Biodegradable Polymers in Veterinary Medicine—A Review
Abstract
:1. Introduction
2. Polymers
3. Biodegradable Polymers
4. Application of Biodegradable Polymers in Veterinary Medicine
- Support for new tissue growth (wherein cell–cell communication and cell availability to nutrients, growth factors, and pharmaceutically active agents must be maximized);
- Prevention of cellular activity (when tissue growth, such as in surgically induced adhesions, is undesirable);
- Guided tissue response (enhancing a particular cellular response while inhibiting others);
- Enhancement of cell attachment and subsequent cellular activation (e.g., fibroblast attachment, proliferation, and production of an extracellular matrix of dermis repair);
- Inhibition of cellular attachment and/or activation (e.g., platelet attachment to a vascular graft); and
- Prevention of biological response (e.g., blocking antibodies against homograft or xenograft cells used in organ replacement therapies).
- Manufacturing feasibility, including sufficient commercial feasibility;
- The capability to form the polymer into the final product design;
- Mechanical properties that adequately address short-term function and do not interfere with long-term function;
- Low or negligible toxicity of degradation products;
- Drug delivery compatibility in applications that call for the release or attachment of active compounds [25].
4.1. Chitin and Chitosan
4.1.1. Chitosan in Wound Management
4.1.2. Chitosan for Tissue Engineering
4.1.3. The Analgesic Properties of Chitin and Chitosan
4.1.4. Chitosan as a Drug Delivery Vehicle
4.1.5. Other Applications of Chitosan in Veterinary Medicine
4.2. Cellulose
4.2.1. Cellulose in Wound Treatment
4.2.2. Cellulose in Tissue Engineering
4.2.3. Cellulose-Based Drug Vehicles
- -
- Oral administration—This is the most common route due to the ease and cost-effectiveness combined with high patient compliance. However, its effectiveness is affected by physiological barriers and drug stability in the gastrointestinal tract; therefore, different new pharmaceutical technologies are developed to overcome the obstacles. One of the examples is the dual site-targeted and release dome matrix designed to have both gastric and intestinal targeting capacities. The caffeine-, melatonin-, and hydroxypropylmethylcellulose-based modules completely released melatonin in the stomach due to the favorable pH and effectively delivered caffeine to the colon. This reference oral carrier will be useful in veterinary medicine and other applications where a complex formulation and diverse in vivo performance are necessary [96];
- -
- Local application—when the active chemical is delivered directly at or near the target site to avoid intoxication or damage to the surrounding tissue. One of the examples is ethyl cellulose–ethanol ablation, which was tried as an intratumoral injection in cats with sublingual squamous cell carcinoma to retain tumoricidal doses of ethanol within the tumor without damaging other tissues. Although tumor volume was reduced in some cats, concurrent lingual dysfunction occurred, excluding this kind of treatment from veterinary practice. However, further optimization of the applied treatment may make it an interesting minimally invasive option for curing oral, neck, and head cancers in cats and other animals [135];
- -
- Transdermal drug delivery—This involves drug delivery through the skin, and in veterinary medicine, it is a useful alternative to more traditional oral drug administration since it is non-invasive; avoids the gastric route, reducing potential gastric irritation and drug degradation; and has a reduced first-pass metabolism in the liver [134,136]. Cellulose and its derivatives can serve as a base for hydrogels with dispersed active ingredients, which perform better than creams and ointments due to their better adhesion, cooling effect, ease of removal, excellent drug-loading efficiency, and improved drug release. For example, alaptide, used commercially in the form of cream in wound management in veterinary practice due to its regenerative properties and enhancement of epithelization processes, was tried as a formulation in hydrogels made of methylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose. The results showed that alaptide incorporated into 3% hydroxyethylcellulose hydrogel exhibited the best properties and was appropriate for veterinary practice [137]. Another example is cationic hydroxyethyl cellulose surface-modified MoS2 nanoparticles with excellent photothermal conversion abilities as a transdermal drug delivery system. It was successfully tried for the model drug atenolol in rabbits, showing great skin penetration without irritation. Although the high toxicity of MoS2 limits its biological application, the study showed the potential of such systems for delivering small molecular drugs in animals [138].
4.3. Poly(ε-caprolactone) (PCL)
4.3.1. Tissue Engineering Using Poly(ε-caprolactone)
4.3.2. Poly(ε-caprolactone) as a Drug Delivery Vehicle
4.4. Polylactic Acid (PLA)
4.4.1. PLA for Veterinary Orthopedic Surgeries
4.4.2. PLA in Drug Delivery Systems
4.4.3. PLA for Wound Management
4.5. Poly(lactic-co-glycolic Acid) (PLGA)
4.5.1. PLGA as a Drug and Vaccine Carrier
4.5.2. Tissue Engineering Using PLGA
4.6. Polymers Synthesized from Bacteria
4.6.1. PHA and PHB for Tissue Engineering
4.6.2. PHA/PHB-Based Drug Carriers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Namazi, H. Polymers in Our Daily Life. Bioimpacts 2017, 7, 73–74. [Google Scholar] [CrossRef]
- Karak, N. Fundamentals of Polymers: Raw Materials to Finish Products; PHI Learning Pvt. Ltd.: Delhi, India, 2009; ISBN 978-81-203-3877-7. [Google Scholar]
- Belgacem, M.N.; Gandini, A. Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-08-056051-9. [Google Scholar]
- Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated Systems for Biopolymers and Bioenergy Production from Organic Waste and By-Products: A Review of Microbial Processes. Biotechnol. Biofuels 2017, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-Sensitive Polymers in Medicine: A Review. Eur. Polym. J. 2019, 117, 402–423. [Google Scholar] [CrossRef]
- Maitz, M.F. Applications of Synthetic Polymers in Clinical Medicine. Biosurface Biotribology 2015, 1, 161–176. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Zamboulis, A.; Koumentakou, I.; Michailidou, G.; Noordam, M.J.; Bikiaris, D.N. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022, 23, 1841–1863. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention; Academic Press: Cambridge, MA, USA, 1992; ISBN 978-0-323-13946-5. [Google Scholar]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of Plastic Polymers by Fungi: A Brief Review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Nair, N.R.; Sekhar, V.C.; Nampoothiri, K.M.; Pandey, A. Biodegradation of Biopolymers. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 739–755. ISBN 978-0-444-63662-1. [Google Scholar]
- Billmeyer, F.W. Textbook of Polymer Science; John Wiley & Sons: Hoboken, NJ, USA, 1984; ISBN 978-0-471-03196-3. [Google Scholar]
- Odian, G. Principles of Polymerization; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 978-0-471-27400-1. [Google Scholar]
- Williams, D.F. Biodegradation of Surgical Polymers. J. Mater. Sci. 1982, 17, 1233–1246. [Google Scholar] [CrossRef]
- Kopeček, J.; Ulbrich, K. Biodegradation of Biomedical Polymers. Prog. Polym. Sci. 1983, 9, 1–58. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer Biodegradation and Biodegradable Polymers—A Review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent Advances in the Sustainable Design and Applications of Biodegradable Polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef]
- Abioye, A.A.; Fasanmi, O.O.; Rotimi, D.O.; Abioye, O.P.; Obuekwe, C.C.; Afolalu, S.A.; Okokpujie, I.P. Review of the Development of Biodegradable Plastic from Synthetic Polymers and Selected Synthesized Nanoparticle Starches. J. Phys. Conf. Ser. 2019, 1378, 042064. [Google Scholar] [CrossRef]
- Iglesias Montes, M.L.; Cyras, V.P.; Manfredi, L.B.; Pettarín, V.; Fasce, L.A. Fracture Evaluation of Plasticized Polylactic Acid/Poly (3-HYDROXYBUTYRATE) Blends for Commodities Replacement in Packaging Applications. Polym. Test. 2020, 84, 106375. [Google Scholar] [CrossRef]
- Miao, J.; Wang, Y.; Liu, J.; Wang, L. Organoboron Molecules and Polymers for Organic Solar Cell Applications. Chem. Soc. Rev. 2022, 51, 153–187. [Google Scholar] [CrossRef] [PubMed]
- Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable Polymers and Their Potential Use in Parenteral Veterinary Drug Delivery Systems. Adv. Drug Deliv. Rev. 2004, 56, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Cipurković, A.; Horozić, E.; Đonlagić, N.; Marić, S.; Saletović, M.; Ademović, Z. Biodegradable Polymers: Production, Properties and Application in Medicine. Technol. Acta Sci. /Prof. J. Chem. Technol. 2018, 11, 25–35. [Google Scholar]
- Pachence, J.M.; Kohn, J. Biodegradable Polymers. Princ. Tissue Eng. 2000, 3, 323–339. [Google Scholar]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Struszczyk, M.H.; Pośpieszny, H.; Gamzazade, A. Chitin and Chitosan. Polimery 2002, 47, 316–325. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Regenstein, J.M. Industrial Applications of Crustacean By-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. [Google Scholar] [CrossRef]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.G.; El Kady, E.M.; Asker, M.S. Chitin, Chitosan and Glucan, Properties and Applications. World J. Agric. Soil Sci. 2019, 3, 1–19. [Google Scholar]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Al-Rooqi, M.M.; Hassan, M.M.; Moussa, Z.; Obaid, R.J.; Suman, N.H.; Wagner, M.H.; Natto, S.S.A.; Ahmed, S.A. Advancement of Chitin and Chitosan as Promising Biomaterials. J. Saudi Chem. Soc. 2022, 26, 101561. [Google Scholar] [CrossRef]
- Şenel, S.; McClure, S.J. Potential Applications of Chitosan in Veterinary Medicine. Adv. Drug Deliv. Rev. 2004, 56, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Li, J.; Du, N.; Li, D.; Li, F.; Man, J. Application Status and Technical Analysis of Chitosan-Based Medical Dressings: A Review. RSC Adv. 2020, 10, 34308–34322. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Chemical and Physical Chitosan Hydrogels as Prospective Carriers for Drug Delivery: A Review. J. Mater. Chem. B 2020, 8, 10050–10064. [Google Scholar] [CrossRef] [PubMed]
- Sultankulov, B.; Berillo, D.; Sultankulova, K.; Tokay, T.; Saparov, A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Fundamentals and Applications of Chitosan. In Sustainable Agriculture Reviews 35: Chitin and Chitosan: History, Fundamentals and Innovations; Crini, G., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–123. ISBN 978-3-030-16538-3. [Google Scholar]
- Maldonado-Cabrera, B.; Sánchez-Machado, D.I.; López-Cervantes, J.; Osuna-Chávez, R.F.; Escárcega-Galaz, A.A.; Robles-Zepeda, R.E.; Sanches-Silva, A. Therapeutic Effects of Chitosan in Veterinary Dermatology: A Systematic Review of the Literature. Prev. Vet. Med. 2021, 190, 105325. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-Y.; Seo, S.-J.; Moon, H.-S.; Yoo, M.-K.; Park, I.-Y.; Kim, B.-C.; Cho, C.-S. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sukpaita, T.; Chirachanchai, S.; Pimkhaokham, A.; Ampornaramveth, R.S. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar. Drugs 2021, 19, 551. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Escárcega-Galaz, A.A.; Cruz-Mercado, J.L.D.L.; López-Cervantes, J.; Sánchez-Machado, D.I.; Brito-Zurita, O.R.; Ornelas-Aguirre, J.M. Chitosan Treatment for Skin Ulcers Associated with Diabetes. Saudi J. Biol. Sci. 2018, 25, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Escárcega-Galaz, A.A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Sanches-Silva, A.; Madera-Santana, T.J.; Paseiro-Losada, P. Characterization Data of Chitosan-Based Films: Antimicrobial Activity, Thermal Analysis, Elementary Composition, Tensile Strength and Degree Crystallinity. Data Brief 2018, 21, 473–479. [Google Scholar] [CrossRef]
- Escárcega-Galaz, A.A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Sanches-Silva, A.; Madera-Santana, T.J.; Paseiro-Losada, P. Mechanical, Structural and Physical Aspects of Chitosan-Based Films as Antimicrobial Dressings. Int. J. Biol. Macromol. 2018, 116, 472–481. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; Maldonado-Cabrera, A.; López-Cervantes, J.; Maldonado-Cabrera, B.; Chávez-Almanza, A.F. Therapeutic Effects of Electrospun Chitosan Nanofibers on Animal Skin Wounds: A Systematic Review and Meta-Analysis. Int. J. Pharm. X 2023, 5, 100175. [Google Scholar] [CrossRef]
- Fahie, M.A.; Shettko, D. Evidence-Based Wound Management: A Systematic Review of Therapeutic Agents to Enhance Granulation and Epithelialization. Vet. Clin. North Am. Small Anim. Pract. 2007, 37, 559–577. [Google Scholar] [CrossRef] [PubMed]
- Napavichayanun, S.; Aramwit, P. Effect of Animal Products and Extracts on Wound Healing Promotion in Topical Applications: A Review. J. Biomater. Sci. Polym. Ed. 2017, 28, 703–729. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhou, Y.; Lu, W.; Zhu, W.; Li, Y.; Chen, K.; Zhang, G.; Xu, J.; Deng, Z.; Wang, D. Characterization of a Novel Polyvinyl Alcohol/Chitosan Porous Hydrogel Combined with Bone Marrow Mesenchymal Stem Cells and Its Application in Articular Cartilage Repair. BMC Musculoskelet. Disord. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Cabrera, B.; Sánchez-Machado, D.I.; López-Cervantes, J.; Osuna-Chávez, R.F.; Ibarra-Zazueta, C.; Robles-Zepeda, R.E. Efficacy of Chitosan in the Treatment of Chronic Skin Lesions in a Horse: A Case Report. Vet. Anim. Sci. 2022, 17, 100261. [Google Scholar] [CrossRef] [PubMed]
- Hassan Alsayes, S.A.; Aziza, S.A.; Abo Zaid, O.R.; Amin, A.A.; Abdel-Aziz, G.A.-A. Wounds Healing Activities of Topical Chitosan/Zinc Oxide Nanocomposite Membrane and Local Insulin Injection in Diabetic Rats through Activation of Growth Factors and Suppression of Matrix Metalloproteinase Expressions. Benha Vet. Med. J. 2022, 42, 76–81. [Google Scholar] [CrossRef]
- Tong, C.; Hao, H.; Xia, L.; Liu, J.; Ti, D.; Dong, L.; Hou, Q.; Song, H.; Liu, H.; Zhao, Y.; et al. Hypoxia Pretreatment of Bone Marrow—Derived Mesenchymal Stem Cells Seeded in a Collagen-Chitosan Sponge Scaffold Promotes Skin Wound Healing in Diabetic Rats with Hindlimb Ischemia. Wound Repair Regen. 2016, 24, 45–56. [Google Scholar] [CrossRef]
- Yanagibayashi, S.; Kishimoto, S.; Ishihara, M.; Murakami, K.; Aoki, H.; Takikawa, M.; Fujita, M.; Sekido, M.; Kiyosawa, T. Novel Hydrocolloid-Sheet as Wound Dressing to Stimulate Healing-Impaired Wound Healing in Diabetic Db/Db Mice. Bio-Med. Mater. Eng. 2012, 22, 301–310. [Google Scholar] [CrossRef]
- Chang, J.; Liu, W.; Han, B.; Peng, S.; He, B.; Gu, Z. Investigation of the Skin Repair and Healing Mechanism of N-Carboxymethyl Chitosan in Second-Degree Burn Wounds. Wound Repair Regen. 2013, 21, 113–121. [Google Scholar] [CrossRef]
- Yar, M.; Shahzadi, L.; Mehmood, A.; Raheem, M.I.; Román, S.; Chaudhry, A.A.; ur Rehman, I.; Ian Douglas, C.W.; MacNeil, S. Deoxy-Sugar Releasing Biodegradable Hydrogels Promote Angiogenesis and Stimulate Wound Healing. Mater. Today Commun. 2017, 13, 295–305. [Google Scholar] [CrossRef]
- Momeni, M.; Zarehaghighi, M.; Hajimiri, M.; Khorasani, G.; Dinarvand, R.; Nekookar, A.; Sodeifi, N.; Khosravani, P.; Shayanasl, N.; Ebrahimi, M. In Vitro and In Vivo Investigation of a Novel Amniotic-Based Chitosan Dressing for Wound Healing. Wound Repair Regen. 2018, 26, 87–101. [Google Scholar] [CrossRef]
- Moghaddam, A.S.; Raji, A.; Movaffagh, J.; Yazdi, A.T.; Mahmoudi, M. Effects of Autologous Keratinocyte Cell Spray with and without Chitosan on Third Degree Burn Healing: An Animal Experiment. Wounds 2014, 26, 109–117. [Google Scholar]
- Inas, N.E.H.; Kawkab, A.A. Application of Chitosan for Wound Repair in Dogs. Life Sci. J. 2012, 1, 2201. [Google Scholar]
- Ueno, H.; Mori, T.; Fujinaga, T. Topical Formulations and Wound Healing Applications of Chitosan. Adv. Drug Deliv. Rev. 2001, 52, 105–115. [Google Scholar] [CrossRef]
- Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A Multifunctional in Situ–Forming Hydrogel for Wound Healing. Wound Repair Regen. 2012, 20, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Ryu, J.H.; Kim, K.; Kim, M.J.; Jo, S.; Lee, M.S.; Lee, D.Y.; Lee, H. Hemostatic Swabs Containing Polydopamine-like Catecholamine Chitosan-Catechol for Normal and Coagulopathic Animal Models. ACS Biomater. Sci. Eng. 2018, 4, 2314–2318. [Google Scholar] [CrossRef]
- Twinprai, N.; Sae-Jung, S. Efficacy of Three Alternative Hemostatic Agents (Chitosan, Gelatin, and Cellulose) for Soft Tissue Dissection during Lumbar Spine Surgery: A Comparative Study in an Animal Model. J. Med. Assoc. Thail. 2019, 102, 140–143. [Google Scholar]
- Abacıoğlu, S.; Aydın, K.; Büyükcam, F.; Kaya, U.; Işık, B.; Karakılıç, M.E. Comparison of the Efficiencies of Buffers Containing Ankaferd and Chitosan on Hemostasis in an Experimental Rat Model with Femoral Artery Bleeding. Turk. J. Haematol. 2016, 33, 48–52. [Google Scholar] [CrossRef]
- Arshad, R.; Sohail, M.F.; Sarwar, H.S.; Saeed, H.; Ali, I.; Akhtar, S.; Hussain, S.Z.; Afzal, I.; Jahan, S.; Anees-ur-Rehman; et al. ZnO-NPs Embedded Biodegradable Thiolated Bandage for Postoperative Surgical Site Infection: In Vitro and in Vivo Evaluation. PLoS ONE 2019, 14, e0217079. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani-Tajani, A.; Mohammadi, R.; Shahrooz, R. Effect of Local Transplantation of Bone Marrow Derived Mast Cells (BMMCs) Combined with Chitosan Biofilm on Excisional and Incisional Wound Healing: A Novel Preliminary Animal Study on Lamb. Iran. J. Vet. Surg. 2019, 14, 34–43. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, H.; Li, J. Chitosan/Matrine Membrane Preparations Promote Wound Recovery in an In Vivo Animal Model of Ulcer Trauma. Int. J. Clin. Exp. Med. 2019, 12, 504–512. [Google Scholar]
- Ranjbar, R.; Yousefi, A. Artemisia Dracunculus in Combination with Chitosan Nanoparticle Biofilm Improves Wound Healing in MRSA Infected Excisional Wounds: An Animal Model Study. EurAsian J. BioSciences 2018, 12, 219–226. [Google Scholar]
- Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-Loaded Chitosan Nanofibers Prepared by Electrospinning Method for Burn Wound Healing in Animal Models. Life Sci. 2019, 229, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; Tyagi, P.; Bhatnagar, A.; Mittal, G.; Kumar, A. Optimization, Characterization, and Efficacy Evaluation of 2% Chitosan Scaffold for Tissue Engineering and Wound Healing. J. Pharm. Bioallied. Sci. 2016, 8, 300–308. [Google Scholar] [CrossRef]
- Pham, L.; Dang, L.H.; Truong, M.D.; Nguyen, T.H.; Le, L.; Le, V.T.; Nam, N.D.; Bach, L.G.; Nguyen, V.T.; Tran, N.Q. A Dual Synergistic of Curcumin and Gelatin on Thermal-Responsive Hydrogel Based on Chitosan-P123 in Wound Healing Application. Biomed. Pharmacother. 2019, 117, 109183. [Google Scholar] [CrossRef] [PubMed]
- Shabunin, A.S.; Yudin, V.E.; Dobrovolskaya, I.P.; Zinovyev, E.V.; Zubov, V.; Ivan’kova, E.M.; Morganti, P. Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications. Cosmetics 2019, 6, 16. [Google Scholar] [CrossRef]
- Tamer, T.M.; Collins, M.N.; Valachová, K.; Hassan, M.A.; Omer, A.M.; Mohy-Eldin, M.S.; Švík, K.; Jurčík, R.; Ondruška, Ľ.; Biró, C.; et al. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing. Materials 2018, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Asli, A.; Brouillette, E.; Ster, C.; Ghinet, M.G.; Brzezinski, R.; Lacasse, P.; Jacques, M.; Malouin, F. Antibiofilm and Antibacterial Effects of Specific Chitosan Molecules on Staphylococcus Aureus Isolates Associated with Bovine Mastitis. PLoS ONE 2017, 12, e0176988. [Google Scholar] [CrossRef]
- Türkmen, E.; Parmaksız, S.; Nigiz, Ş.; Sağıroğlu, M.; Şenel, S. A Safe Bioadhesive System for Topical Delivery of Combined Antimicrobials in Treatment of Skin Infections in Veterinary Medicine. J. Drug Deliv. Sci. Technol. 2023, 80, 104116. [Google Scholar] [CrossRef]
- Patil, P.S.; Fathollahipour, S.; Inmann, A.; Pant, A.; Amini, R.; Shriver, L.P.; Leipzig, N.D. Fluorinated Methacrylamide Chitosan Hydrogel Dressings Improve Regenerated Wound Tissue Quality in Diabetic Wound Healing. Adv. Wound Care 2019, 8, 374–385. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.-G.; Chen, W.-M.; Yu, A.-X. Efficacy of Thermosensitive Chitosan/Β-glycerophosphate Hydrogel Loaded with Β-cyclodextrin-curcumin for the Treatment of Cutaneous Wound Infection in Rats. Exp. Ther. Med. 2018, 15, 1304–1313. [Google Scholar] [CrossRef]
- Pal, A.; Vernon, B.L.; Nikkhah, M. Therapeutic Neovascularization Promoted by Injectable Hydrogels. Bioact. Mater. 2018, 3, 389–400. [Google Scholar] [CrossRef]
- Majima, T.; Irie, T.; Sawaguchi, N.; Funakoshi, T.; Iwasaki, N.; Harada, K.; Minami, A.; Nishimura, S.-I. Chitosan-Based Hyaluronan Hybrid Polymer Fibre Scaffold for Ligament and Tendon Tissue Engineering. Proc. Inst. Mech. Eng. H 2007, 221, 537–546. [Google Scholar] [CrossRef]
- Drewnowska, O.; Turek, B.; Carstanjen, B.; Gajewski, Z. Chitosan—A Promising Biomaterial in Veterinary Medicine. Pol. J. Vet. Sci. 2013, 16, 843–848. [Google Scholar] [CrossRef]
- Guo, A.; Zheng, Y.; Zhong, Y.; Mo, S.; Fang, S. Effect of Chitosan/Inorganic Nanomaterial Scaffolds on Bone Regeneration and Related Influencing Factors in Animal Models: A Systematic Review. Front. Bioeng. Biotechnol. 2022, 10, 986212. [Google Scholar] [CrossRef]
- Arca, H.Ç.; Şenel, S. Chitosan Based Systems for Tissue Engineering Part 1: Hard Tissues. Fabad J. Pharm. Sci. 2008, 33, 35–49. [Google Scholar]
- Levengood, S.K.L.; Zhang, M. Chitosan-Based Scaffolds for Bone Tissue Engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef]
- Santos, V.P.; Marques, N.S.S.; Maia, P.C.S.V.; de Lima, M.A.B.; de Franco, L.O.; de Campos-Takaki, G.M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. [Google Scholar] [CrossRef]
- Bao, W.; Li, M.; Yang, Y.; Wan, Y.; Wang, X.; Bi, N.; Li, C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front. Chem. 2020, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Vimalraj, S.; Lakshmanan, G.; Jindal, A.; Sundaramurthi, D.; Bhattacharya, J. Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. In Marine-Derived Biomaterials for Tissue Engineering Applications; Choi, A.H., Ben-Nissan, B., Eds.; Springer Series in Biomaterials Science and Engineering; Springer: Singapore, 2019; pp. 413–442. ISBN 9789811388552. [Google Scholar]
- Martins, A.M.; Pham, Q.P.; Malafaya, P.B.; Raphael, R.M.; Kasper, F.K.; Reis, R.L.; Mikos, A.G. Natural Stimulus Responsive Scaffolds/Cells for Bone Tissue Engineering: Influence of Lysozyme upon Scaffold Degradation and Osteogenic Differentiation of Cultured Marrow Stromal Cells Induced by CaP Coatings. Tissue Eng. Part A 2009, 15, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Sergi, R.; Bellucci, D.; Cannillo, V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials 2020, 13, 5560. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Kawakami, K.; Miyatake, K.; Morimoto, M.; Shigemasa, Y.; Minami, S. Analgesic Effects of Chitin and Chitosan. Carbohydr. Polym. 2002, 49, 249–252. [Google Scholar] [CrossRef]
- Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A Potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Han, B.; Shao, K.; Yu, M.; Liu, W. Analgesis and Wound Healing Effect of Chitosan and Carboxymethyl Chitosan on Scalded Rats. J. Ocean Univ. China 2014, 13, 837–841. [Google Scholar] [CrossRef]
- Adnan, S.; Ranjha, N.M.; Hanif, M.; Asghar, S. O-Carboxymethylated Chitosan; A Promising Tool with in-Vivo Anti-Inflammatory and Analgesic Properties in Albino Rats. Int. J. Biol. Macromol. 2020, 156, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Cleland, W.P. Opportunities and Obstacles in Veterinary Dental Drug Delivery. Adv. Drug Deliv. Rev. 2001, 50, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, M.J.; Kinder, J.E.; Fike, K.; Kojima, F.; Clopton, D.; Ogle, C.R.; Bunt, R.C. Recent Advances in Bovine Reproductive Endocrinology and Physiology and Their Impact on Drug Delivery System Design for the Control of the Estrous Cycle in Cattle. Adv. Drug Deliv. Rev. 2001, 50, 277–320. [Google Scholar] [CrossRef] [PubMed]
- Gruet, P.; Maincent, P.; Berthelot, X.; Kaltsatos, V. Bovine Mastitis and Intramammary Drug Delivery: Review and Perspectives. Adv. Drug Deliv. Rev. 2001, 50, 245–259. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.F.; Almeida, T.; de Melo Barbosa, R.; Cardoso, J.C.; Morsink, M.; Souto, E.B.; Severino, P. New Trends in Drug Delivery Systems for Veterinary Applications. Pharm. Nanotechnol. 2021, 9, 15–25. [Google Scholar] [CrossRef]
- Razali, S.; Bose, A.; Benetti, C.; Chong, P.W.; Miller, M.; Colombo, P.; Colombo, G.; Wong, T.W. Advanced Dome Cellulose/Alginate/Chitosan Composite Matrix Design with Gastric and Intestinal Co-Targeting Capacities. Int. J. Pharm. 2022, 628, 122226. [Google Scholar] [CrossRef]
- Janes, K.A.; Calvo, P.; Alonso, M.J. Polysaccharide Colloidal Particles as Delivery Systems for Macromolecules. Adv. Drug Deliv. Rev. 2001, 47, 83–97. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Farid, O.A.; Samir, A.; Mosaad, R.M. Preparation of Chitosan Antioxidant Nanoparticles as Drug Delivery System for Enhancing of Anti-Cancer Drug. Key Eng. Mater. 2018, 759, 92–97. [Google Scholar] [CrossRef]
- Kavithaa, K.; Paulpandi, M.; Ramya, S.; Ramesh, M.; Balachandar, V.; Ramasamy, K.; Narayanasamy, A. Sitosterol-Fabricated Chitosan Nanocomplex Induces Apoptotic Cell Death through Mitochondrial Dysfunction in Lung Cancer Animal Model: An Enhanced Synergetic Drug Delivery System for Lung Cancer Therapy. N. J. Chem. 2021, 45, 9251–9263. [Google Scholar] [CrossRef]
- Tasker, R.A.R.; Ross, S.J.; Dohoo, S.E.; Elson, C.M. Pharmacokinetics of an Injectable Sustained-Release Formulation of Morphine for Use in Dogs. J. Vet. Pharmacol. Ther. 1997, 20, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Albulov, A.I.; Frolova, M.A.; Grin, A.V.; Kovaleva, E.I.; Melnik, N.V.; Krasochko, P.A. Application of Chitosan in Veterinary Vaccine Production. Appl. Biochem. Microbiol. 2018, 54, 518–521. [Google Scholar] [CrossRef]
- Youssef, F.S.; El-Banna, H.A.; Elzorba, H.Y.; Galal, A.M. Application of Some Nanoparticles in the Field of Veterinary Medicine. Int. J. Vet. Sci. Med. 2019, 7, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Albulov, A.I.; Frolova, M.A.; Varlamov, V.P.; Kovaleva, E.I.; Eliseev, A.K. Effect of Chitosan as Part of Biologically Active Feeding BiHit on Economically Useful Features of Bees. Appl. Biochem. Microbiol. 2022, 58, 490–491. [Google Scholar] [CrossRef]
- Saleh, M.; Essawy, E.; Shaalan, M.; Osman, S.; Ahmed, F.; El-Matbouli, M. Therapeutic Intervention with Dietary Chitosan Nanoparticles Alleviates Fish Pathological and Molecular Systemic Inflammatory Responses against Infections. Mar. Drugs 2022, 20, 425. [Google Scholar] [CrossRef]
- Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O.J., Ed.; Advances in Polymer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–52. ISBN 978-3-319-26015-0. [Google Scholar]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Bhat, A.H.; Khan, I.; Usmani, M.A.; Umapathi, R.; Al-Kindy, S.M.Z. Cellulose an Ageless Renewable Green Nanomaterial for Medical Applications: An Overview of Ionic Liquids in Extraction, Separation and Dissolution of Cellulose. Int. J. Biol. Macromol. 2019, 129, 750–777. [Google Scholar] [CrossRef]
- Dugan, J.M.; Gough, J.E.; Eichhorn, S.J. Bacterial Cellulose Scaffolds and Cellulose Nanowhiskers for Tissue Engineering. Nanomedicine 2013, 8, 287–298. [Google Scholar] [CrossRef]
- Da Silva, I.G.R.; dos Pantoja, B.T.S.; Almeida, G.H.D.R.; Carreira, A.C.O.; Miglino, M.A. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 3955. [Google Scholar] [CrossRef]
- Gorgieva, S.; Trček, J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef]
- Costa, L.M.M.; de Olyveira, G.M.; Basmaji, P.; Filho, L.X. Bacterial Cellulose Towards Functional Medical Materials. J. Biomater. Tissue Eng. 2012, 2, 185–196. [Google Scholar] [CrossRef]
- Cherian, B.M.; Leão, A.L.; de Souza, S.F.; de Olyveira, G.M.; Costa, L.M.M.; Brandão, C.V.S.; Narine, S.S. Bacterial Nanocellulose for Medical Implants. In Advances in Natural Polymers: Composites and Nanocomposites; Thomas, S., Visakh, P.M., Mathew, A.P., Eds.; Advanced Structured Materials; Springer: Berlin, Heidelberg, 2013; pp. 337–359. ISBN 978-3-642-20940-6. [Google Scholar]
- Camargo, M.C.; Nogueira, R.M.B.; de Sanches, O.C.; da Saab, M.G.; Batista, A.; Vasconcelos, D.; Luvisotto, L.Y.; Lúcio, M.A.A. Applicability of Crystalline Cellulose Membrane in the Treatment of Skin Wounds Induced in Wistar Rats. Acta Cir. Bras. 2014, 29, 429–437. [Google Scholar] [CrossRef]
- Soliman, M.; Sadek, A.A.; Abdelhamid, H.N.; Hussein, K. Graphene Oxide-Cellulose Nanocomposite Accelerates Skin Wound Healing. Res. Vet. Sci. 2021, 137, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Jiji, S.; Udhayakumar, S.; Rose, C.; Muralidharan, C.; Kadirvelu, K. Thymol Enriched Bacterial Cellulose Hydrogel as Effective Material for Third Degree Burn Wound Repair. Int. J. Biol. Macromol. 2019, 122, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Jiji, S.; Udhayakumar, S.; Maharajan, K.; Rose, C.; Muralidharan, C.; Kadirvelu, K. Bacterial Cellulose Matrix with in Situ Impregnation of Silver Nanoparticles via Catecholic Redox Chemistry for Third Degree Burn Wound Healing. Carbohydr. Polym. 2020, 245, 116573. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, Z.; Abubaker, M.A.; Ding, L.; Zhang, J.; Yang, S.; Fan, Z. Antibacterial Polyvinyl Alcohol/Bacterial Cellulose/Nano-Silver Hydrogels That Effectively Promote Wound Healing. Mater. Sci. Eng. C 2021, 126, 112171. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, W.; Khan, T.; Ul-Islam, M.; Khan, R.; Hussain, Z.; Khalid, A.; Wahid, F. Development of Modified Montmorillonite-Bacterial Cellulose Nanocomposites as a Novel Substitute for Burn Skin and Tissue Regeneration. Carbohydr. Polym. 2019, 206, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, Y.; Maruo, T.; Nishiyama, Y.; Nemoto, Y.; Murayama, K.; Kayanuma, H.; Kawarai, S. Application of a Novel Carboxymethyl Cellulose-Based Mohs Sol–Gel on Malignant Wounds in Three Dogs. J. Vet. Med. Sci. 2021, 83, 385–389. [Google Scholar] [CrossRef]
- Bodea, I.M.; Cătunescu, G.M.; Stroe, T.F.; Dîrlea, S.A.; Beteg, F.I. Applications of Bacterial-Synthesized Cellulose in Veterinary Medicine—A Review. Acta Vet. Brno 2020, 88, 451–471. [Google Scholar] [CrossRef]
- Pang, M.; Huang, Y.; Meng, F.; Zhuang, Y.; Liu, H.; Du, M.; Ma, Q.; Wang, Q.; Chen, Z.; Chen, L.; et al. Application of Bacterial Cellulose in Skin and Bone Tissue Engineering. Eur. Polym. J. 2020, 122, 109365. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Yang, F.; Shao, Y.; Zhang, X.; Dai, K. Modification and Evaluation of Micro-Nano Structured Porous Bacterial Cellulose Scaffold for Bone Tissue Engineering. Mater. Sci. Eng. C 2017, 75, 1034–1041. [Google Scholar] [CrossRef]
- Sakamoto, A.; Qi, P.; Ohba, S.; Ohta, S.; Hara, Y.; Ogawa, T.; Tomokiyo, M.; Sasaki, A.; Takizawa, H.; Mochizuki, M.; et al. Bone Regeneration by Calcium Phosphate-Loaded Carboxymethyl Cellulose Nonwoven Sheets in Canine Femoral Condyle Defects. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1516–1521. [Google Scholar] [CrossRef]
- Wippermann, J.; Schumann, D.; Klemm, D.; Kosmehl, H.; Salehi-Gelani, S.; Wahlers, T. Preliminary Results of Small Arterial Substitute Performed with a New Cylindrical Biomaterial Composed of Bacterial Cellulose. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 592–596. [Google Scholar] [CrossRef]
- Schumann, D.A.; Wippermann, J.; Klemm, D.O.; Kramer, F.; Koth, D.; Kosmehl, H.; Wahlers, T.; Salehi-Gelani, S. Artificial Vascular Implants from Bacterial Cellulose: Preliminary Results of Small Arterial Substitutes. Cellulose 2009, 16, 877–885. [Google Scholar] [CrossRef]
- Fusco, D.; Meissner, F.; Podesser, B.K.; Marsano, A.; Grapow, M.; Eckstein, F.; Winkler, B. Small-Diameter Bacterial Cellulose-Based Vascular Grafts for Coronary Artery Bypass Grafting in a Pig Model. Front. Cardiovasc. Med. 2022, 9, 881557. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, R.B.; Mogharbel, B.F.; Francisco, J.C.; Miyague, N.I.; Irioda, A.C.; Souza, C.M.C.O.; Souza, D.; Stricker, P.E.F.; da Rosa, N.N.; Souza, C.F.; et al. Beneficial Roles of Cellulose Patch-Mediated Cell Therapy in Myocardial Infarction: A Preclinical Study. Cells 2021, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Entcheva, E.; Bien, H.; Yin, L.; Chung, C.-Y.; Farrell, M.; Kostov, Y. Functional Cardiac Cell Constructs on Cellulose-Based Scaffolding. Biomaterials 2004, 25, 5753–5762. [Google Scholar] [CrossRef]
- Chen, P.-H.; Liao, H.-C.; Hsu, S.-H.; Chen, R.-S.; Wu, M.-C.; Yang, Y.-F.; Wu, C.-C.; Chen, M.-H.; Su, W.-F. A Novel Polyurethane/Cellulose Fibrous Scaffold for Cardiac Tissue Engineering. RSC Adv. 2014, 5, 6932–6939. [Google Scholar] [CrossRef]
- Lv, X.; Yang, J.; Feng, C.; Li, Z.; Chen, S.; Xie, M.; Huang, J.; Li, H.; Wang, H.; Xu, Y. Bacterial Cellulose-Based Biomimetic Nanofibrous Scaffold with Muscle Cells for Hollow Organ Tissue Engineering. ACS Biomater. Sci. Eng. 2016, 2, 19–29. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, J.; Zhao, S.; Luo, H.; Yang, Z.; Gama, M.; Zhang, Q.; Su, D.; Wan, Y. Biocompatibility Evaluation of Bacterial Cellulose as a Scaffold Material for Tissue-Engineered Corneal Stroma. Cellulose 2020, 27, 2775–2784. [Google Scholar] [CrossRef]
- Han, Y.; Li, C.; Cai, Q.; Bao, X.; Tang, L.; Ao, H.; Liu, J.; Jin, M.; Zhou, Y.; Wan, Y.; et al. Studies on Bacterial Cellulose/Poly(Vinyl Alcohol) Hydrogel Composites as Tissue-Engineered Corneal Stroma. Biomed. Mater. 2020, 15, 035022. [Google Scholar] [CrossRef]
- Mujtaba, M.; Negi, A.; King, A.W.T.; Zare, M.; Kuncova-Kallio, J. Surface Modifications of Nanocellulose for Drug Delivery Applications; a Critical Review. Curr. Opin. Biomed. Eng. 2023, 28, 100475. [Google Scholar] [CrossRef]
- Varghese, R.T.; Cherian, R.M.; Chirayil, C.J.; Antony, T.; Kargarzadeh, H.; Thomas, S. Nanocellulose as an Avenue for Drug Delivery Applications: A Mini-Review. J. Compos. Sci. 2023, 7, 210. [Google Scholar] [CrossRef]
- Lai, Y.-H.E.; Morhard, R.; Ramanujam, N.; Nolan, M.W. Minimally Invasive Ethyl Cellulose Ethanol Ablation in Domesticated Cats with Naturally Occurring Head and Neck Cancers: Six Cats. Vet. Comp. Oncol. 2021, 19, 492–500. [Google Scholar] [CrossRef]
- Mills, P.C.; Cross, S.E. Transdermal Drug Delivery: Basic Principles for the Veterinarian. Vet. J. 2006, 172, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Sklenář, Z.; Vitková, Z.; Herdová, P.; Horáčková, K.; Šimunková, V. Formulation and Release of Alaptide from Cellulose-Based Hydrogels. Acta Vet. Brno 2013, 81, 301–306. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuang, Y.; Zhang, W.; Guo, Y.; Liu, X. Functionalized MoS2-Nanoparticles for Transdermal Drug Delivery of Atenolol. Drug Deliv. 2020, 27, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ε-Caprolactone Microspheres and Nanospheres: An Overview. Int. J. Pharm. 2004, 278, 1–23. [Google Scholar] [CrossRef]
- Conde, G.; de Carvalho, J.R.G.; do Dias, P.P.; Moranza, H.G.; Montanhim, G.L.; de Ribeiro, J.O.; Chinelatto, M.A.; Moraes, P.C.; Taboga, S.R.; Bertolo, P.H.L.; et al. In Vivo Biocompatibility and Biodegradability of Poly(Lactic Acid)/Poly(ε-Caprolactone) Blend Compatibilized with Poly(ε-Caprolactone-b-Tetrahydrofuran) in Wistar Rats. Biomed. Phys. Eng. Express 2021, 7, 035005. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Oh, Y.-I.; Park, K.-H.; Lee, J.-S.; Shim, J.-H.; Kang, B.-J. New Clinical Application of Three-Dimensional-Printed Polycaprolactone/β-Tricalcium Phosphate Scaffold as an Alternative to Allograft Bone for Limb-Sparing Surgery in a Dog with Distal Radial Osteosarcoma. J. Vet. Med. Sci. 2019, 81, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Plencner, M.; East, B.; Tonar, Z.; Otáhal, M.; Prosecká, E.; Rampichová, M.; Krejčí, T.; Litvinec, A.; Buzgo, M.; Míčková, A.; et al. Abdominal Closure Reinforcement by Using Polypropylene Mesh Functionalized with Poly-ε-Caprolactone Nanofibers and Growth Factors for Prevention of Incisional Hernia Formation. Int. J. Nanomed. 2014, 9, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- East, B.; Plencner, M.; Kralovic, M.; Rampichova, M.; Sovkova, V.; Vocetkova, K.; Otahal, M.; Tonar, Z.; Kolinko, Y.; Amler, E.; et al. A Polypropylene Mesh Modified with Poly-ε-Caprolactone Nanofibers in Hernia Repair: Large Animal Experiment. Int. J. Nanomed. 2018, 13, 3129–3143. [Google Scholar] [CrossRef] [PubMed]
- Chumnanvej, S.; Luangwattanawilai, T.; Rawiwet, V.; Suwanprateeb, J.; Rattanapinyopituk, K.; Huaijantug, S.; Yinharnmingmongkol, C.; Hemstapat, R. In Vivo Evaluation of Bilayer ORC/PCL Composites in a Rabbit Model for Using as a Dural Substitute. Neurol. Res. 2020, 42, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Fedorová, P.; Srnec, R.; Pěnčík, J.; Dvořák, M.; Krbec, M.; Nečas, A. Intra-articular reinforcement of a partially torn anterior cruciate ligament (ACL) using newly developed UHMWPE biomaterial in combination with Hexalon ACL/PCL screws: Ex-vivo mechanical testing of an animal knee model. Acta Chir. Orthop. Traumatol. Cech. 2015, 82, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Z.; Wang, S.-J.; Zhang, J.-Y.; Jiang, W.-B.; Huang, A.-B.; Qi, Y.-S.; Ding, J.-X.; Chen, X.-S.; Jiang, D.; Yu, J.-K. 3D-Printed Poly(ε-Caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Am. J. Sports Med. 2017, 45, 1497–1511. [Google Scholar] [CrossRef]
- Khojasteh, A.; Behnia, H.; Hosseini, F.S.; Dehghan, M.M.; Abbasnia, P.; Abbas, F.M. The Effect of PCL-TCP Scaffold Loaded with Mesenchymal Stem Cells on Vertical Bone Augmentation in Dog Mandible: A Preliminary Report. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 848–854. [Google Scholar] [CrossRef]
- Kalita, S.; Devi, B.; Kandimalla, R.; Sharma, K.K.; Sharma, A.; Kalita, K.; Kataki, A.C.; Kotoky, J. Chloramphenicol Encapsulated in Poly-ε-Caprolactone–Pluronic Composite: Nanoparticles for Treatment of MRSA-Infected Burn Wounds. Int. J. Nanomed. 2015, 10, 2971–2984. [Google Scholar] [CrossRef]
- Boia, R.; Dias, P.A.N.; Martins, J.M.; Galindo-Romero, C.; Aires, I.D.; Vidal-Sanz, M.; Agudo-Barriuso, M.; de Sousa, H.C.; Ambrósio, A.F.; Braga, M.E.M.; et al. Porous Poly(ε-Caprolactone) Implants: A Novel Strategy for Efficient Intraocular Drug Delivery. J. Control. Release 2019, 316, 331–348. [Google Scholar] [CrossRef]
- Rathbone, M.J.; Bunt, C.R.; Ogle, C.R.; Burggraaf, S.; Macmillan, K.L.; Pickering, K. Development of an Injection Molded Poly(ε-Caprolactone) Intravaginal Insert for the Delivery of Progesterone to Cattle. J. Control. Release 2002, 85, 61–71. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, T.L.; Júnior, J.E.M.; de Queiroz, L.P.; Ricardo, A.D.S.; Rocha, M.V.P. Polylactic Acid Production from Biotechnological Routes: A Review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef]
- Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Review of Multifarious Applications of Poly (Lactic Acid). Polym. -Plast. Technol. Eng. 2016, 55, 1057–1075. [Google Scholar] [CrossRef]
- Carvalho, J.R.G.; Conde, G.; Antonioli, M.L.; Santana, C.H.; Littiere, T.O.; Dias, P.P.; Chinelatto, M.A.; Canola, P.A.; Zara, F.J.; Ferraz, G.C. Long-Term Evaluation of Poly(Lactic Acid) (PLA) Implants in a Horse: An Experimental Pilot Study. Molecules 2021, 26, 7224. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.R.; Tekale, S.U.; Shisodia, S.U.; Totre, J.T.; Domb, A.J. Biomedical Applications of Poly(Lactic Acid). Recent Pat. Regen. Med. 2014, 4, 40–51. [Google Scholar] [CrossRef]
- Carvalho, J.R.G.; Conde, G.; Antonioli, M.L.; Dias, P.P.; Vasconcelos, R.O.; Taboga, S.R.; Canola, P.A.; Chinelatto, M.A.; Pereira, G.T.; Ferraz, G.C. Biocompatibility and Biodegradation of Poly(Lactic Acid) (PLA) and an Immiscible PLA/Poly(ε-Caprolactone) (PCL) Blend Compatibilized by Poly(ε-Caprolactone-b-Tetrahydrofuran) Implanted in Horses. Polym. J. 2020, 52, 629–643. [Google Scholar] [CrossRef]
- Valiño-Cultelli, V.; Varela-López, Ó.; González-Cantalapiedra, A. Does PRGF Work? A Prospective Clinical Study in Dogs with A Novel Polylactic Acid Scaffold Injected with PRGF Using the Modified Maquet Technique. Animals 2021, 11, 2404. [Google Scholar] [CrossRef]
- Valiño-Cultelli, V.; Varela-López, Ó.; González-Cantalapiedra, A. Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals 2021, 11, 1271. [Google Scholar] [CrossRef]
- Kurt, S.; Selviler-Sizer, S.; Onuk, B.; Kabak, M. Comparison of Sheep Scapula Models Created with Polylactic Acid and Thermoplastic Polyurethane Filaments by Three-Dimensional Modelling. Anat. Histol. Embryol. 2022, 51, 244–249. [Google Scholar] [CrossRef]
- Quinn-Gorham, D.; Khan, M.J. Thinking Outside of the Box: The Potential of 3D Printing in Veterinary Medicine. J. Vet. Sci. Technol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Hespel, A.-M.; Wilhite, R.; Hudson, J. Invited Review-Applications for 3d Printers in Veterinary Medicine. Vet. Radiol. Ultrasound 2014, 55, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Räihä, J.E.; Parchman, M.; Krook, L.; Vainionpää, S.; Mero, M.; Rokkanen, P.; Törmälä, P. Fixation of Trochanteric Osteotomies in Laboratory Beagles with Absorbable Screws of Polylactic Acid. Vet. Comp. Orthop. Traumatol. 1990, 03, 123–129. [Google Scholar] [CrossRef]
- Räihä, J.E.; Mero, M.; Morelius, M.; Rokkanen, P.; Törmälä, P. Intramedullary Nailing of Experimental Femoral Midshaft Osteotomies in Cats with Biodegradable Rods of Polylactic Acid. Vet. Comp. Orthop. Traumatol. 1992, 05, 71–75. [Google Scholar] [CrossRef]
- Räihä, J.E.; Axelson, P.; Skutnabb, K.; Rokkanen, P.; Törmälä, P. Fixation of Cancellous Bone and Physeal Fractures with Biodegradable Rods of Self-Reinforced Polylactic Acid. J. Small Anim. Pract. 1993, 34, 131–138. [Google Scholar] [CrossRef]
- Watcharaprapapong, P.; Nakkiew, W.; Wattanuchariya, W.; Chaijaruwanit, A.; Pitjamit, S. Effect of Forming Conditions of Poly-Lactic Acid/Hydroxyapatite to Tensile Strength of Canine Bone Fixation Plate Using Full Factorial Experimental Design. MATEC Web Conf. 2018, 192, 01049. [Google Scholar] [CrossRef]
- Yun, J.W.; Heo, S.Y.; Lee, M.H.; Lee, H.B. Evaluation of a Poly(Lactic-Acid) Scaffold Filled with Poly(Lactide-Co-Glycolide)/Hydroxyapatite Nanofibres for Reconstruction of a Segmental Bone Defect in a Canine Model. Vet. Med. 2019, 64, 531–538. [Google Scholar] [CrossRef]
- Oryan, A.; Hassanajili, S.; Sahvieh, S.; Azarpira, N. Effectiveness of Mesenchymal Stem Cell-Seeded onto the 3D Polylactic Acid/Polycaprolactone/Hydroxyapatite Scaffold on the Radius Bone Defect in Rat. Life Sci. 2020, 257, 118038. [Google Scholar] [CrossRef]
- Oryan, A.; Hassanajili, S.; Sahvieh, S. Effectiveness of a Biodegradable 3D Polylactic Acid/Poly(ε-Caprolactone)/Hydroxyapatite Scaffold Loaded by Differentiated Osteogenic Cells in a Critical-Sized Radius Bone Defect in Rat. J. Tissue Eng. Regen. Med. 2021, 15, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sahvieh, S.; Oryan, A.; Hassanajili, S.; Kamali, A. Role of Bone 1stem Cell–Seeded 3D Polylactic Acid/Polycaprolactone/Hydroxyapatite Scaffold on a Critical-Sized Radial Bone Defect in Rat. Cell Tissue Res. 2021, 383, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A. Effectiveness of Purmorphamine Loaded Biodegradable 3D Polylactic Acid/Polycaprolactone/Hydroxyapatite Scaffold in a Critical-Sized Radial Bone Defect in Rat. EC Orthop. 2022, 13, 6. [Google Scholar]
- Salehi, M.; Ai, A.; Ehterami, A.; Einabadi, M.; Taslimi, A.; Ai, A.; Akbarzadeh, H.; Ameli, G.J.; Farzamfar, S.; Shirian, S. In Vitro and In Vivo Investigation of Poly (Lactic Acid)/Hydroxyapatite Nanoparticle Scaffold Containing Nandrolone Decanoate for the Regeneration of Critical-Sized Bone Defects. Nanomed. J. 2020, 7, 115–123. [Google Scholar]
- Leonardi, F.; Angelone, M.; Biacca, C.; Battaglia, B.; Pecorari, L.; Conti, V.; Costa, G.L.; Ramoni, R.; Grolli, S. Platelet-Rich Plasma Combined with a Sterile 3D Polylactic Acid Scaffold for Postoperative Management of Complete Hoof Wall Resection for Keratoma in Four Horses. J. Equine Vet. Sci. 2020, 92, 103178. [Google Scholar] [CrossRef] [PubMed]
- XiuXiu, C.; WenJia, W.; QianQian, W.; XiangGuang, S.; Dian, Q.; Bin, D.; ZiSen, L.; BingHu, F.; ZhenLing, Z.; JianXin, C. Preparation of polylactic acid microspheres containing lactones from Venenum Bufonis, its slow-release characteristics and therapeutic effects on mycoplasmal pneumonia of swine. Chin. J. Vet. Sci. 2015, 35, 2014–2020. [Google Scholar]
- Bouriche, S.; Alonso-García, A.; Cárceles-Rodríguez, C.M.; Rezgui, F.; Fernández-Varón, E. Potential of Sustained Release Microparticles of Metformin in Veterinary Medicine: An in Vivo Pharmacokinetic Study of Metformin Microparticles as Oral Sustained Release Formulation in Rabbits. 2020; preprint. [Google Scholar] [CrossRef]
- Nabofa, W.E.E.; Alashe, O.O.; Oyeyemi, O.T.; Attah, A.F.; Oyagbemi, A.A.; Omobowale, T.O.; Adedapo, A.A.; Alada, A.R.A. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci. Rep. 2018, 8, 16649. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.E.; Medeiros, E.S.; Cardozo, L.; Voll, F.; Madureira, E.H.; Mattoso, L.H.C.; Assis, O.B.G. Development of Poly(Lactic Acid) Nanostructured Membranes for the Controlled Delivery of Progesterone to Livestock Animals. Mater. Sci. Eng. C 2013, 33, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Andrei, V.; Fiț, N.I.; Matei, I.; Barabás, R.; Bizo, L.A.; Cadar, O.; Boșca, B.A.; Farkas, N.-I.; Marincaș, L.; Muntean, D.-M.; et al. In Vitro Antimicrobial Effect of Novel Electrospun Polylactic Acid/Hydroxyapatite Nanofibres Loaded with Doxycycline. Materials 2022, 15, 6225. [Google Scholar] [CrossRef] [PubMed]
- Rességuier, J.; Delaune, E.; Coolen, A.-L.; Levraud, J.-P.; Boudinot, P.; Le Guellec, D.; Verrier, B. Specific and Efficient Uptake of Surfactant-Free Poly(Lactic Acid) Nanovaccine Vehicles by Mucosal Dendritic Cells in Adult Zebrafish after Bath Immersion. Front. Immunol. 2017, 8, 190. [Google Scholar] [CrossRef]
- Elsayed, R.E.; Madkour, T.M.; Azzam, R.A. Tailored-Design of Electrospun Nanofiber Cellulose Acetate/Poly(Lactic Acid) Dressing Mats Loaded with a Newly Synthesized Sulfonamide Analog Exhibiting Superior Wound Healing. Int. J. Biol. Macromol. 2020, 164, 1984–1999. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Yagi, H.; Tajima, K.; Kuroda, K.; Shinoda, M.; Kitago, M.; Abe, Y.; Oshima, G.; Hirukawa, K.; Itano, O. Efficacy of New Polylactic Acid Nonwoven Fabric as a Hemostatic Agent in a Rat Liver Resection Model. Surg. Innov. 2019, 26, 312–320. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly(Lactic-Co-Glycolic Acid) and Progress of Poly(Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Chereddy, K.K.; Payen, V.L.; Préat, V. PLGA: From a Classic Drug Carrier to a Novel Therapeutic Activity Contributor. J. Control. Release 2018, 289, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.M.; Morgan, T.W.; Astete, C.E.; Stout, R.W.; Coulon, D.; Mottram, P.; Sabliov, C.M. Biodistribution and Toxicity of Orally Administered Poly (Lactic-Co-Glycolic) Acid Nanoparticles to F344 Rats for 21 Days. Nanomedicine 2016, 11, 1653–1669. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, V.; Detampel, P.; Jirkof, P.; Puchkov, M.; Huwyler, J. Buprenorphine Loaded PLGA Microparticles: Characterization of a Sustained-Release Formulation. J. Drug Deliv. Sci. Technol. 2021, 63, 102558. [Google Scholar] [CrossRef]
- Swetledge, S.; Carter, R.; Stout, R.; Astete, C.E.; Jung, J.P.; Sabliov, C.M. Stability and Ocular Biodistribution of Topically Administered PLGA Nanoparticles. Sci Rep 2021, 11, 12270. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.L.; Crowley, A.J.; Schmidt, P.G.; Donoghue, A.R.; Piché, C.A. Long-Term Delivery of Ivermectin by Use of Poly(D,L-Lactic-Co-Glycolic)Acid Microparticles in Dogs. Am. J. Vet. Res. 2004, 65, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qin, T.; Huang, Y.; Zheng, S.; Bo, R.; Liu, Z.; Xing, J.; Hu, Y.; Liu, J.; Wang, D. Exploring the Immunopotentiation of Chinese Yam Polysaccharide Poly(Lactic-Co-Glycolic Acid) Nanoparticles in an Ovalbumin Vaccine Formulation in Vivo. Drug Deliv. 2017, 24, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, J.; Kang, K.; Xia, M.; Elaish, M.; Binjawadagi, B.; Ouyang, K.; Dhakal, S.; Arcos, J.; Torrelles, J.B.; Jiang, X.; et al. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS ONE 2016, 11, e0151922. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, P.; Wusiman, A.; Xu, S.; Ni, H.; Qiu, T.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. The Immunoenhancement Effects of Polyethylenimine-Modified Chinese Yam Polysaccharide-Encapsulated PLGA Nanoparticles as an Adjuvant. Int. J. Nanomed. 2020, 15, 5527–5543. [Google Scholar] [CrossRef]
- Wusiman, A.; Gu, P.; Liu, Z.; Xu, S.; Zhang, Y.; Hu, Y.; Liu, J.; Wang, D.; Huang, X. Cationic Polymer Modified PLGA Nanoparticles Encapsulating Alhagi Honey Polysaccharides as a Vaccine Delivery System for Ovalbumin to Improve Immune Responses. Int. J. Nanomed. 2019, 14, 3221–3234. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’heureux, N.; Fricain, J.-C.; Catros, S.; Le Nihouannen, D. Characterization of Printed PLA Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. Part A 2018, 106, 887–894. [Google Scholar] [CrossRef]
- Badylak, S.F. Extracellular Matrix as a Scaffold for Tissue Engineering in Veterinary Medicine: Applications to Soft Tissue Healing. Clin. Tech. Equine Pract. 2004, 3, 173–181. [Google Scholar] [CrossRef]
- Żywicka, B.; Krucińska, I.; Garcarek, J.; Szymonowicz, M.; Komisarczyk, A.; Rybak, Z. Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity. Molecules 2017, 22, 1852. [Google Scholar] [CrossRef]
- Virlan, M.J.R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.; Calenic, B. Current Uses of Poly(Lactic-Co-Glycolic Acid) in the Dental Field: A Comprehensive Review. J. Chem. 2015, 2015, e525832. [Google Scholar] [CrossRef]
- Ward, E. A Review of Tissue Engineering for Periodontal Tissue Regeneration. J. Vet. Dent. 2022, 39, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xu, C.; Wu, G.; Ye, Q.; Wang, C. Poly(Lactic-Co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers 2017, 9, 189. [Google Scholar] [CrossRef]
- Nantavisai, S.; Egusa, H.; Osathanon, T.; Sawangmake, C. Mesenchymal Stem Cell-Based Bone Tissue Engineering for Veterinary Practice. Heliyon 2019, 5, e02808. [Google Scholar] [CrossRef] [PubMed]
- Poblete-Castro, I.; Becker, J.; Dohnt, K.; dos Santos, V.M.; Wittmann, C. Industrial Biotechnology of Pseudomonas Putida and Related Species. Appl. Microbiol. Biotechnol. 2012, 93, 2279–2290. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, Synthesis and Medical Application of Bacterial Polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Zhang, J.; Shishatskaya, E.I.; Volova, T.G.; da Silva, L.F.; Chen, G.-Q. Polyhydroxyalkanoates (PHA) for Therapeutic Applications. Mater. Sci. Eng. C 2018, 86, 144–150. [Google Scholar] [CrossRef]
- Valappil, S.P.; Misra, S.K.; Boccaccini, A.R.; Roy, I. Biomedical Applications of Polyhydroxyalkanoates, an Overview of Animal Testing and in Vivo Responses. Expert Rev. Med. Devices 2006, 3, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Chen, G.-Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009, 37, 1–12. [Google Scholar] [CrossRef]
- Alves, E.G.L.; de Faria Rezende, C.M.; Serakides, R.; de Magalhães Pereira, M.; Rosado, I.R. Orthopedic Implant of a Polyhydroxybutyrate (PHB) and Hydroxyapatite Composite in Cats. J. Feline Med. Surg. 2011, 13, 546–552. [Google Scholar] [CrossRef]
- Reis, E.C.C.; Borges, A.P.B.; Fonseca, C.C.; Martinez, M.M.M.; Eleotério, R.B.; Morato, G.O.; Oliveira, P.M. Biocompatibility, Osteointegration, Osteoconduction, and Biodegradation of a Hydroxyapatite-Polyhydroxybutyrate Composite. Braz. Arch. Biol. Technol. 2010, 53, 817–826. [Google Scholar] [CrossRef]
- Petrovova, E.; Tomco, M.; Holovska, K.; Danko, J.; Kresakova, L.; Vdoviakova, K.; Simaiova, V.; Kolvek, F.; Hornakova, P.; Toth, T.; et al. PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects—An Experimental Animal Study. Polymers 2021, 13, 1232. [Google Scholar] [CrossRef]
- Pouton, C.W.; Akhtar, S. Biosynthetic Polyhydroxyalkanoates and Their Potential in Drug Delivery. Adv. Drug Deliv. Rev. 1996, 18, 133–162. [Google Scholar] [CrossRef]
- Giretova, M.; Medvecky, L.; Petrovova, E.; Cizkova, D.; Danko, J.; Mudronova, D.; Slovinska, L.; Bures, R. Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis. Appl. Biochem. Biotechnol. 2019, 189, 556–575. [Google Scholar] [CrossRef]
- Carlo, E.C.; Borges, A.P.B.; Del Carlo, R.J.; Martinez, M.M.M.; Oliveira, P.M.; Morato, G.O.; Eleotério, R.B.; Silva Reis, M.J. Comparison of In Vivo Properties of Hydroxyapatite-Polyhydroxybutyrate Composites Assessed for Bone Substitution. J. Craniofacial Surg. 2009, 20, 853. [Google Scholar] [CrossRef] [PubMed]
- Krucińska, I.; Żywicka, B.; Komisarczyk, A.; Szymonowicz, M.; Kowalska, S.; Zaczyńska, E.; Struszczyk, M.; Czarny, A.; Jadczyk, P.; Umińska-Wasiluk, B.; et al. Biological Properties of Low-Toxicity PLGA and PLGA/PHB Fibrous Nanocomposite Implants for Osseous Tissue Regeneration. Part I: Evaluation of Potential Biotoxicity. Molecules 2017, 22, 2092. [Google Scholar] [CrossRef]
- Pimentel, J.R.V. Sustained Release of Progesterone in Micro-Particles of PHB-V and PHB-V/PCL Produced in Super-Critical Environment; Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo: São Paulo, Brazil, 2010. [Google Scholar]
- Souza Filho, N.E.; Mariucci, V.V.G.; Dias, G.S.; Szpak, W.; Miguez, P.H.P.; Madureira, E.H.; Medina, A.N.; Baesso, M.L.; Bento, A.C. Photoacoustic Methods for In Vitro Study of Kinetics Progesterone Release from the Biodegradation of Polyhydroxybutyrate/Polycaprolactone Used as Intravaginal Devices. Appl. Phys. Lett. 2013, 103, 144104. [Google Scholar] [CrossRef]
- Parlane, N.A.; Rehm, B.H.A.; Wedlock, D.N.; Buddle, B.M. Novel Particulate Vaccines Utilizing Polyester Nanoparticles (Bio-Beads) for Protection against Mycobacterium Bovis Infection—A Review. Vet. Immunol. Immunopathol. 2014, 158, 8–13. [Google Scholar] [CrossRef]
- Laranja, J.L.Q.; Bossier, P. Poly-Beta-Hydroxybutyrate (PHB) and Infection Reduction in Farmed Aquatic Animals. In Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids; Goldfine, H., Ed.; Handbook of Hydrocarbon and Lipid Microbiology; Springer International Publishing: Cham, Switzerland, 2020; pp. 457–482. ISBN 978-3-030-15147-8. [Google Scholar]
- Qiao, G.; Chen, P.; Sun, Q.; Zhang, M.; Zhang, J.; Li, Z.; Li, Q. Poly-β-Hydroxybutyrate (PHB) in Bioflocs Alters Intestinal Microbial Community Structure, Immune-Related Gene Expression and Early Cyprinid Herpesvirus 2 Replication in Gibel Carp (Carassius auratus gibelio). Fish Shellfish. Immunol. 2020, 97, 72–82. [Google Scholar] [CrossRef] [PubMed]
- De Schryver, P.; Sinha, A.K.; Kunwar, P.S.; Baruah, K.; Verstraete, W.; Boon, N.; De Boeck, G.; Bossier, P. Poly-β-Hydroxybutyrate (PHB) Increases Growth Performance and Intestinal Bacterial Range-Weighted Richness in Juvenile European Sea Bass, Dicentrarchus Labrax. Appl. Microbiol. Biotechnol. 2010, 86, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.C.; Jesus, G.F.A.; Seiffert, W.Q.; Vieira, F.N.; Mouriño, J.L.P.; Jatobá, A.; Nolasco-Soria, H. The Effects of Dietary Supplementation with Butyrate and Polyhydroxybutyrate on the Digestive Capacity and Intestinal Morphology of Pacific White Shrimp (Litopenaeus vannamei). Mar. Freshw. Behav. Physiol. 2016, 49, 447–458. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Y.; Dong, H.; Zheng, X.; Wang, Y.; Li, H.; Liu, Q.; Zhang, J. Effect of Dietary Poly-β-Hydroxybutyrate (PHB) on Growth Performance, Intestinal Health Status and Body Composition of Pacific White Shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish. Immunol. 2017, 60, 520–528. [Google Scholar] [CrossRef]
- Situmorang, M.L.; De Schryver, P.; Dierckens, K.; Bossier, P. Effect of Poly-β-Hydroxybutyrate on Growth and Disease Resistance of Nile Tilapia Oreochromis Niloticus Juveniles. Vet. Microbiol. 2016, 182, 44–49. [Google Scholar] [CrossRef]
Polymer Type | Application |
---|---|
polyolefins | sliding surfaces of artificial joints |
poly(tetrafluoroethylene) | a vascular graft |
poly(vinyl chloride) | extracorporeal tubing or blood storage bags |
silicone | useful in ophthalmologic applications, fibrous capsule formation at breast implants |
methacrylates | applied in dentistry and orthopedics |
polyethers | for orthopedic applications and dialysis membranes |
polyesters | available in different shapes, from solid materials for orthopedic applications via meshes to drug-eluting coatings on vascular stents |
polyamides | for suture materials |
polyurethanes | for urinary catheters and ureteral stents |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broda, M.; Yelle, D.J.; Serwańska-Leja, K. Biodegradable Polymers in Veterinary Medicine—A Review. Molecules 2024, 29, 883. https://doi.org/10.3390/molecules29040883
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine—A Review. Molecules. 2024; 29(4):883. https://doi.org/10.3390/molecules29040883
Chicago/Turabian StyleBroda, Magdalena, Daniel J. Yelle, and Katarzyna Serwańska-Leja. 2024. "Biodegradable Polymers in Veterinary Medicine—A Review" Molecules 29, no. 4: 883. https://doi.org/10.3390/molecules29040883
APA StyleBroda, M., Yelle, D. J., & Serwańska-Leja, K. (2024). Biodegradable Polymers in Veterinary Medicine—A Review. Molecules, 29(4), 883. https://doi.org/10.3390/molecules29040883