; Pepi, F.; Cesa, S. In-Depth Chemical Characterization of Punica granatum L. Seed Oil. Foods 2023, 12, 1592. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Kawakami, Y.; Abe, R.; Nakagawa, K.; Koba, K.; Imamura, J.; Iwata, T.; Ikeda, I.; Miyazawa, T. Conjugated Linolenic Acid Is Slowly Absorbed in Rat Intestine, but Quickly Converted to Conjugated Linoleic Acid. J. Nutr. 2006, 136, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The Whole Pomegranate (Punica granatum L), Biological Properties and Important Findings: A Review. Food Chem. Adv. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Alkhatib, M.; Fayad, C.; Badran, A.; Hamade, K.; Daou, A.; Baydoun, E.; Hijazi, A. Preventive and Therapeutic Effects of Punica granatum (Pomegranate) in Respiratory and Digestive Diseases: A Review. Appl. Sci. 2022, 12, 12326. [Google Scholar] [CrossRef]
- Melgarejo, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Giordani, E.; Tozzi, F.; Legua, P. Fatty Acids Compositional Variations between the Edible and Non-Edible Fruit Part of Seven Pomegranate Varieties. Food Chem. Mol. Sci. 2021, 3, 100046. [Google Scholar] [CrossRef] [PubMed]
- Fourati, M.; Smaoui, S.; Hlima, H.B.; Elhadef, K.; Braïek, O.B.; Ennouri, K.; Mtibaa, A.C.; Mellouli, L. Bioactive Compounds and Pharmacological Potential of Pomegranate (Punica granatum) Seeds—A Review. Plant Foods Hum. Nutr. 2020, 75, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Franczyk-Żarów, M.; Tarko, T.; Drahun-Misztal, A.; Czyzynska-Cichon, I.; Kus, E.; Kostogrys, R.B. Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR−/− Mice. Int. J. Mol. Sci. 2023, 24, 1737. [Google Scholar] [CrossRef] [PubMed]
- Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and Anti-Cancer Activities of Pomegranate and Its Constituent, Ellagic Acid: Evidence from Cellular, Animal, and Clinical Studies. Phytother. Res. 2020, 34, 685–720. [Google Scholar] [CrossRef]
- Rojo-Gutiérrez, E.; Carrasco-Molinar, O.; Tirado-Gallegos, J.M.; Levario-Gómez, A.; Chávez-González, M.L.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J. Evaluation of Green Extraction Processes, Lipid Composition and Antioxidant Activity of Pomegranate Seed Oil. Food Meas. 2021, 15, 2098–2107. [Google Scholar] [CrossRef]
- Iriti, G.; Bonacci, S.; Lopreiato, V.; Frisina, M.; Oliverio, M.; Procopio, A. Functional Compounds of Cold-Pressed Pomegranate Seed Oil: Fatty Acids and Phytosterols Profile as Quality Biomarkers for Origin Discrimination. Foods 2023, 12, 2599. [Google Scholar] [CrossRef]
- Hayat, Z.; Cherian, G.; Pasha, T.N.; Khattak, F.M.; Jabbar, M.A. Effect of Feeding Flax and Two Types of Antioxidants on Egg Production, Egg Quality, and Lipid Composition of Eggs. J. Appl. Poult. Res. 2009, 18, 541–551. [Google Scholar] [CrossRef]
- Siepka, E.; Bobak, L.; Trziszka, T. Fractionation of Egg Yolk to Obtain Preparations Enriched in Biologically Active Substances. Zywnosc Nauka Technol. Jakosc/Food. Sci. Technol. Qual. 2010, 17, 158–167. [Google Scholar] [CrossRef]
- Piva, A.; Meola, E.; Paolo Gatta, P.; Biagi, G.; Castellani, G.; Mordenti, A.L.; Bernard Luchansky, J.; Silva, S.; Mordenti, A. The Effect of Dietary Supplementation with Trivalent Chromium on Production Performance of Laying Hens and the Chromium Content in the Yolk. Anim. Feed. Sci. Technol. 2003, 106, 149–163. [Google Scholar] [CrossRef]
- Dziadek, K.; Gornowicz, E.; Czekalski, P. Chemical Composition of Table Eggs as Influenced by the Origin of Laying Hens. Pol. J. Food Nutr. Sci. 2003, 12, 21–24. [Google Scholar]
- Chamruspollert, M.; Sell, J.L. Transfer of Dietary Conjugated Linoleic Acid to Egg Yolks of Chickens. Poult. Sci. 1999, 78, 1138–1150. [Google Scholar] [CrossRef]
- Aydin, R. The Effects of Conjugated Linoleic Acid (CLA) and Canola Oil on the Fatty Acid Composition and Quality of Eggs from Laying Hens. S. Afr. J. Anim. Sci. 2005, 35, 172–179. [Google Scholar] [CrossRef]
- Aydin, R. Effect of Storage Temperature on the Quality of Eggs from Conjugated Linoleic Acid-Fed Laying Hens. S. Afr. J. Anim. Sci. 2006, 36, 13–19. [Google Scholar] [CrossRef]
- Raes, K.; Huyghebaert, G.; De Smet, S.; Nollet, L.; Arnouts, S.; Demeyer, D. The Deposition of Conjugated Linoleic Acids in Eggs of Laying Hens Fed Diets Varying in Fat Level and Fatty Acid Profile. J. Nutr. 2002, 132, 182–189. [Google Scholar] [CrossRef]
- Botsoglou, E.; Govaris, A.; Fletouris, D.; Botsoglou, N. Lipid Oxidation of Stored Eggs Enriched with Very Long Chain N-3 Fatty Acids, as Affected by Dietary Olive Leaves (Olea europea L.) or α-Tocopheryl Acetate Supplementation. Food Chem. 2012, 134, 1059–1068. [Google Scholar] [CrossRef]
- Keum, M.-C.; An, B.-K.; Shin, K.-H.; Lee, K.-W. Influence of Dietary Fat Sources and Conjugated Fatty Acid on Egg Quality, Yolk Cholesterol, and Yolk Fatty Acid Composition of Laying Hens. Rev. Bras. Zootec. 2018, 47, e20170303. [Google Scholar] [CrossRef]
- Silvério, P.S.; de Lima, C.B.; da Silva, F.L.; Mendonça, M.A.; Tanure, C.B.G.S.; Stringhini, J.H.; Racanicci, A.M.C. Effects of Dietary Conjugated Linoleic Acid in Broiler Breeders and Egg Storage Time on the Fatty Acid Profile, Lipid Oxidation and Internal Egg Quality. Anim. Prod. Sci. 2023, 63, 1208–1214. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yan, P.; Shi, T.; Wei, X. Effects of Conjugated Linoleic Acid on the Performance of Laying Hens, Lipid Composition of Egg Yolk, Egg Flavor, and Serum Components. Asian-Australas. J. Anim. Sci. 2016, 30, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G.; Holsonbake, T.B.; Goeger, M.P. Fatty Acid Composition and Egg Components of Specialty Eggs. Poult. Sci. 2002, 81, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Bai, L.; Zhang, X.; Gong, S. Re-Understanding the Antecedents of Functional Foods Purchase: Mediating Effect of Purchase Attitude and Moderating Effect of Food Neophobia. Food Qual. Prefer. 2019, 73, 266–275. [Google Scholar] [CrossRef]
- Mirosa, M.; Mangan-Walker, E. Young Chinese and Functional Foods for Mobility Health: Perceptions of Importance, Trust, and Willingness to Purchase and Pay a Premium. J. Food Prod. Mark. 2018, 24, 216–234. [Google Scholar] [CrossRef]
- Sajdakowska, M.; Jankowski, P.; Gutkowska, K.; Guzek, D.; Żakowska-Biemans, S.; Ozimek, I. Consumer Acceptance of Innovations in Food: A Survey among Polish Consumers. J. Consum. Behav. 2018, 17, 253–267. [Google Scholar] [CrossRef]
- Kayadan, M.; Uzun, Y. High Accuracy Gender Determination Using the Egg Shape Index. Sci. Rep. 2023, 13, 504. [Google Scholar] [CrossRef]
- Paganelli, C.V.; Olszowka, A.; Ar, A. The Avian Egg: Surface Area, Volume, and Density. Condor 1974, 76, 319–325. [Google Scholar] [CrossRef]
- Williams, K.C. Some Factors Affecting Albumen Quality with Particular Reference to Haugh Unit Score. World’s Poult. Sci. J. 1992, 48, 5–16. [Google Scholar] [CrossRef]
- Kul, S.; Seker, I. Phenotypic Correlations between Some External and Internal Egg Quality Traits in the Japanese Quail (Coturnix Coturnix Japonica). Int. J. Poult. Sci. 2004, 3, 400–405. [Google Scholar]
- Lokaewmanee, K.; Yamauchi, K.; Komori, T.; Saito, K. Effects on Egg Yolk Colour of Paprika or Paprika Combined with Marigold Flower Extracts. Ital. J. Anim. Sci. 2010, 9, e67. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Domagała, J.; Sady, M.; Grega, T.; Pustkowiak, H.; Florkiewicz, A. The Influence of Cheese Type and Fat Extraction Method on the Content of Conjugated Linoleic Acid. J. Food Compos. Anal. 2010, 23, 238–243. [Google Scholar] [CrossRef]
- PN-EN ISO 16634-1:2008; Foodstuffs—Determination of Total Nitrogen by Combustion According to the Dumas Principle and Calculation of the Total Protein Content—Part 1: Oilseeds and Animal Feed 2008. Polish Standarisation Comitee: Warsaw, Poland, 2008.
- PN-EN ISO 2171:2010; Cereal Grains, Legume Seeds and Their Products—Determination of Ash Content by Combustion Method 2010. Polish Standarisation Comitee: Warsaw, Poland, 2010.
- DeMan, J.M. Determination of the Fatty Acid Composition of Milk Fat by Dual Column Temperature Programmed Gas-Liquid Chromatography. J. Dairy. Sci. 1964, 47, 546–547. [Google Scholar] [CrossRef]
Parameter | Experiment 1 | Experiment 2 | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | |
Weight (g) | 61.08 ±3.30 | 61.68 ±3.56 | 62.68 ±3.94 | 60.46 ±3.93 | 61.01 ±3.21 | 61.34 ±3.55 | 60.83 ±2.43 | 63.14 ±3.67 |
Shape index (%) | 79.05 ±2.87 | 78.6 ±2.23 | 77.57 ±2.62 | 78.04 ±1.50 | 79.46 ±2.85 | 78.40 ±1.58 | 79.18 ±2.66 | 79.25 ±2.21 |
Haugh unit | 45.57 ±2.23 | 45.85 ±2.64 | 43.56 ±3.81 | 43.89 ±2.24 | 45.90 ±2.33 | 44.36 ±2.21 | 44.63 ±1.67 | 44.07 ±1.70 |
Egg yolk pH | 6.01 ±0.09 | 6.03 ±0.16 | 6.12 ±0.12 | 6.16 ±0.29 | 6.03 ±0.16 | 6.06 ±0.06 | 6.06 ±0.09 | 6.14 ±0.15 |
Egg white pH | 7.14 ab ± 0.22 | 7.04 a ±0.25 | 7.23 ab ± 0.24 | 7.34 b ±0.16 | 7.15 ±0.18 | 7.31 ±0.19 | 7.37 ±0.12 | 7.44 ±0.14 |
Egg yolk index | 0.42 ±0.03 | 0.43 ±0.02 | 0.42 ±0.02 | 0.44 ±0.02 | 0.43 B ±0.04 | 0.43 B ±0.03 | 0.41 B ±0.02 | 0.36 A ±0.02 |
Egg white index | 0.09 b ±0.02 | 0.09 b ±0.02 | 0.08 ab ± 0.01 | 0.07 a ±0.01 | 0.09 B ±0.02 | 0.08 A ±0.01 | 0.07 A ±0.01 | 0.08 A ±0.01 |
Shell share (%) | 12.83 ±0.95 | 12.49 ±1.17 | 11.52 ±0.01 | 12.79 ±0.01 | 12.71 ±0.63 | 12.61 ±1.07 | 12.35 ±0.57 | 12.08 ±0.84 |
Egg white share (%) | 61.78 ±1.72 | 61.78 ±1.28 | 62.44 ±2.10 | 61.59 ±1.28 | 62.31 ±1.97 | 62.78 ±1.42 | 62.62 ±1.47 | 61.96 ±2.65 |
Egg yolk share (%) | 25.37 ±1.37 | 25.72 ±1.79 | 25.63 ±1.34 | 25.6 ±1.18 | 24.96 ±1.64 | 24.59 ±1.02 | 25.02 ±1.82 | 25.95 ±2.07 |
Egg yolk color (LaRoche scale) | 11.00 ±0.00 | 12.00 ±0.00 | 12.00 ±1.73 | 11.00 ±0.00 | 11.66 ±0.57 | 12.66 ±0.57 | 10.33 ±1.52 | 11.33 ±0.57 |
∆E 1 | - | 5.35 c ±3.09 | 4.29 b ±1.89 | 2.75 a ±1.89 | - | 7.52 A ±2.41 | 6.61 A ±2.65 | 11.22 B ±4.80 |
L* 2 | 41.88 ±3.07 | 44.28 ±4.37 | 40.73 ±3.67 | 42.20 ±2.20 | 44.35 C ± 4.06 | 39.55 B ± 3.49 | 39.84 B ± 3.02 | 36.73 A ±7.46 |
a* 3 | 11.36 ±41.15 | 11.56 ±0.89 | 11.79 ±1.58 | 10.45 ±0.94 | 12.73 C ± 1.28 | 12.80 D ± 1.23 | 9.55 A ±1.07 | 10.32 B ±1.19 |
b* 4 | 27.88 ±2.81 | 29.22 ±3.63 | 26.78 ±2.25 | 28.38 ±1.68 | 31.49 ±4.45 | 27.32 ±3.17 | 28.77 ±1.82 | 28.00 ±4.65 |
Parameter | Experiment 1 | Experiment 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||
Dry matter (g/100 g) | Y 1 | 47.75 bc ±0.00 | 47.27 a ±0.25 | 47.48 ab ±0.15 | 48.08 c ±0.12 | 46.11 A ±0.30 | 46.85 AB ±0.38 | 47.78 B ±0.01 | 46.84 AB ±0.64 |
W | 13.44 c ±0.02 | 13.22 b ±0.03 | 12.90 a ±0.01 | 12.96 a ±0.04 | 13.64 D ±0.14 | 12.74 A ±0.00 | 13.38 B ±0.04 | 13.10 B ±0.05 | |
Protein (g/100 g of d.m.) | Y | 34.10 ±0.26 | 33.78 ±0.29 | 33.96 ±0.04 | 33.8 ±0.27 | 34.90 B ±0.92 | 34.63 B ±0.43 | 34.72 B ±0.07 | 32.78 A ±0.98 |
W | 84.3 a ±0.26 | 84.3 a ±0.35 | 86.78 b ±0.21 | 87.92 c ±0.15 | 82.79 A ±0.35 | 88.10 B ±0.14 | 88.39 BC ±0.09 | 88.60 C ±0.03 | |
Fat (g/100 g of d.m.) | Y | 50.42 ±0.31 | 50.54 ±1.83 | 49.18 ±0.62 | 52.99 ±3.21 | 52.24 ±0.97 | 50.91 ±0.33 | 50.82 ±1.73 | 49.92 ±2.69 |
Ash (g/100 g of d.m.) | Y | 4.73 ±0.20 | 4.19 ±0.12 | 4.57 ±0.19 | 4.66 ±0.06 | 5.37 B ±0.08 | 4.74 A ±0.28 | 4.71 A ±0.04 | 4.78 A ±0.07 |
W | 6.08 ±0.02 | 5.60 ±0.06 | 6.05 ±0.01 | 6.62 ±0.18 | 6.14 ±0.06 | 6.10 ±0.05 | 6.24 ±0.06 | 6.14 ±0.12 |
Acid | Experiment 1 | Experiment 2 | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | |
Saturated | ||||||||
C14:0 Tetradecanoic (myristic acid) | 0.66 a ±0.01 | 0.64 a ±0.03 | 0.72 b ±0.00 | 0.65 a ±0.01 | 0.67 AB ± 0.00 | 0.81 C ±0.04 | 0.67 AB ±0.00 | 0.82 C ±0.03 |
C15:0 Pentadecanoic (pentadecylic acid) | 0.08 ±0.00 | 0.09 ±0.01 | 0.08 ±0.00 | 0.10 ±0.00 | 0.10 ±0.00 | 0.10 ±0.00 | 0.09 ±0.00 | 0.11 ±0.01 |
C16:0 Hexadecanoic (palmitic acid) | 20.41 b ±0.08 | 20.44 b ±0.14 | 19.71 a ±0.04 | 20.16 ab ±0.31 | 20.92 ±0.30 | 20.86 ±0.20 | 21.25 ±0.12 | 20.96 ±0.46 |
C17:0 Heptadecanoic (margaric acid) | 0.31 ±0.02 | 0.31 ±0.05 | 0.36 ±0.02 | 0.36 ±0.04 | 0.29 ±0.05 | 0.36 ±0.00 | 0.37 ±0.00 | 0.35 ±0.00 |
C18:0 Octadecanoic (stearic acid) | 9.42 a ±0.09 | 9.85 ab ±0.25 | 10.54 b ±0.30 | 9.89 ab ±0.55 | 8.09 A ±1.00 | 8.82 AB ± 0.27 | 9.32 B ±0.42 | 9.84 B ±0.00 |
C22:0 Docosanoic (behenic acid) | 0.00 ±0.00 | 0.00 ±0.00 | 0.00 ±0.00 | 0.00 ±0.00 | 0.00 ±0.00 | 0.00 ±0.00 | 0.00 ±0.00 | 0.04 ±0.06 |
Monounsaturated | ||||||||
C14:1 9-tetradecenoic (myristoleic acid) | 0.12 ±0.00 | 0.12 ±0.01 | 0.12 ±0.00 | 0.11 ±0.00 | 0.12 A ±0.01 | 0.14 B ±0.01 | 0.10 A ±0.00 | 0.13 A ±0.01 |
C16:1 Trans-3-hexadecenoic | 2.17 b ±0.00 | 1.91 a ±0.13 | 1.80 a ±0.07 | 1.70 a ±0.07 | 2.64 C ±0.05 | 2.12 AB ±0.02 | 2.13 AB ±0.05 | 1.89 B ±0.06 |
C16:1 9-cis-hexadecenoic (palimitoleic acid) | 5.91 a ±0.14 | 5.53 b ±0.03 | 5.18 b ±0.13 | 5.24 b ±0.36 | 4.41 A ±0.09 | 5.63 B ±0.08 | 4.74 BC ±0.11 | 4.95 BC ±0.43 |
C17:1 10-heptadecenoic acid | 0.36 ±0.01 | 0.33 ±0.00 | 0.32 ±0.00 | 0.3 ±0.09 | 0.33 B ±0.00 | 0.32 AB ±0.00 | 0.29 AB ±0.00 | 0.23 A ±0.01 |
C18:1 cis-9-octadecenoic (oleic acid) | 40.88 b ±0.02 | 38.53 c ± 0.38 | 35.96 a ±0.12 | 34.33 a ±1.16 | 42.51 C ± 0.28 | 39.2 B ±0.36 | 39.34 B ±0.55 | 36.00 A ± 0.53 |
Polyunsaturated acids | ||||||||
C16:2 Hexadecadienoic acid | 0.08 ±0.02 | 0.06 ±0.00 | 0.07 ±0.00 | 0.06 ±0.00 | 0.08 C ±0.00 | 0.08 BC ± 0.01 | 0.06 AB ±0.00 | 0.05 A ±0.00 |
C18:2 n-6 cis,cis-9,12-octadecadienoic (linoleic acid) | 13.42 a ±0.01 | 13.33 a ± 0.01 | 13.36 a ±0.01 | 13.75 b ±0.19 | 15.46 C ±0.47 | 14.11 B ± 0.04 | 13.30 AB ±0.03 | 13.81 A ± 0.15 |
C18:2 Conjugated linoleic acids—CLA | 0.26 a ±0.02 | 1.92 b ±0.08 | 3.39 c ±0.09 | 3.96 d ±0.14 | 0.00 A ±0.00 | 2.25 B ±0.05 | 3.23 C ±0.04 | 4.33 D ±0.13 |
C18:3 n-3 Cis,cis,cis-9,12,15-octadecatrienoic (α-linolenic acid) | 5.18 ab ±0.12 | 4.89 a ±0.07 | 5.38 b ±0.06 | 5.08 ab ±0.18 | 3.54 A ±0.34 | 2.80 B ±0.09 | 2.17 CD ±0.05 | 2.09 D ±0.12 |
C18:3 Conjugated linolenic acid— CLnA | 0.00 a ±0.00 | 0.85 b ±0.06 | 1.58 c ±0.07 | 2.63 d ±0.39 | 0.00 A ±0.00 | 0.92 B ±0.04 | 1.41 C ±0.09 | 2.53D ±0.32 |
C20:2 Eicosadienoic | 0.06 ±0.00 | 0.07 ±0.02 | 0.08 ±0.00 | 0.07 ±0.00 | 0.08 A ±0.00 | 0.09 A ±0.00 | 0.07 B ±0.00 | 0.10 C ±0.00 |
C20:3 n-6 Cis,cis,cis-8,11,14-eicosatrienoic dihomo-γ-linolenic acid | 0.06 ±0.00 | 0.05 ±0.02 | 0.07 ±0.00 | 0.06 ±0.00 | 0.05 A ±0.00 | 0.07 B ±0.00 | 0.06 B ±0.00 | 0.09 C ±0.00 |
C20:4 n-6 5,8,11,14-all-cis-eicosatetraenoic (arachidonic acid) | 0.22 a ±0.02 | 0.34 b ±0.01 | 0.34 b ±0.00 | 0.38 b ±0.02 | 0.24 ±0.04 | 0.42 ±0.04 | 0.42 ±0.14 | 0.41 ±0.04 |
C22:6 n-3 Docosahexaenoic—DHA (cervonic acid) | 0.11 a ±0.02 | 0.17 b ±0.00 | 0.17 b ±0.01 | 0.18 b ±0.02 | 0.06 ±0.00 | 0.12 ±0.02 | 0.11 ±0.06 | 0.08 ±0.02 |
Saturated fatty acids—SFA (%) | 30.07 ±0.62 | 30.88 ±0.04 | 31.47 ±0.40 | 31.43 ±0.29 | 31.17 ±0.26 | 30.96 ±0.12 | 31.71 ±0.30 | 32.09 ±0.41 |
Monounsaturated fatty acids— MUFA (%) | 50.02 ±0.22 | 49.45 ±0.14 | 46.44 ±0.55 | 43.39 ±0.31 | 41.70 ±0.77 | 47.41 ±0.32 | 46.61 ±0.62 | 43.27 ±0.12 |
Polyunsaturated fatty acids— PUFA (%) | 19.90 ±0.85 | 19.66 ±0.09 | 22.22 ±0.33 | 25.17 ±0.02 | 27.13 ±0.50 | 21.62 ± 0.20 | 21.67 ±0.31 | 24.59 ±0.46 |
Parameter | Type of Eggs | |||
---|---|---|---|---|
A vs. E | B vs. F | C vs. G | D vs. H | |
Weight | 0.963 | 0.832 | 0.221 | 0.132 |
Shape index | 0.751 | 0.820 | 0.189 | 0.169 |
Haugh unit | 0.750 | 0.189 | 0.425 | 0.844 |
Egg yolk pH | 0.644 | 0.600 | 0.240 | 0.852 |
Egg white pH | 0.905 | 0.014 | 0.125 | 0.164 |
Egg yolk index | 0.493 | 0.967 | 0.396 | 0.000 |
Egg white index | 0.626 | 0.060 | 0.962 | 0.060 |
Shell share | 0.749 | 0.807 | 0.311 | 0.077 |
Egg white share | 0.533 | 0.114 | 0.830 | 0.695 |
Egg yolk share | 0.552 | 0.101 | 0.405 | 0.652 |
Egg yolk color (LaRoche scale) | 0.116 | 0.373 | 0.279 | 0.373 |
∆E | - | 0.098 | 0.037 | 0.000 |
L* | 0.141 | 0.015 | 0.559 | 0.039 |
a* | 0.021 | 0.018 | 0.001 | 0.792 |
b* | 0.044 | 0.227 | 0.043 | 0.810 |
Parameter | Type of Eggs | ||||
---|---|---|---|---|---|
A vs. E | B vs. F | C vs. G | D vs. H | ||
Dry matter | Y 1 | 0.016 | 0.320 | 0.102 | 0.113 |
W | 0.177 | 0.001 | 0.004 | 0.079 | |
Protein | Y | 0.225 | 0.050 | 0.009 | 0.159 |
W | 0.004 | 0.000 | 0.000 | 0.001 | |
Fat | Y | 0.129 | 0.805 | 0.333 | 0.409 |
Ash | Y | 0.057 | 0.127 | 0.441 | 0.204 |
W | 0.388 | 0.015 | 0.058 | 0.088 |
Parameter | Type of Eggs | |||
---|---|---|---|---|
A vs. E | B vs. F | C vs. G | D vs. H | |
Polyunsaturated acids | ||||
C16:2 | 0.037 | 0.807 | 0.000 | 0.095 |
C18:2 n-6 | 0.049 | 0.002 | 0.451 | 0.055 |
C18:2 | 0.001 | 0.000 | 0.002 | 0.014 |
C18:3 n-3 | 0.031 | 0.002 | 0.001 | 0.001 |
C18:3 | 0.011 | 0.001 | 0.019 | 0.056 |
C20:2 n-9 | 0.292 | 0.037 | 0.770 | 0.105 |
C20:3 n-6 | 0.000 | 0.292 | 0.591 | 0.000 |
C20:4 n-6 | 0.066 | 0.028 | 0.504 | 0.166 |
C22:6 n-3 | 0.014 | 0.683 | 0.316 | 0.042 |
Remaining acids: C18:2, C18:3, CLA | 0.013 | 0.012 | 0.072 | 0.051 |
Monounsaturated acids | ||||
C14:1 | 0.698 | 0.311 | 0.311 | 0.698 |
C16:1 (3t-hexadecanoic) | 0.005 | 0.116 | 0.172 | 0.293 |
C16:1 (9-hexadecanoic) | 0.087 | 0.138 | 0.010 | 0.546 |
C17:1 | 0.667 | 0.057 | 0.029 | 0.044 |
C18:1 | 0.010 | 0.023 | 0.233 | 0.810 |
Saturated acids | ||||
C14:0 | 0.183 | 0.041 | 0.360 | 0.059 |
C15:0 | 0.000 | 0.000 | 0.698 | 0.154 |
C16:0 | 0.139 | 0.101 | 0.028 | 0.063 |
C17:0 | 0.293 | 0.116 | 0.248 | 0.422 |
C18:0 | 0.156 | 0.100 | 0.269 | 0.082 |
C22:0 | 0.000 | 0.000 | 0.000 | 0.422 |
The share of polyunsaturated acids | 0.887 | 0.978 | 0.948 | 0.984 |
The share of monounsaturated acids | 0.488 | 0.982 | 0.998 | 0.993 |
The share of saturated acids | 0.934 | 0.978 | 0.950 | 0.999 |
Group ID | Plant Oil Content, % | ||
---|---|---|---|
Rapeseed | Linseed | Pomegranate | |
Experiment 1 | |||
A | 2.5 | 1.5 | 0.0 |
B | 2.0 | 1.5 | 0.5 |
C | 1.5 | 1.5 | 1.0 |
D | 1.0 | 1.5 | 1.5 |
Experiment 2 | |||
E | 4.0 | 0.0 | 0.0 |
F | 3.5 | 0.0 | 0.5 |
G | 3.0 | 0.0 | 1.0 |
H | 2.5 | 0.0 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipiak-Florkiewicz, A.; Dymińska-Czyż, M.; Szymczyk, B.; Franczyk-Żarów, M.; Kostogrys, R.; Florkiewicz, A.; Lukasiewicz, M. Design of Physicochemical Properties of Eggs as a Result of Modification of the Fat Fraction of Laying Feed. Molecules 2024, 29, 1242. https://doi.org/10.3390/molecules29061242
Filipiak-Florkiewicz A, Dymińska-Czyż M, Szymczyk B, Franczyk-Żarów M, Kostogrys R, Florkiewicz A, Lukasiewicz M. Design of Physicochemical Properties of Eggs as a Result of Modification of the Fat Fraction of Laying Feed. Molecules. 2024; 29(6):1242. https://doi.org/10.3390/molecules29061242
Chicago/Turabian StyleFilipiak-Florkiewicz, Agnieszka, Maja Dymińska-Czyż, Beata Szymczyk, Magdalena Franczyk-Żarów, Renata Kostogrys, Adam Florkiewicz, and Marcin Lukasiewicz. 2024. "Design of Physicochemical Properties of Eggs as a Result of Modification of the Fat Fraction of Laying Feed" Molecules 29, no. 6: 1242. https://doi.org/10.3390/molecules29061242
APA StyleFilipiak-Florkiewicz, A., Dymińska-Czyż, M., Szymczyk, B., Franczyk-Żarów, M., Kostogrys, R., Florkiewicz, A., & Lukasiewicz, M. (2024). Design of Physicochemical Properties of Eggs as a Result of Modification of the Fat Fraction of Laying Feed. Molecules, 29(6), 1242. https://doi.org/10.3390/molecules29061242