Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section: Materials and Methods
3.1. General Considerations
3.2. General Procedure A for the Synthesis of EDPA Thioglycoside Donor 3 (a–f)
- 2-O-acetyl-3,4,6-tri-O-benzyl-α/β-d-mannopyranoside EDPA thioglycoside donor (2a): This was prepared according to general procedure A: a solution of 2-O-acetyl-3,4,6-tri-O-benzyl-d-mannopyranosyl thiol 1a [28] (1 g, 1.98 mmol, 1.0 equiv.) was coupled with diazo linker-1 [23] (0.608 g, 2.26 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2a (0.93 g, 67%, α:β = 10:1). Rf = 0.3 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 7.8 Hz, 2H), 7.31 (dq, J = 11.5, 5.9 Hz, 13H), 7.22–7.15 (m, 3H), 5.46 (s, 1H), 5.37 (s, 1H), 4.86 (d, J = 10.7 Hz, 1H), 4.69 (dd, J = 11.6, 7.3 Hz, 2H), 4.51 (dd, J = 20.5, 11.3 Hz, 4H), 4.38 (dt, J = 11.4, 6.9 Hz, 1H), 4.17 (dd, J = 8.7, 3.2 Hz, 1H), 3.97–3.88 (m, 2H), 3.84 (dd, J = 10.5, 4.5 Hz, 1H), 3.71 (d, J = 10.7 Hz, 1H), 2.99 (dt, J = 13.8, 6.9 Hz, 1H), 2.88 (dt, J = 13.7, 6.5 Hz, 1H), 2.17 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.44, 138.31, 138.18, 137.65, 129.07, 128.57, 128.46, 128.42, 128.30, 128.02, 127.99, 127.87, 127.80, 127.71, 126.01, 124.11, 83.31, 78.50, 75.35, 74.49, 73.52, 72.16, 72.05, 70.27, 68.77, 63.51, 30.37, 21.26. HRMS (ESI): calc. for C39H40N2NaO8S (M + Na): 719.2403; found: 719.2420.
- 2-O-acetyl-3,4,6-tri-O-benzyl-α/β-d-glucopyranoside EDPA thioglycoside donor (2b): This was prepared according to general procedure A: a solution of 2-O-acetyl-3,4,6-tri-O-benzyl-d-glucoopyranosyl thiol 1b [28] (0.5 g, 0.99 mmol, 1.0 equiv.) was coupled with diazo linker-1 [23] (0.291 g, 1.13 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2b (0.415 g, 61%, α:β = 1:10). Rf = 0.3 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 7.8 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.33–7.27 (m, 13H), 7.21–7.18 (m, 3H), 5.04 (t, J = 9.4 Hz, 1H), 4.81 (dd, J = 11.1, 9.1 Hz, 2H), 4.69 (d, J = 11.5 Hz, 1H), 4.59 (t, J = 11.7 Hz, 2H), 4.54 (d, J = 12.1 Hz, 1H), 4.48–4.40 (m, 3H), 3.77–3.66 (m, 5H), 3.52 (dq, J = 7.4, 2.2 Hz, 1H), 3.05 (ddd, J = 14.0, 7.7, 6.3 Hz, 1H), 2.88 (ddd, J = 13.9, 7.7, 6.2 Hz, 1H), 1.96 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.64, 164.72, 138.13, 138.07, 137.86, 128.94, 128.43, 128.39, 128.34, 128.02, 127.88, 127.87, 127.80, 127.74, 127.70, 127.59, 125.87, 125.38, 124.02, 84.21, 83.54, 79.47, 77.74, 75.23, 75.11, 73.51, 73.49, 71.62, 68.81, 64.17, 28.59, 20.89. HRMS (ESI): calc. for C39H40N2NaO8S (M + Na): 719.2403; found: 719.2421.
- 2,3,4,6-tetra-O-benzoyl-α/β-d-glucopyranoside EDPA thioglycoside donor (2c): This was prepared according to general procedure A: a solution of 2,3,4,6-tetra-O-benzoyl-d-glucopyranosyl thiol 1c [22] (0.25 g, 0.408 mmol, 1.0 equiv.) was coupled with diazo linker-1 [23] (0.132 g, 0.49 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2c (0.265 g, 81%, α:β = 1:8). Rf = 0.2 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 8.02 (dd, J = 8.5, 1.4 Hz, 2H), 7.98–7.90 (m, 5H), 7.82 (dd, J = 8.5, 1.4 Hz, 2H), 7.44 (d, J = 1.4 Hz, 1H), 7.42 (d, J = 1.9 Hz, 2H), 7.40 (s, 1H), 7.39–7.35 (m, 8H), 7.29 (d, J = 8.2 Hz, 2H), 7.22–7.17 (m, 1H), 5.93 (t, J = 9.5 Hz, 1H), 5.68 (t, J = 9.8 Hz, 1H), 5.57 (t, J = 9.7 Hz, 1H), 4.92 (d, J = 10.1 Hz, 1H), 4.66 (dd, J = 12.2, 3.0 Hz, 1H), 4.52–4.46 (m, 2H), 4.44–4.35 (m, 1H), 4.19 (ddd, J = 9.0, 5.5, 2.9 Hz, 1H), 3.10 (ddd, J = 14.1, 8.0, 6.2 Hz, 1H), 2.94 (ddd, J = 14.0, 7.9, 6.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 166.16, 165.84, 165.31, 165.29, 133.62, 133.51, 133.40, 133.22, 130.09, 130.03, 129.96, 129.84, 129.81, 129.79, 129.60, 129.07, 129.02, 128.81, 128.77, 128.55, 128.52, 128.46, 128.42, 126.05, 125.36, 124.16, 84.27, 76.56, 73.99, 70.57, 69.50, 64.01, 63.22, 29.23. HRMS (ESI): calc. for C44H36N2NaO11S (M + Na): 823.1938; found: 823.1956.
- 2,3,4,6-tetra-O-benzyl-α/β-d-mannopyranoside EDPA thioglycoside donor (2d): This was prepared according to general procedure A: a solution of 2,3,4,6-tetra-O-benzyl-d-mannopyranosyl thiol 1d [28] (0.25 g, 0.449 mmol, 1.0 equiv.) was coupled with diazo linker-1 [23] (0.139 g, 0.52 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2d (0.177 g, 53%, α:β=10:1). Rf = 0.4 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 7.47 (dd, J = 8.6, 1.2 Hz, 2H), 7.41–7.36 (m, 4H), 7.34 (t, J = 2.0 Hz, 1H), 7.31 (dd, J = 6.9, 2.3 Hz, 7H), 7.29–7.27 (m, 7H), 7.21–7.15 (m, 3H), 5.44 (s, 1H), 4.88 (d, J = 10.7 Hz, 1H), 4.73 (d, J = 12.3 Hz, 1H), 4.67 (s, 1H), 4.64 (s, 1H), 4.55 (d, J = 4.3 Hz, 2H), 4.51 (dd, J = 12.1, 7.8 Hz, 4H), 4.35–4.28 (m, 1H), 4.14–4.09 (m, 1H), 4.05–3.99 (m, 1H), 3.84–3.79 (m, 3H), 3.72 (dd, J = 10.8, 2.0 Hz, 1H), 2.99–2.91 (m, 1H), 2.82 (dt, J = 13.7, 6.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 164.91, 138.46, 138.35, 138.23, 138.01, 129.08, 128.49, 128.43, 128.38, 128.07, 127.92, 127.84, 127.83, 127.79, 127.72, 127.59, 126.00, 125.46, 124.09, 82.42, 80.18, 76.07, 75.26, 74.98, 73.43, 72.31, 72.19, 72.04, 69.12, 63.23, 30.10. HRMS (ESI): calc. for C44H44N2NaO7S (M + Na): 767.2767; found: 767.2784.
- 2-O-acetyl-3,4,6-tri-O-benzyl-α/β-d-mannopyranoside 4-OMe-EDPA thioglycoside donor (2e): This was prepared according to general procedure A: a solution of 2-O-acetyl-3,4,6-tri-O-benzyl-d-mannopyranosyl thiol 1a [28] (0.1 g, 0.197 mmol, 1.0 equiv.) was coupled with diazo linker-2 [25] (0.068 g, 0.226 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2e (0.087 g, 61%, α:β = 10:1). Rf = 0.3 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 7.38–7.35 (m, 3H), 7.33–7.27 (m, 17H), 7.16 (dd, J = 7.2, 2.3 Hz, 3H), 6.95–6.92 (m, 2H), 5.45 (dd, J = 3.0, 1.7 Hz, 1H), 5.35 (d, J = 1.6 Hz, 1H), 4.85 (d, J = 10.7 Hz, 1H), 4.68 (dd, J = 11.6, 6.2 Hz, 3H), 4.52 (d, J = 11.1 Hz, 1H), 4.50–4.45 (m, 4H), 4.35 (dt, J = 11.3, 7.0 Hz, 1H), 3.93–3.89 (m, 2H), 3.80 (s, 3H), 3.70 (dd, J = 10.7, 2.1 Hz, 1H), 2.97 (dt, J = 13.8, 7.0 Hz, 1H), 2.90–2.82 (m, 1H), 2.16 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.46, 158.21, 138.32, 138.19, 137.65, 128.57, 128.45, 128.42, 128.30, 128.28, 128.05, 128.01, 127.99, 127.96, 127.91, 127.88, 127.80, 127.72, 126.14, 116.78, 114.72, 114.37, 114.22, 114.16, 83.28, 78.49, 77.34, 75.34, 74.49, 73.57, 73.51, 72.14, 72.04, 70.27, 68.77, 63.48, 55.45, 55.41, 49.57, 30.35, 29.81, 21.23, 21.17, 14.30, 14.24.
- 2-O-acetyl-3,4,6-tri-O-benzyl-α/β-d-mannopyranoside 4-NO2-EDPA thioglycoside donor (2f): This was prepared according to general procedure A: a solution of 2-O-acetyl-3,4,6-tri-O-benzyl-d-mannopyranosyl thiol 1a [28] (0.1 g, 0.196 mmol, 1.0 equiv.) was coupled with diazo linker-3 (0.071 g, 0.226 mmol, 1.15 equiv.) to afford EDPA thioglycoside donor 2f (0.063 g, 43%, α:β = 10:1). Rf = 0.2 (hexane:ethyl acetate = 80:20). 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 9.1 Hz, 2H), 7.64 (d, J = 9.1 Hz, 2H), 7.31 (q, J = 7.9 Hz, 13H), 7.19–7.13 (m, 2H), 5.43 (s, 1H), 5.35 (s, 1H), 4.85 (d, J = 10.7 Hz, 1H), 4.70–4.62 (m, 2H), 4.53 (d, J = 11.1 Hz, 2H), 4.49 (d, J = 4.7 Hz, 1H), 4.46 (d, J = 3.2 Hz, 1H), 4.41 (dt, J = 11.3, 6.8 Hz, 1H), 4.15 (dd, J = 7.6, 4.5 Hz, 1H), 3.94–3.86 (m, 2H), 3.81 (dd, J = 10.7, 4.6 Hz, 1H), 3.72–3.68 (m, 1H), 2.99 (dt, J = 13.7, 6.8 Hz, 1H), 2.88 (dt, J = 13.6, 6.4 Hz, 1H), 2.17 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.28, 163.25, 145.09, 138.13, 138.05, 137.49, 133.64, 128.43, 128.33, 128.27, 128.10, 127.88, 127.86, 127.70, 127.64, 127.57, 124.27, 123.19, 83.15, 78.32, 75.23, 74.43, 73.38, 72.14, 71.93, 70.17, 68.79, 63.82, 30.17, 21.05. HRMS (ESI): calc. for C39H39N3NaO10S (M + Na): 764.2254; found: 764.2269.
3.3. General Procedure B for the Activation of EDPA Thioglycosides for the Synthesis of Disaccharides (4–27)
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6)-2,3,4-tri-O-benzyl-α-d-glucopyranoside (4): Following general procedure B, glycosyl acceptor 3a (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 4 (43.0 mg, 45.8 μmol, 88% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.38–7.35 (m, 2H), 7.34–7.30 (m, 10H), 7.29–7.26 (m, 10H), 7.25–7.23 (m, 3H), 7.20 (dd, J = 5.5, 2.1 Hz, 2H), 7.15 (dd, J = 7.5, 2.0 Hz, 1H), 7.13 (dd, J = 7.2, 2.1 Hz, 2H), 5.39 (td, J = 3.8, 1.9 Hz, 1H), 4.99 (d, J = 10.8 Hz, 1H), 4.90 (d, J = 1.9 Hz, 1H), 4.88–4.86 (m, 1H), 4.86–4.84 (m, 1H), 4.79 (d, J = 4.1 Hz, 1H), 4.78 (d, J = 5.3 Hz, 1H), 4.70–4.69 (m, 1H), 4.67 (s, 1H), 4.64–4.62 (m, 1H), 4.58 (d, J = 3.5 Hz, 1H), 4.53 (d, J = 6.0 Hz, 1H), 4.52–4.49 (m, 1H), 4.48 (s, 1H), 4.46 (d, J = 3.5 Hz, 1H), 4.43 (d, J = 8.6 Hz, 1H), 3.98 (t, J = 9.3 Hz, 1H), 3.91 (dd, J = 9.5, 3.2 Hz, 1H), 3.86 (t, J = 9.5 Hz, 1H), 3.81–3.78 (m, 1H), 3.73–3.70 (m, 3H), 3.66 (dd, J = 10.8, 4.2 Hz, 1H), 3.63 (dd, J = 11.4, 1.9 Hz, 1H), 3.54 (ddd, J = 13.3, 10.2, 2.8 Hz, 2H), 3.45–3.41 (m, 1H), 3.32 (s, 3H), 2.13 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.31, 138.67, 138.50, 138.27, 138.20, 138.16, 138.09, 137.76, 128.45, 128.38, 128.34, 128.31, 128.24, 128.21, 128.15, 128.09, 128.07, 128.00, 127.92, 127.89, 127.86, 127.75, 127.72, 127.66, 127.63, 127.61, 127.59, 127.52, 127.48, 97.99, 97.78, 82.07, 80.07, 77.61, 77.58, 75.75, 75.12, 75.03, 74.90, 74.48, 74.17, 73.48, 73.32, 71.79, 71.57, 71.45, 71.38, 69.62, 68.90, 68.67, 68.48, 66.07, 55.08, 21.12. The data are identical to the literature report [29].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6)-2,3,4-tri-O-benzyl-α-d-mannopyranoside (5): Following general procedure B, glycosyl acceptor 3b (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 5 (39.0 mg, 41.5 μmol, 81% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.39–7.36 (m, 2H), 7.34–7.27 (m, 21H), 7.24–7.22 (m, 4H), 7.16–7.11 (m, 3H), 5.48–5.45 (m, 1H), 4.96 (d, J = 2.1 Hz, 1H), 4.91 (d, J = 11.2 Hz, 1H), 4.86 (dd, J = 10.9, 3.4 Hz, 1H), 4.73–4.70 (m, 3H), 4.67–4.65 (m, 1H), 4.64 (d, J = 3.9 Hz, 1H), 4.59 (d, J = 1.2 Hz, 2H), 4.55 (d, J = 6.9 Hz, 1H), 4.50 (d, J = 3.6 Hz, 1H), 4.48–4.46 (m, 2H), 4.44 (d, J = 4.3 Hz, 1H), 3.96 (dd, J = 9.2, 3.2 Hz, 1H), 3.91 (d, J = 9.4 Hz, 1H), 3.87 (t, J = 2.3 Hz, 2H), 3.80–3.77 (m, 2H), 3.72 (d, J = 5.2 Hz, 1H), 3.70 (t, J = 3.3 Hz, 1H), 3.67 (s, 1H), 3.59 (dd, J = 10.8, 1.9 Hz, 1H), 3.25 (s, 3H), 2.14 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.28, 138.59, 138.45, 138.42, 138.30, 138.28, 137.82, 128.38, 128.35, 128.32, 128.30, 128.28, 128.23, 128.19, 128.06, 127.92, 127.86, 127.81, 127.76, 127.72, 127.62, 127.60, 127.53, 127.48, 127.43, 98.69, 97.94, 80.25, 77.56, 75.12, 74.99, 74.94, 74.59, 74.53, 74.47, 74.18, 73.48, 73.32, 72.58, 71.97, 71.79, 71.39, 71.35, 71.31, 70.90, 69.18, 68.90, 68.72, 68.52, 66.70, 54.64, 21.12. The data are identical to the literature report [30].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-α-d-glucopyranoside (6): Following general procedure B, glycosyl acceptor 3c (25.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (52.0 mg, 75.0 μmol) to afford 6 (34.0 mg, 34.7 μmol, 70% yield) as a colorless viscous oil. Rf = 0.2 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.98 (dd, J = 8.5, 1.3 Hz, 2H), 7.94 (dd, J = 8.5, 1.3 Hz, 2H), 7.87 (dd, J = 8.4, 1.4 Hz, 2H), 7.50 (ddt, J = 14.1, 7.1, 1.3 Hz, 2H), 7.46–7.41 (m, 2H), 7.41–7.35 (m, 3H), 7.33–7.27 (m, 15H), 7.16 (dd, J = 7.4, 2.1 Hz, 2H), 6.13 (t, J = 9.9 Hz, 1H), 5.56 (t, J = 9.9 Hz, 1H), 5.33 (dd, J = 3.3, 1.8 Hz, 1H), 5.26 (dd, J = 10.2, 3.7 Hz, 1H), 5.19 (d, J = 3.7 Hz, 1H), 4.87–4.83 (m, 2H), 4.60 (d, J = 2.2 Hz, 1H), 4.57 (s, 1H), 4.46 (d, J = 7.3 Hz, 1H), 4.43 (d, J = 7.7 Hz, 1H), 4.38 (d, J = 12.0 Hz, 1H), 4.20 (ddd, J = 10.2, 5.4, 3.2 Hz, 1H), 3.94 (dd, J = 9.3, 3.4 Hz, 1H), 3.91–3.86 (m, 1H), 3.84 (d, J = 9.5 Hz, 1H), 3.74–3.69 (m, 1H), 3.69–3.65 (m, 1H), 3.63 (dd, J = 11.6, 3.7 Hz, 1H), 3.53 (dd, J = 10.7, 1.9 Hz, 1H), 3.39 (s, 3H), 2.13 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.30, 165.79, 165.15, 138.56, 138.18, 137.97, 133.31, 133.03, 129.92, 129.67, 129.24, 129.07, 128.94, 128.40, 128.38, 128.32, 128.25, 128.22, 128.12, 127.79, 127.71, 127.66, 127.50, 127.48, 97.88, 77.84, 77.21, 75.01, 74.15, 73.30, 72.09, 71.73, 71.45, 70.48, 69.64, 68.65, 68.60, 68.05, 66.30, 55.49, 21.09. The data are identical to the literature report [30].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-α-d-mannopyranoside (7): Following general procedure B, glycosyl acceptor 3d (25.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (52.0 mg, 75.0 μmol) to afford 7 (36.0 mg, 36.7 μmol, 73% yield) as a colorless viscous oil. Rf = 0.2 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 7.7 Hz, 2H), 7.96 (d, J = 7.9 Hz, 2H), 7.82 (d, J = 7.6 Hz, 2H), 7.62–7.51 (m, 1H), 7.44 (dt, J = 15.1, 7.8 Hz, 4H), 7.30 (dd, J = 19.6, 5.3 Hz, 17H), 7.19–7.09 (m, 2H), 5.97–5.76 (m, 2H), 5.65 (s, 1H), 5.34 (s, 1H), 4.91 (d, J = 16.7 Hz, 2H), 4.83 (d, J = 11.1 Hz, 1H), 4.65–4.29 (m, 6H), 4.27–4.17 (m, 1H), 4.00–3.81 (m, 3H), 3.71 (dd, J = 23.6, 11.8 Hz, 3H), 3.54 (d, J = 11.2 Hz, 1H), 3.45 (s, 3H), 2.12 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.47, 165.66, 165.60, 165.53, 138.64, 138.24, 138.03, 133.64, 133.50, 133.25, 130.02, 129.99, 129.87, 129.48, 129.23, 129.14, 128.75, 128.59, 128.55, 128.48, 128.40, 128.38, 128.24, 128.18, 128.11, 128.03, 127.96, 127.92, 127.89, 127.82, 127.67, 98.63, 98.02, 78.25, 75.21, 74.21, 73.44, 71.76, 71.58, 70.63, 70.13, 69.18, 68.65, 68.60, 67.60, 66.83, 55.54, 21.27. The data are identical to the literature report [31].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-d-glucopyranoside (8): Following general procedure B, glycosyl acceptor 3e (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 8 (33.0 mg, 35.1 μmol, 67% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.38–7.34 (m, 1H), 7.33 (d, J = 1.9 Hz, 3H), 7.31–7.26 (m, 21H), 7.25–7.19 (m, 3H), 7.16–7.13 (m, 2H), 5.48–5.44 (m, 1H), 5.42 (d, J = 2.2 Hz, 1H), 5.04 (d, J = 11.2 Hz, 1H), 4.81 (d, J = 10.8 Hz, 1H), 4.76–4.72 (m, 1H), 4.67 (d, J = 18.7 Hz, 1H), 4.62 (d, J = 2.8 Hz, 1H), 4.59 (d, J = 2.3 Hz, 2H), 4.54 (d, J = 11.8 Hz, 2H), 4.48–4.41 (m, 3H), 4.41–4.34 (m, 2H), 3.93 (t, J = 9.1 Hz, 1H), 3.88–3.85 (m, 1H), 3.85–3.80 (m, 2H), 3.72 (s, 1H), 3.69 (t, J = 4.2 Hz, 2H), 3.67–3.63 (m, 1H), 3.54 (dd, J = 9.5, 3.5 Hz, 1H), 3.50 (dd, J = 10.8, 1.9 Hz, 1H), 3.38 (s, 3H), 1.98 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.85, 138.52, 138.45, 138.20, 137.97, 137.92, 128.44, 128.30, 128.24, 128.20, 128.14, 128.05, 127.93, 127.88, 127.82, 127.61, 127.56, 127.53, 127.40, 127.27, 127.25, 99.30, 97.76, 81.74, 80.05, 78.20, 77.22, 75.71, 75.13, 75.09, 74.02, 73.44, 73.27, 72.41, 71.67, 69.57, 69.20, 68.72, 55.28, 20.95. The data are identical to the literature report [30].
- p-Methoxyphenyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranoside (9): Following general procedure B, glycosyl acceptor 3f (6.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 9 (22.0 mg, 36.8 μmol, 76% yield) as a colorless viscous oil. Rf = 0.5 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.38–7.27 (m, 13H), 7.18 (dd, J = 7.8, 1.7 Hz, 2H), 7.01–6.97 (m, 2H), 6.81–6.78 (m, 2H), 5.55 (dd, J = 3.4, 2.0 Hz, 1H), 5.46 (d, J = 2.0 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 4.77 (d, J = 11.1 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 11.1 Hz, 1H), 4.52 (d, J = 10.7 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 4.19 (dd, J = 9.0, 3.4 Hz, 1H), 4.00 (t, J = 9.5 Hz, 1H), 3.96 (ddd, J = 9.8, 4.1, 1.8 Hz, 1H), 3.82 (dd, J = 10.8, 4.1 Hz, 1H), 3.76 (s, 3H), 3.68 (dd, J = 10.8, 1.9 Hz, 1H), 2.18 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.44, 155.10, 149.95, 138.31, 138.13, 137.87, 128.43, 128.32, 128.27, 128.09, 127.84, 127.80, 127.78, 127.65, 127.57, 117.81, 114.57, 96.86, 78.02, 75.22, 74.16, 73.35, 71.97, 71.86, 68.68, 68.65, 55.60, 21.12. The data are identical to the literature report [32].
- l-Menthyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranoside (10): Following general procedure B, glycosyl acceptor 3g (8.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 10 (22.0 mg, 36.8 μmol, 74% yield) as a colorless viscous oil. Rf = 0.6 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.39–7.26 (m, 13H), 7.18 (dd, J = 7.4, 2.1 Hz, 2H), 5.26 (dd, J = 3.3, 1.9 Hz, 1H), 4.94–4.86 (m, 2H), 4.71 (dd, J = 11.7, 6.6 Hz, 2H), 4.58 (d, J = 11.3 Hz, 1H), 4.50 (dd, J = 11.4, 10.0 Hz, 2H), 4.02–3.95 (m, 2H), 3.91–3.80 (m, 2H), 3.71 (dd, J = 10.6, 1.9 Hz, 1H), 3.35 (td, J = 10.6, 4.3 Hz, 1H), 2.16 (s, 3H), 2.05 (pd, J = 7.0, 2.5 Hz, 1H), 1.66–1.57 (m, 2H), 1.41–1.31 (m, 1H), 1.24–1.15 (m, 1H), 1.03–0.90 (m, 5H), 0.85 (d, J = 6.5 Hz, 3H), 0.78 (d, J = 7.0 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 170.58, 138.40, 138.31, 137.98, 128.37, 128.32, 128.25, 128.08, 127.92, 127.72, 127.70, 127.62, 127.50, 99.27, 81.63, 77.97, 75.19, 74.62, 73.36, 71.76, 71.41, 69.34, 69.05, 48.55, 42.71, 34.26, 31.58, 25.84, 23.30, 22.20, 21.20, 21.02, 16.31. The data are identical to the literature report [33].
- Adamantanyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranoside (11): Following general procedure B, glycosyl acceptor 3h (8.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 11 (28.0 mg, 44.8 μmol, 84% yield) as a colorless viscous oil. Rf = 0.7 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.37–7.26 (m, 12H), 7.17 (dd, J = 7.4, 2.1 Hz, 2H), 5.27 (d, J = 2.1 Hz, 1H), 5.18 (dd, J = 3.3, 2.0 Hz, 1H), 4.86 (d, J = 10.6 Hz, 1H), 4.73–4.68 (m, 2H), 4.55 (d, J = 11.1 Hz, 1H), 4.48 (dd, J = 11.3, 4.4 Hz, 2H), 4.08–3.99 (m, 2H), 3.90 (t, J = 9.6 Hz, 1H), 3.83 (dd, J = 10.6, 4.2 Hz, 1H), 3.68 (dd, J = 10.6, 2.0 Hz, 1H), 2.15 (s, 3H), 2.14–2.10 (m, 3H), 1.79 (d, J = 2.0 Hz, 6H), 1.64–1.55 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 170.75, 138.46, 138.35, 138.11, 128.35, 128.30, 128.22, 128.06, 127.94, 127.69, 127.65, 127.59, 127.46, 90.95, 78.24, 75.20, 75.03, 74.68, 73.36, 71.71, 70.91, 70.44, 69.07, 42.28, 36.20, 30.59, 21.24. The data are identical to the literature report [33].
- Cholesteryl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranoside (12): Following general procedure B, glycosyl acceptor 3i (19.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 75.0 μmol) to afford 12 (34.0 mg, 40.8 μmol, 83% yield) as a colorless viscous oil. Rf = 0.7 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.38–7.27 (m, 12H), 7.19–7.15 (m, 2H), 5.34 (dd, J = 3.4, 1.8 Hz, 1H), 5.29 (dd, J = 4.8, 2.7 Hz, 1H), 5.01 (d, J = 1.8 Hz, 1H), 4.86 (d, J = 10.6 Hz, 1H), 4.71 (dd, J = 11.5, 9.0 Hz, 2H), 4.55 (d, J = 11.1 Hz, 1H), 4.50 (d, J = 9.3 Hz, 1H), 4.48 (d, J = 8.0 Hz, 1H), 4.03 (dt, J = 6.1, 3.3 Hz, 1H), 3.92–3.89 (m, 2H), 3.85–3.81 (m, 1H), 3.72 (dd, J = 10.6, 1.3 Hz, 1H), 3.49 (dq, J = 10.9, 5.6 Hz, 1H), 2.35–2.27 (m, 2H), 2.15 (s, 3H), 2.05–1.97 (m, 2H), 1.95–1.81 (m, 4H), 1.61–1.42 (m, 8H), 1.41–1.30 (m, 4H), 1.29–1.24 (m, 2H), 1.13 (ddt, J = 15.7, 9.9, 5.6 Hz, 6H), 1.00 (s, 4H), 0.92 (d, J = 6.5 Hz, 3H), 0.88 (dd, J = 6.6, 1.8 Hz, 6H), 0.68 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.58, 140.54, 138.37, 138.25, 138.06, 128.36, 128.32, 128.26, 128.03, 127.95, 127.78, 127.67, 127.63, 127.52, 121.92, 109.99, 95.81, 78.35, 77.22, 75.24, 74.49, 73.38, 71.76, 71.32, 69.31, 68.93, 56.75, 56.14, 50.07, 42.31, 39.84, 39.75, 39.52, 36.96, 36.67, 36.19, 35.78, 31.93, 31.87, 28.23, 28.01, 27.68, 24.29, 23.82, 22.82, 22.57, 21.18, 21.04, 19.33, 18.72, 11.86. The data are identical to the literature report [33].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl-(1→6)-2,3,4-tri-O-benzyl-α-d-glucopyranoside (13): Following general procedure B, glycosyl acceptor 3a (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (54.0 mg, 75.0 μmol) to afford 13 (33.0 mg, 35.2 μmol, 68% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.35 (dd, J = 8.2, 1.6 Hz, 2H), 7.33–7.29 (m, 16H), 7.29–7.25 (m, 9H), 7.24 (s, 1H), 7.18 (dd, J = 7.4, 2.1 Hz, 2H), 5.05 (t, J = 8.6 Hz, 1H), 4.97 (d, J = 11.1 Hz, 1H), 4.83 (d, J = 10.8 Hz, 1H), 4.80–4.76 (m, 4H), 4.65 (dd, J = 11.8, 5.1 Hz, 2H), 4.59–4.55 (m, 3H), 4.55–4.51 (m, 2H), 4.39 (d, J = 8.1 Hz, 1H), 4.09 (dd, J = 10.8, 2.0 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 3.78–3.74 (m, 1H), 3.73 (dd, J = 11.1, 2.1 Hz, 1H), 3.69–3.61 (m, 4H), 3.52 (dd, J = 9.6, 3.6 Hz, 1H), 3.50–3.47 (m, 1H), 3.44 (t, J = 9.5 Hz, 1H), 3.35 (s, 3H), 1.87 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.17, 138.83, 138.25, 138.14, 138.09, 137.81, 128.44, 128.42, 128.33, 128.15, 128.01, 127.89, 127.86, 127.83, 127.73, 127.72, 127.65, 127.56, 127.51, 100.95, 98.00, 79.82, 78.03, 77.74, 75.66, 75.36, 75.04, 75.00, 74.86, 73.43, 73.41, 72.93, 69.70, 68.81, 67.90, 55.06, 20.93. The data are identical to the literature report [33].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl-(1→6)-2,3,4-tri-O-benzyl-α-d-mannopyranoside (14): Following general procedure B, glycosyl acceptor 3b (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (54.0 mg, 75.0 μmol) to afford 14 (39.0 mg, 41.6 μmol, 81% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.36 (dd, J = 8.3, 1.9 Hz, 2H), 7.34–7.27 (m, 26H), 7.18 (dd, J = 7.3, 2.2 Hz, 2H), 5.04 (dd, J = 9.5, 7.9 Hz, 1H), 4.91 (d, J = 11.2 Hz, 1H), 4.78 (d, J = 11.7 Hz, 2H), 4.72 (s, 2H), 4.68 (s, 2H), 4.65–4.63 (m, 1H), 4.61 (s, 1H), 4.58 (s, 3H), 4.55 (s, 1H), 4.51 (d, J = 7.3 Hz, 1H), 4.44 (t, J = 8.6 Hz, 2H), 4.18–4.14 (m, 1H), 3.88–3.85 (m, 1H), 3.77 (dd, J = 3.1, 1.9 Hz, 1H), 3.75–3.71 (m, 3H), 3.68 (d, J = 3.8 Hz, 1H), 3.66 (t, J = 2.2 Hz, 1H), 3.63 (s, 1H), 3.29 (s, 3H), 1.92 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.31, 138.43, 138.25, 138.17, 137.97, 128.39, 128.38, 128.34, 128.32, 127.97, 127.89, 127.82, 127.79, 127.75, 127.69, 127.67, 127.64, 127.57, 127.53, 101.31, 98.83, 82.95, 80.29, 78.00, 77.21, 75.21, 75.04, 74.98, 74.94, 74.81, 74.45, 73.49, 73.10, 72.72, 72.07, 71.51, 68.91, 68.69, 54.58, 20.91. The data are identical to the literature report [34].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-α-d-glucopyranoside (15): Following general procedure B, glycosyl acceptor 3c (25.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (52.0 mg, 75.0 μmol) to afford 15 (36.0 mg, 36.7 μmol, 74% yield) as a colorless viscous oil. Rf = 0.2 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.99–7.97 (m, 2H), 7.94–7.92 (m, 2H), 7.85 (dd, J = 8.5, 1.3 Hz, 2H), 7.51 (td, J = 7.3, 1.4 Hz, 2H), 7.42 (tt, J = 7.2, 1.4 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H), 7.37–7.35 (m, 2H), 7.33 (dt, J = 8.5, 1.4 Hz, 1H), 7.30 (dd, J = 10.7, 1.2 Hz, 3H), 7.29–7.26 (m, 10H), 7.24 (dd, J = 4.9, 3.7 Hz, 1H), 7.18–7.16 (m, 2H), 6.14 (t, J = 9.7 Hz, 1H), 5.42 (t, J = 9.9 Hz, 1H), 5.23 (dd, J = 10.1, 3.7 Hz, 1H), 5.20 (d, J = 3.7 Hz, 1H), 5.06–5.03 (m, 1H), 4.79 (dd, J = 11.1, 7.2 Hz, 2H), 4.69 (d, J = 11.4 Hz, 1H), 4.55–4.53 (m, 2H), 4.47–4.42 (m, 2H), 4.27 (ddd, J = 9.2, 7.2, 1.9 Hz, 1H), 4.07 (dd, J = 10.9, 2.0 Hz, 1H), 3.70–3.67 (m, 4H), 3.66–3.64 (m, 1H), 3.45 (s, 3H), 2.02 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.50, 165.81, 165.69, 165.37, 138.17, 138.01, 137.87, 133.40, 133.31, 133.01, 129.91, 129.85, 129.63, 129.26, 129.08, 128.87, 128.41, 128.38, 128.31, 128.22, 127.98, 127.83, 127.80, 127.71, 127.69, 127.55, 101.35, 96.64, 82.86, 77.81, 75.20, 75.03, 75.01, 73.41, 73.07, 72.14, 70.56, 69.53, 68.70, 68.39, 55.33, 20.95. The data are identical to the literature report [33].
- Methyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl-(1→6)-1,2:3,4-di-O-isopropylidene-α-d-galactopyranoside (16): Following general procedure B, glycosyl acceptor 3j (13.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (53.0 mg, 75.0 μmol) to afford 16 (29.0 mg, 39.5 μmol, 79% yield) as a colorless viscous oil. Rf = 0.4 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) (600 MHz, cdcl3) δ 7.35–7.31 (m, 4H), 7.31 (d, J = 2.3 Hz, 1H), 7.29 (d, J = 2.8 Hz, 2H), 7.27 (d, J = 12.1 Hz, 6H), 7.18 (dd, J = 7.7, 2.0 Hz, 2H), 5.49 (d, J = 5.0 Hz, 1H), 5.02–4.98 (m, 1H), 4.78 (dd, J = 11.1, 8.1 Hz, 2H), 4.68 (d, J = 11.4 Hz, 1H), 4.63 (d, J = 12.1 Hz, 1H), 4.58–4.55 (m, 2H), 4.54 (d, J = 6.4 Hz, 1H), 4.44 (d, J = 8.1 Hz, 1H), 4.27 (dd, J = 4.9, 2.4 Hz, 1H), 4.18 (dd, J = 8.1, 1.9 Hz, 1H), 4.06 (dd, J = 11.3, 3.5 Hz, 1H), 3.92 (ddt, J = 5.4, 3.5, 1.9 Hz, 1H), 3.73 (d, J = 2.9 Hz, 2H), 3.71–3.65 (m, 2H), 3.62 (dd, J = 11.3, 7.4 Hz, 1H), 3.47 (dt, J = 9.4, 3.2 Hz, 1H), 2.01 (s, 3H), 1.50 (s, 3H), 1.42 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.75, 138.23, 138.16, 137.96, 128.39, 128.38, 128.33, 127.99, 127.83, 127.79, 127.76, 127.67, 127.55, 109.29, 108.65, 101.83, 96.20, 82.79, 77.94, 75.17, 75.03, 74.96, 73.51, 73.05, 71.30, 70.62, 70.53, 69.48, 68.60, 67.84, 26.06, 25.94, 25.10, 24.30, 20.95. The data are identical to the literature report [35].
- l-Menthyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranoside (17): Following general procedure B, glycosyl acceptor 3g (8.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (54.0 mg, 75.0 μmol) to afford 17 (30.0 mg, 47.6 μmol, 94% yield) as a colorless viscous oil. Rf = 0.6 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.34–7.30 (m, 7H), 7.30–7.26 (m, 6H), 7.23 (dd, J = 7.8, 1.8 Hz, 2H), 4.94 (dd, J = 9.0, 8.0 Hz, 1H), 4.80 (dd, J = 11.2, 4.3 Hz, 2H), 4.67 (d, J = 11.5 Hz, 1H), 4.64–4.60 (m, 2H), 4.55 (d, J = 12.1 Hz, 1H), 4.40 (d, J = 8.0 Hz, 1H), 3.73–3.64 (m, 4H), 3.44 (ddd, J = 9.3, 4.5, 2.1 Hz, 1H), 3.39 (td, J = 10.7, 4.3 Hz, 1H), 2.31 (td, J = 7.0, 2.7 Hz, 1H), 1.96 (s, 3H), 1.93 (d, J = 3.2 Hz, 1H), 1.63 (ddt, J = 13.0, 6.3, 3.3 Hz, 2H), 1.33 (dtd, J = 12.0, 6.0, 3.2 Hz, 1H), 1.23–1.18 (m, 1H), 0.95–0.93 (m, 1H), 0.90 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 7.1 Hz, 3H), 0.83–0.80 (m, 1H), 0.78 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 169.41, 138.33, 138.30, 137.98, 128.42, 128.37, 128.33, 128.11, 127.83, 127.81, 127.63, 127.60, 127.51, 98.96, 83.14, 78.33, 78.10, 75.10, 75.02, 74.83, 73.71, 73.42, 69.14, 47.50, 40.89, 34.30, 31.38, 24.99, 23.00, 22.29, 21.00, 20.97, 15.76. The data are identical to the literature report [33].
- Adamantanyl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranoside (18): Following general procedure B, glycosyl acceptor 3h (8.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (54.0 mg, 75.0 μmol) to afford 18 (29.0 mg, 46.3 μmol, 87% yield) as a colorless viscous oil. Rf = 0.7 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 7.3 Hz, 2H), 7.32 (d, J = 6.0 Hz, 6H), 7.28 (d, J = 8.2 Hz, 5H), 7.16 (dd, J = 7.5, 1.9 Hz, 2H), 5.46 (d, J = 3.8 Hz, 1H), 4.81 (d, J = 2.5 Hz, 1H), 4.80 (s, 1H), 4.78–4.74 (m, 1H), 4.66 (d, J = 12.1 Hz, 1H), 4.52–4.48 (m, 2H), 4.04 (t, J = 9.5 Hz, 2H), 3.78 (dd, J = 10.8, 3.9 Hz, 1H), 3.70 (t, J = 9.4 Hz, 1H), 3.65 (dd, J = 10.7, 2.2 Hz, 1H), 2.13–2.09 (m, 3H), 2.02 (s, 3H), 1.78 (dd, J = 10.8, 1.8 Hz, 3H), 1.73–1.69 (m, 3H), 1.62 (d, J = 11.9 Hz, 3H), 1.59–1.55 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 170.42, 138.86, 138.19, 138.14, 128.37, 128.34, 128.30, 127.99, 127.78, 127.72, 127.56, 127.49, 127.44, 88.80, 80.41, 78.04, 75.28, 75.14, 74.43, 74.17, 73.43, 69.90, 68.68, 42.30, 36.20, 30.54, 21.02. The data are identical to the literature report [33].
- Cholesteryl 2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranoside (19): Following general procedure B, glycosyl acceptor 3i (19.0 mg, 50.0 μmol) was coupled with EDPAT donor 2b (54.0 mg, 75.0 μmol) to afford 19 (32.0 mg, 38.4 μmol, 78% yield) as a colorless viscous oil. Rf = 0.7 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.34–7.29 (m, 7H), 7.28 (ddd, J = 8.8, 3.6, 1.4 Hz, 6H), 7.21–7.19 (m, 2H), 5.34–5.32 (m, 1H), 4.96 (dd, J = 9.3, 8.0 Hz, 1H), 4.79 (dd, J = 11.1, 4.3 Hz, 2H), 4.67 (d, J = 11.4 Hz, 1H), 4.62 (d, J = 12.2 Hz, 1H), 4.56 (dd, J = 11.5, 3.9 Hz, 2H), 4.43 (d, J = 8.0 Hz, 1H), 3.76–3.73 (m, 1H), 3.70–3.64 (m, 3H), 3.50–3.45 (m, 2H), 2.24–2.18 (m, 1H), 1.97 (s, 6H), 1.83 (dt, J = 13.4, 3.0 Hz, 2H), 1.62–1.44 (m, 8H), 1.36–1.33 (m, 2H), 1.26 (td, J = 6.3, 3.3 Hz, 2H), 1.17–1.02 (m, 7H), 0.99 (s, 5H), 0.92 (d, J = 6.5 Hz, 4H), 0.87 (dd, J = 6.6, 2.6 Hz, 6H), 0.68 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.42, 140.63, 138.21, 137.89, 128.41, 128.39, 128.31, 128.03, 127.86, 127.83, 127.68, 127.67, 127.53, 121.83, 99.95, 83.02, 79.54, 78.13, 77.20, 75.11, 75.02, 74.94, 73.42, 73.36, 68.90, 56.75, 56.14, 50.18, 42.31, 39.76, 39.51, 39.05, 37.26, 36.71, 36.18, 35.77, 31.94, 31.86, 29.61, 28.22, 28.01, 24.28, 23.80, 22.81, 22.55, 21.04, 20.96, 19.37, 18.71, 11.84. The data are identical to the literature report [33].
- Methyl (2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl)-(1→6)-2,3,4-tri-O-benzyl-α-d-glucopyranoside (20): Following general procedure B, glycosyl acceptor 3a (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2c (62.0 mg, 75.0 μmol) to afford 20 (47.0 mg, 45.2 μmol, 88% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.98–7.96 (m, 2H), 7.87 (ddd, J = 8.3, 3.2, 1.3 Hz, 5H), 7.80 (dd, J = 8.4, 1.3 Hz, 2H), 7.53–7.45 (m, 3H), 7.38 (dd, J = 15.1, 7.8 Hz, 6H), 7.33–7.29 (m, 6H), 7.29–7.25 (m, 7H), 7.24–7.17 (m, 6H), 7.04–7.01 (m, 2H), 5.87 (t, J = 9.7 Hz, 1H), 5.65 (t, J = 9.7 Hz, 1H), 5.58 (dd, J = 9.8, 7.8 Hz, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.80 (d, J = 7.8 Hz, 1H), 4.72 (d, J = 12.1 Hz, 1H), 4.66 (d, J = 11.0 Hz, 1H), 4.61–4.56 (m, 2H), 4.52–4.45 (m, 3H), 4.26 (d, J = 11.0 Hz, 1H), 4.13 (d, J = 8.7 Hz, 1H), 4.11–4.05 (m, 1H), 3.86 (t, J = 9.3 Hz, 1H), 3.75–3.68 (m, 2H), 3.41 (dd, J = 9.7, 3.6 Hz, 1H), 3.36 (t, J = 9.3 Hz, 1H), 3.19 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.23, 165.95, 165.27, 165.03, 138.87, 138.26, 138.22, 133.55, 133.37, 133.25, 133.23, 129.92, 129.86, 129.85, 129.82, 129.80, 129.62, 129.23, 128.85, 128.80, 128.54, 128.52, 128.46, 128.44, 128.41, 128.38, 128.24, 128.01, 127.99, 127.71, 127.59, 127.57, 101.41, 98.04, 81.97, 79.79, 75.65, 74.81, 73.49, 72.91, 72.27, 71.86, 69.84, 69.52, 68.38, 63.32, 55.11. The data are identical to the literature report [36].
- Methyl (2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl)-(1→6)-2,3,4-tri-O-benzyl-α-d-mannopyranoside (21): Following general procedure B, glycosyl acceptor 3d (25.0 mg, 50.0 μmol) was coupled with EDPAT donor 2c (59.0 mg, 75.0 μmol) to afford 21 (49.0 mg, 45.2 μmol, 91% yield) as a colorless viscous oil. Rf = 0.2 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 8.08–8.04 (m, 2H), 8.00–7.97 (m, 2H), 7.93 (dd, J = 8.3, 1.4 Hz, 2H), 7.89–7.85 (m, 4H), 7.82 (dd, J = 8.5, 1.4 Hz, 2H), 7.76 (dd, J = 8.3, 1.3 Hz, 2H), 7.64–7.59 (m, 1H), 7.56–7.45 (m, 6H), 7.44–7.37 (m, 5H), 7.33 (td, J = 8.1, 3.9 Hz, 6H), 7.30–7.27 (m, 2H), 7.22 (d, J = 7.5 Hz, 2H), 5.90 (t, J = 9.7 Hz, 1H), 5.78 (dd, J = 9.9, 3.4 Hz, 1H), 5.69–5.62 (m, 2H), 5.60–5.56 (m, 1H), 5.54 (dd, J = 3.5, 1.8 Hz, 1H), 4.97 (d, J = 7.9 Hz, 1H), 4.64–4.59 (m, 2H), 4.43 (dd, J = 12.1, 5.1 Hz, 1H), 4.25 (t, J = 8.5 Hz, 1H), 4.15 (d, J = 14.9 Hz, 2H), 3.85 (dd, J = 11.1, 8.4 Hz, 1H), 3.11 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.21, 165.90, 165.77, 165.58, 165.39, 165.26, 165.24, 133.57, 133.54, 133.35, 133.29, 133.24, 130.02, 129.92, 129.90, 129.86, 129.83, 129.77, 129.42, 128.90, 128.85, 128.83, 128.70, 128.54, 128.49, 128.40, 128.33, 102.02, 98.05, 72.90, 72.29, 71.91, 70.51, 69.91, 69.80, 69.71, 67.41, 63.08, 54.96, 29.81. The data are identical to the literature report [37].
- Methyl (2,3,4,6-tetra-O-benzyl-α/β-d-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzyl-α-d-glucopyranoside (22): Following general procedure B, glycosyl acceptor 3a (24.0 mg, 50.0 μmol) was coupled with EDPAT donor 2d (58.0 mg, 77.5 μmol) to afford 22 (27.0 mg, 27.4 μmol, 53% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.39–7.20 (m, 37H), 7.17–7.13 (m, 2H), 4.99 (d, J = 10.9 Hz, 2H), 4.87 (dd, J = 10.9, 7.8 Hz, 2H), 4.82–4.75 (m, 3H), 4.73–4.65 (m, 4H), 4.64–4.59 (m, 3H), 4.57 (d, J = 3.5 Hz, 1H), 4.52–4.42 (m, 4H), 3.99 (q, J = 9.4 Hz, 3H), 3.88–3.81 (m, 2H), 3.79 (s, 1H), 3.73–3.57 (m, 6H), 3.46 (dd, J = 9.7, 3.4 Hz, 1H), 3.43–3.37 (m, 1H), 3.31 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 138.66, 138.63, 138.46, 138.42, 138.36, 138.18, 138.13, 128.48, 128.40, 128.35, 128.26, 128.21, 128.01, 127.99, 127.93, 127.84, 127.75, 127.70, 127.64, 127.60, 127.59, 127.55, 127.48, 127.44, 127.37, 98.24, 97.81, 82.13, 79.98, 79.56, 77.62, 75.80, 75.01, 74.92, 74.86, 73.25, 72.42, 71.98, 71.93, 69.80, 69.11, 65.79, 55.07. The data are identical to the literature report [38].
- Methyl (2,3,4,6-tetra-O-benzyl-d-mannopyranosyl)-(1→6) 2,3,4-tri-O-benzoyl-α-d-glucopyranoside (23): Following general procedure B, glycosyl acceptor 3b (25.0 mg, 50.0 μmol) was coupled with EDPAT donor 2d (55.0 mg, 77.5 μmol) to afford 23 (36.0 mg, 35.0 μmol, 71% yield) as a colorless viscous oil. Rf = 0.2 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 8.01–7.97 (m, 2H), 7.93–7.86 (m, 4H), 7.52 (t, J = 7.4 Hz, 1H), 7.47–7.33 (m, 10H), 7.29 (dt, J = 9.8, 5.1 Hz, 16H), 7.20–7.16 (m, 2H), 6.13 (t, J = 9.9 Hz, 1H), 5.57 (t, J = 9.9 Hz, 1H), 5.24 (dd, J = 10.1, 3.6 Hz, 1H), 5.18 (d, J = 3.6 Hz, 1H), 4.93–4.91 (m, 1H), 4.88 (d, J = 10.9 Hz, 1H), 4.75–4.66 (m, 2H), 4.59–4.52 (m, 1H), 4.47 (dd, J = 11.2, 7.8 Hz, 3H), 4.40 (d, J = 12.1 Hz, 1H), 3.99–3.85 (m, 3H), 3.70 (s, 1H), 3.68–3.60 (m, 3H), 3.55 (d, J = 9.0 Hz, 1H), 3.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.83, 165.80, 165.06, 138.69, 138.59, 138.47, 138.40, 133.34, 133.23, 133.04, 129.92, 129.89, 129.65, 129.10, 129.08, 128.40, 128.37, 128.29, 128.26, 128.21, 127.91, 127.75, 127.66, 127.65, 127.49, 127.43, 127.35, 98.19, 96.91, 79.87, 74.99, 74.75, 73.20, 72.55, 72.10, 72.05, 71.92, 70.51, 69.83, 69.03, 68.07, 66.16, 55.53. The data are identical to the literature report [30].
- l-Menthyl 2,3,4,6-tetra-O-benzyl-d-mannopyranoside (24): Following general procedure B, glycosyl acceptor 3g (8.0 mg, 50.0 μmol) was coupled with EDPAT donor 2d (57.0 mg, 75.0 μmol) to afford 24 (22.0 mg, 32.4 μmol, 64% yield) as a colorless viscous oil. Rf = 0.6 (hexane:EtOAc = 70:30). α-anomer: 1H NMR (400 MHz, CDCl3) δ 7.37–7.27 (m, 18H), 7.15 (dd, J = 7.5, 2.0 Hz, 2H), 5.04 (d, J = 3.7 Hz, 1H), 4.99 (d, J = 11.0 Hz, 1H), 4.87–4.82 (m, 2H), 4.74–4.68 (m, 2H), 4.65 (d, J = 12.1 Hz, 1H), 4.48 (dd, J = 11.4, 5.1 Hz, 2H), 4.03 (t, J = 9.3 Hz, 1H), 3.99 (ddd, J = 10.1, 4.0, 2.2 Hz, 1H), 3.77 (dd, J = 10.5, 4.0 Hz, 1H), 3.67–3.63 (m, 2H), 3.56 (dd, J = 9.8, 3.7 Hz, 1H), 3.37 (dd, J = 10.6, 4.5 Hz, 1H), 2.43 (pd, J = 7.1, 2.6 Hz, 1H), 2.17–2.13 (m, 1H), 1.62 (dp, J = 13.2, 3.3 Hz, 2H), 1.41–1.30 (m, 2H), 1.08–1.02 (m, 1H), 0.96–0.92 (m, 1H), 0.86 (dd, J = 6.7, 3.2 Hz, 7H), 0.72 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 138.91, 138.38, 138.30, 138.05, 128.34, 128.32, 128.30, 128.23, 127.89, 127.87, 127.63, 127.62, 127.61, 127.48, 127.46, 98.62, 81.97, 80.99, 80.54, 75.47, 75.03, 73.44, 73.18, 70.29, 68.66, 48.75, 43.04, 34.26, 31.73, 24.57, 22.95, 22.28, 21.10, 16.05. β-anomer: 1H NMR (400 MHz, CDCl3) δ 7.36–7.32 (m, 5H), 7.31–7.26 (m, 9H), 7.20 (dd, J = 7.8, 1.8 Hz, 1H), 4.94 (dd, J = 15.9, 11.1 Hz, 2H), 4.80 (dd, J = 16.7, 11.0 Hz, 2H), 4.69 (d, J = 10.8 Hz, 1H), 4.63–4.53 (m, 3H), 4.48 (d, J = 7.9 Hz, 1H), 3.70 (d, J = 3.4 Hz, 2H), 3.65–3.58 (m, 2H), 3.51 (td, J = 10.8, 4.3 Hz, 1H), 3.43–3.39 (m, 2H), 2.35 (pd, J = 6.8, 2.5 Hz, 1H), 2.16–2.12 (m, 1H), 1.69–1.64 (m, 2H), 1.39–1.32 (m, 1H), 1.30–1.27 (m, 1H), 1.04–0.94 (m, 2H), 0.92 (dd, J = 12.2, 6.8 Hz, 6H), 0.89–0.84 (m, 1H), 0.83 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 138.82, 138.56, 138.38, 138.22, 128.36, 128.30, 128.27, 128.06, 127.76, 127.70, 127.61, 127.57, 127.48, 127.46, 100.75, 84.96, 82.21, 77.96, 77.74, 75.57, 74.97, 74.80, 73.66, 69.33, 48.12, 40.96, 34.45, 31.46, 25.27, 23.21, 22.23, 21.07, 15.95. The data are identical to the literature report [39].
- Propargyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6) 2,3,4-tri-O-benzyl-α-d-mannopyranoside (25): Following general procedure B, glycosyl acceptor 3k (25.0 mg, 51.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 77.5 μmol) to afford 25 (38.0 mg, 39.5 μmol, 77% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.42–7.18 (m, 28H), 7.17–7.09 (m, 2H), 5.46 (dd, J = 3.2, 1.9 Hz, 1H), 4.99 (dd, J = 27.0, 1.8 Hz, 2H), 4.88 (dd, J = 21.7, 11.0 Hz, 2H), 4.73 (s, 2H), 4.69–4.62 (m, 2H), 4.59 (d, J = 1.5 Hz, 2H), 4.45 (ddd, J = 13.8, 11.6, 4.9 Hz, 4H), 4.13 (dd, J = 4.0, 2.4 Hz, 2H), 3.98–3.81 (m, 6H), 3.80–3.76 (m, 1H), 3.69 (td, J = 10.9, 10.1, 2.6 Hz, 3H), 3.59 (dd, J = 10.9, 1.9 Hz, 1H), 2.38 (t, J = 2.4 Hz, 1H), 2.15 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.49, 138.69, 138.47, 138.35, 138.25, 137.91, 128.56, 128.52, 128.50, 128.46, 128.40, 128.34, 128.05, 127.95, 127.89, 127.85, 127.80, 127.77, 127.73, 127.67, 127.59, 98.10, 96.38, 80.14, 78.93, 75.16, 74.94, 74.56, 74.43, 74.24, 73.46, 72.80, 72.11, 71.64, 71.53, 71.47, 68.78, 68.61, 66.66, 54.30, 29.86, 21.34. The data are identical to the literature report [31].
- Methyl 6-O-(6-O-(2-O-Acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-2,3,4-tri-O-benzyl-α-d-mannopyranosyl)-2,3,4-tri-O-benzyl-α-d-mannopyranoside (26): Procedure 1: This was prepared according to the literature procedure [40] using donor 25 (7 μmol), acceptor 3b (1.2 equiv.), and AuCl3 (1 mol%) in acetonitrile at 60 °C in 3 h (76%, α:β = 2:1). Procedure 2: This was prepared according to the literature procedure [41] using donor 27 (20 μmol), acceptor 3b (1.1 equiv.), and NIS (1.5 equiv.)/TMSOTf (10 mol%) in CH2Cl2 at 0 °C in 3 h (52%, α:β = 2:1). 1H NMR (400 MHz, CDCl3) δ 7.47–7.44 (m, 1H), 7.40–7.37 (m, 2H), 7.34 (dt, J = 4.3, 2.4 Hz, 9H), 7.32–7.26 (m, 20H), 7.26–7.15 (m, 39H), 7.09 (dd, J = 6.6, 3.0 Hz, 4H), 5.49 (q, J = 3.2 Hz, 2H), 5.09 (d, J = 1.7 Hz, 1H), 5.00–4.87 (m, 7H), 4.85–4.80 (m, 3H), 4.73–4.52 (m, 19H), 4.50–4.35 (m, 12H), 4.20 (d, J = 16.7 Hz, 2H), 3.98–3.82 (m, 15H), 3.82–3.74 (m, 5H), 3.72–3.59 (m, 9H), 3.53 (ddd, J = 21.6, 10.8, 1.9 Hz, 4H), 3.40 (dd, J = 9.4, 3.0 Hz, 1H), 3.22 (s, 3Hα), 3.18 (s, 1.5Hβ), 2.13 (s, 3Hα), 2.11 (s, 1.5Hβ). 13C NMR (101 MHz, CDCl3) δ 170.22, 138.71, 138.69, 138.64, 138.62, 138.60, 138.46, 138.41, 138.24, 138.21, 138.17, 138.06, 137.84, 137.80, 128.61, 128.36, 128.33, 128.31, 128.26, 128.23, 128.17, 128.16, 128.14, 128.09, 127.92, 127.89, 127.86, 127.79, 127.78, 127.73, 127.71, 127.67, 127.64, 127.62, 127.60, 127.58, 127.53, 127.48, 127.44, 127.41, 127.39, 127.32, 127.27, 102.22, 98.85, 98.74, 98.16, 98.06, 97.81, 82.15, 80.27, 79.25, 77.80, 77.67, 77.22, 74.98, 74.85, 74.67, 74.56, 74.44, 74.27, 74.04, 73.52, 73.30, 72.88, 72.77, 72.62, 72.30, 72.05, 71.89, 71.41, 71.29, 71.23, 70.99, 68.55, 68.34, 66.40, 65.93, 54.67, 54.58, 21.18, 21.16. The data are identical to the literature report [31].
- Phenyl 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→6) 2,3,4-tri-O-benzyl-1-deoxy-1-thio-α-d-mannopyranoside (27): Following general procedure B, glycosyl acceptor 3m (27.0 mg, 50.0 μmol) was coupled with EDPAT donor 2a (54.0 mg, 77.5 μmol) to afford 27 (43.0 mg, 42.5 μmol, 84% yield) as a colorless viscous oil. Rf = 0.3 (hexane:EtOAc = 70:30). 1H NMR (400 MHz, CDCl3) δ 7.32 (qd, J = 24.1, 4.6 Hz, 32H), 7.18–7.09 (m, 3H), 5.57 (s, 1H), 5.45 (s, 1H), 4.94 (d, J = 7.8 Hz, 2H), 4.86 (d, J = 10.8 Hz, 1H), 4.74 (d, J = 13.3 Hz, 1H), 4.71–4.57 (m, 6H), 4.50 (d, J = 10.9 Hz, 1H), 4.47–4.36 (m, 2H), 4.23 (dd, J = 10.7, 6.2 Hz, 1H), 4.01 (s, 1H), 3.97–3.89 (m, 3H), 3.89–3.76 (m, 3H), 3.70 (dd, J = 17.7, 12.6 Hz, 2H), 3.59 (d, J = 10.9 Hz, 1H), 2.14 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 170.45, 138.70, 138.42, 138.32, 138.16, 137.97, 137.94, 134.79, 131.97, 131.01, 129.27, 128.60, 128.57, 128.54, 128.50, 128.41, 128.33, 128.09, 128.00, 127.91, 127.86, 127.82, 127.74, 127.68, 127.61, 127.34, 98.20, 86.11, 85.52, 80.38, 77.95, 76.19, 75.25, 74.71, 74.20, 73.44, 72.24, 72.08, 71.96, 71.62, 71.43, 68.71, 68.56, 66.87, 21.34. The data are identical to the literature report [31].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, J.; Bennett, C.S. Recent developments in stereoselective chemical glycosylation. Asian J. Org. Chem. 2019, 8, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Yu, B. O-Glycosylation methods in the total synthesis of complex natural glycosides. Nat. Prod. Rep. 2015, 32, 1331–1355. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.M.; Pedersen, C.M. Catalytic Glycosylations in Oligosaccharide Synthesis. Chem. Rev. 2018, 118, 8285–8358. [Google Scholar] [CrossRef] [PubMed]
- Garegg, P.J. Thioglycosides as Glycosyl Donors in Oligosaccharide Synthesis. In Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: Cambridge, MA, USA, 1997; Volume 52, pp. 179–205. [Google Scholar]
- Cai, L.; Meng, L.; Zeng, J.; Wan, Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org. Chem. Front. 2021, 8, 3150–3165. [Google Scholar] [CrossRef]
- Konradsson, P.; Udodong, U.E.; Fraser-Reid, B. Iodonium promoted reactions of disarmed thioglycosides. Tetrahedron Lett. 1990, 31, 4313–4316. [Google Scholar] [CrossRef]
- Smith, R.; Müller-Bunz, H.; Zhu, X. Investigation of α-Thioglycoside Donors: Reactivity Studies toward Configuration-Controlled Orthogonal Activation in One-Pot Systems. Org. Lett. 2016, 18, 3578–3581. [Google Scholar] [CrossRef]
- Basu, N.; Kumar Maity, S.; Ghosh, R. Trichloroisocyanuric acid (TCCA)–TMSOTf: An efficient activator system for glycosylation reactions based on thioglycosides. RSC Adv. 2012, 2, 12661–12664. [Google Scholar] [CrossRef]
- Xiong, D.-C.; Zhang, L.-H.; Ye, X.-S. Bromodimethylsulfonium Bromide-Silver Triflate: A New Powerful Promoter System for the Activation of Thioglycosides. Adv. Synth. Catal. 2008, 350, 1696–1700. [Google Scholar] [CrossRef]
- Dasgupta, F.; Garegg, P.J. Alkyl sulfenyl triflate as activator in the thioglycoside-mediated formation of β-glycosidic linkages during oligosaccharide synthesis. Carbohydr. Res. 1988, 177, c13–c17. [Google Scholar] [CrossRef]
- He, H.; Zhu, X. Thioperoxide-Mediated Activation of Thioglycoside Donors. Org. Lett. 2014, 16, 3102–3105. [Google Scholar] [CrossRef]
- Duong, T.; Valenzuela, E.A.; Ragains, J.R. Benzyne-Promoted, 1,2-cis-Selective O-Glycosylation with Benzylchalcogenoglycoside Donors. Org. Lett. 2023, 25, 8526–8529. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, Q.; Yu, B. Ortho-Alkynylphenyl thioglycosides as a new type of glycosylation donors under the catalysis of Au(I) complexes. Tetrahedron Lett. 2012, 53, 5231–5234. [Google Scholar] [CrossRef]
- Adhikari, S.; Baryal, K.N.; Zhu, D.; Li, X.; Zhu, J. Gold-Catalyzed Synthesis of 2-Deoxy Glycosides Using S-But-3-ynyl Thioglycoside Donors. ACS Catal. 2013, 3, 57–60. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Z.-F.; Liu, H.-J.; Liao, J.-X.; Zhong, L.-J.; Tu, Y.-H.; Zhang, Q.-J.; Xiong, B.; Sun, J.-S. Ortho-Methoxycarbonylethynylphenyl Thioglycosides (MCEPTs): Versatile Glycosyl Donors Enabled by Electron-Withdrawing Substituents and Catalyzed by Gold(I) or Cu(II) Complexes. J. Am. Chem. Soc. 2023, 145, 3682–3695. [Google Scholar] [CrossRef]
- Ding, H.; Lv, J.; Zhang, X.-L.; Xu, Y.; Zhang, Y.-H.; Liu, X.-W. Efficient O- and S-glycosylation with ortho-2,2-dimethoxycarbonylcyclopropylbenzyl thioglycoside donors by catalytic strain-release. Chem. Sci. 2024, 15, 3711–3720. [Google Scholar] [CrossRef]
- Xiao, X.; Ding, H.; Peng, L.-C.; Fang, X.-Y.; Qin, Y.-Y.; Mu, Q.-Q.; Liu, X.-W. Sweet Strain Release: Donor–Acceptor Cyclopropane Mediated Glycosylation. CCS Chem. 2023, 5, 2910–2921. [Google Scholar] [CrossRef]
- Du, S.; Ragains, J.R. MPTGs: Thioglycoside Donors for Acid-Catalyzed O-Glycosylation and Latent-Active Synthetic Strategies. Org. Lett. 2019, 21, 980–983. [Google Scholar] [CrossRef]
- Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. Remote Activation of Disarmed Thioglycosides in Latent-Active Glycosylation via Interrupted Pummerer Reaction. J. Am. Chem. Soc. 2016, 138, 13402–13407. [Google Scholar] [CrossRef]
- Njeri, D.K.; Pertuit, C.J.; Ragains, J.R. 1,2-cis-Selective glucosylation enabled by halogenated benzyl protecting groups. Org. Biomol. Chem. 2020, 18, 2405–2409. [Google Scholar] [CrossRef]
- Meng, L.; Wu, P.; Fang, J.; Xiao, Y.; Xiao, X.; Tu, G.; Ma, X.; Teng, S.; Zeng, J.; Wan, Q. Glycosylation Enabled by Successive Rhodium(II) and Brønsted Acid Catalysis. J. Am. Chem. Soc. 2019, 141, 11775–11780. [Google Scholar] [CrossRef]
- Doyle, L.M.; O’Sullivan, S.; Di Salvo, C.; McKinney, M.; McArdle, P.; Murphy, P.V. Stereoselective Epimerizations of Glycosyl Thiols. Org. Lett. 2017, 19, 5802–5805. [Google Scholar] [CrossRef] [PubMed]
- Ba, D.; Wen, S.; Tian, Q.; Chen, Y.; Lv, W.; Cheng, G. Rhodium(II)-catalyzed multicomponent assembly of α,α,α-trisubstituted esters via formal insertion of O–C(sp3)–C(sp2) into C–C bonds. Nat. Commun. 2020, 11, 4219. [Google Scholar] [CrossRef] [PubMed]
- Crich, D. Mechanism of a Chemical Glycosylation Reaction. Acc. Chem. Res. 2010, 43, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xia, Y.; Feng, S.; Zhang, Y.; Wang, J. Rh(I)-Catalyzed coupling of 2-bromoethyl aryldiazoacetates with tertiary propargyl alcohols through carbene migratory insertion. Org. Chem. Front. 2016, 3, 1691–1698. [Google Scholar] [CrossRef]
- Kafle, P.; Ghosh, B.; Hunter, A.C.; Mukherjee, R.; Nicholas, K.M.; Sharma, I. Iron-Carbene Initiated O–H Insertion/Aldol Cascade for the Stereoselective Synthesis of Functionalized Tetrahydrofurans. ACS Catal. 2024, 14, 1292–1299. [Google Scholar] [CrossRef]
- Ghosh, B.; Alber, A.; Lander, C.W.; Shao, Y.; Nicholas, K.M.; Sharma, I. Catalytic Activation of Thioglycosides with Copper-Carbenes for Stereoselective 1,2-Cis-Furanosylations. Org. Lett. 2024, 26, 9436–9441. [Google Scholar] [CrossRef]
- Johnston, B.D.; Pinto, B.M. Synthesis of Thio-Linked Disaccharides by 1→2 Intramolecular Thioglycosyl Migration: Oxacarbenium versus Episulfonium Ion Intermediates. J. Org. Chem. 2000, 65, 4607–4617. [Google Scholar] [CrossRef]
- Manmode, S.; Sato, T.; Sasaki, N.; Notsu, I.; Hayase, S.; Nokami, T.; Itoh, T. Rational optimization of the mannoside building block for automated electrochemical assembly of the core trisaccharide of GPI anchor oligosaccharides. Carbohydr. Res. 2017, 450, 44–48. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, Y.J.; Kim, H.Y.; Kang, S.S.; Kwon, S.Y. Glycosylation with glycosyl benzyl phthalates as a new type of glycosyl donor. Org. Biomol. Chem. 2004, 2, 2408–2410. [Google Scholar] [CrossRef]
- Pratap Singh, S.; Ghosh, B.; Sharma, I. Catalytic Orthogonal Glycosylation Enabled by Enynal-Derived Copper Carbenes. Adv. Synth. Catal. 2024, 366, 1847–1856. [Google Scholar] [CrossRef]
- Nitta, K.; Kuribara, T.; Totani, K. Synthetic trisaccharides reveal discrimination of endo-glycosidic linkages by exo-acting α-1,2-mannosidases in the endoplasmic reticulum. Org. Biomol. Chem. 2021, 19, 4137–4145. [Google Scholar] [CrossRef] [PubMed]
- Mallick, A.; Mallikharjunarao, Y.; Rajasekaran, P.; Roy, R.; Vankar, Y.D. AuIII-Halide/Phenylacetylene-Catalysed Glycosylations Using 1-O-Acetyl-furanoses and Pyranose 1,2-Ortho-esters as Glycosyl Donors. Eur. J. Org. Chem. 2016, 2016, 579–588. [Google Scholar] [CrossRef]
- MacCoss, R.N.; Brennan, P.E.; Ley, S.V. Synthesis of carbohydrate derivatives using solid-phase work-up and scavenging techniques. Org. Biomol. Chem. 2003, 1, 2029–2031. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.R.; Das, P.; Guleria, K.; Subramanian, R.; Kumar, A.; Thakur, R. Cyanomethyl Ether as an Orthogonal Participating Group for Stereoselective Synthesis of 1,2-trans-β-O-Glycosides. J. Org. Chem. 2020, 85, 9955–9968. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Z.-X.; Wu, X.; Gao, C.-F.; Wang, P.-Y.; Chai, J.-Z.; Liu, M.; Ye, X.-S.; Xiong, D.-C. Photosensitizer-free visible-light-promoted glycosylation enabled by 2-glycosyloxy tropone donors. Nat. Commun. 2023, 14, 8025. [Google Scholar] [CrossRef]
- Mishra, B.; Neralkar, M.; Hotha, S. Stable alkynyl glycosyl carbonates: Catalytic anomeric activation and synthesis of a tridecasaccharide reminiscent of Mycobacterium tuberculosis cell wall lipoarabinomannan. Angew. Chem. Int. Ed. 2016, 128, 7917–7922. [Google Scholar] [CrossRef]
- Toshima, K.; Nagai, H.; Kasumi, K.-I.; Kawahara, K.; Matsumura, S. Stereocontrolled glycosidations using a heterogeneous solid acid, sulfated zirconia, for the direct syntheses of α- and β-manno- and 2-deoxyglucopyranosides. Tetrahedron 2004, 60, 5331–5339. [Google Scholar] [CrossRef]
- Palanivel, A.; Chennaiah, A.; Dubbu, S.; Mallick, A.; Vankar, Y.D. AuCl3-AgOTf promoted O-glycosylation using anomeric sulfoxides as glycosyl donors at room temperature. Carbohydr. Res. 2017, 437, 43–49. [Google Scholar] [CrossRef]
- Hotha, S.; Kashyap, S. Propargyl Glycosides as Stable Glycosyl Donors: Anomeric Activation and Glycoside Syntheses. J. Am. Chem. Soc. 2006, 128, 9620–9621. [Google Scholar] [CrossRef]
- Hevey, R.; Ling, C.-C. Studies on the 6-homologation of β-D-idopyranosides. Carbohydr. Res. 2017, 445, 65–74. [Google Scholar] [CrossRef]
entry | promoter(s) | donor (2a) | solvent(s) | time | temp. | 4 (% yield) b |
1. | [Cu(OTf)]2•tol (30 mol%) | 1.2 equiv. | CH2Cl2 | 5 h | rt | 68% c |
2. | Fe(BF4)2•6H2O (30 mol%) | 1.2 equiv. | CH2Cl2 | 20 h | rt | <10% |
3. | ZnCl2 (30 mol%) | 1.2 equiv. | CH2Cl2 | 6 h | rt | trace |
4. | Zn(OTf)2 (30 mol%) | 1.2 equiv. | CH2Cl2 | 72 h | rt | n.r. |
5. | Rh2(OAc)4 (30 mol%) | 1.2 equiv. | CH2Cl2 | 2 h | rt | <10% |
6. | [Cu(CH3CN)4]PF6 (30 mol%) | 1.2 equiv. | CH2Cl2 | 2 h | rt | 40% |
7. | [Cu(CH3CN)4]BF4 (30 mol%) | 1.2 equiv. | CH2Cl2 | 72 h | rt | 35% |
8. | CuI (30 mol%) | 1.2 equiv. | CH2Cl2 | 24 h | rt | n.r. |
9. | Cu(OTf)2 (30 mol%) | 1.2 equiv. | CH2Cl2 | 5 h | rt | 61% |
10. | TfOH (100 mol%) | 1.2 equiv. | CH2Cl2 | 24 h | rt | n.r. |
11. | [Cu(OTf)]2•tol (30 mol%) | 1.2 equiv. | CH2Cl2 | 24 h | 0 °C | 70% |
12. | [Cu(OTf)]2•tol (30 mol%) | 1.5 equiv. | CH2Cl2 | 24 h | 0 °C | 74% |
13. | [Cu(OTf)]2•tol (30 mol%) | 1.5 equiv. | CH2Cl2 | 5 h | rt | 75% |
14. | [Cu(OTf)]2•tol (10 mol%) | 1.5 equiv. | CH2Cl2 | 7 h | rt | 75% |
15. d | [Cu(OTf)]2•tol (10 mol%) | 1.5 equiv. | CH2Cl2 | 6 h | rt | 88% c |
16. d | Cu(OTf)2 (10 mol%) | 1.5 equiv. | CH2Cl2 | 5 h | rt | 77% c |
17. | [Cu(OTf)]2•tol (10 mol%) | 1.2 equiv. | CH3CN | 6 h | rt | 28% c |
18. | [Cu(OTf)]2•tol (10 mol%) | 1.2 equiv. | THF | 6 h | rt | <10% |
19. | [Cu(OTf)]2•tol (10 mol%) | 1.2 equiv. | Toluene | 8 h | rt | 56% |
20 | [Cu(OTf)]2•tol (10 mol%) | 1.2 equiv. | EtOAc | 8 h | rt | <10% |
21. | - | 1.2 equiv. | CH2Cl2 | 24 h | rt | n.r. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.P.; Chaudhary, U.; Sharma, I. Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes. Molecules 2024, 29, 5367. https://doi.org/10.3390/molecules29225367
Singh SP, Chaudhary U, Sharma I. Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes. Molecules. 2024; 29(22):5367. https://doi.org/10.3390/molecules29225367
Chicago/Turabian StyleSingh, Surya Pratap, Umesh Chaudhary, and Indrajeet Sharma. 2024. "Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes" Molecules 29, no. 22: 5367. https://doi.org/10.3390/molecules29225367
APA StyleSingh, S. P., Chaudhary, U., & Sharma, I. (2024). Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes. Molecules, 29(22), 5367. https://doi.org/10.3390/molecules29225367