g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives
Abstract
:1. Introduction
2. Composites and Heterojunctions
3. Doping of g-C3N4
4. Crystal Phase Control and Defects Introduction
5. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajaram, T.; Das, A. Water pollution by industrial effluents in India: Discharge scenarios and case for participatory ecosystem specific local regulation. Futures 2008, 40, 56–69. [Google Scholar] [CrossRef]
- Bibi, S.; Ahmad, A.; Anjum, M.A.R.; Haleem, A.; Siddiq, M.; Shah, S.S.; Kahtani, A. Al Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580. [Google Scholar] [CrossRef]
- Prasad, A.R.; Joseph, A. Synthesis, characterization and investigation of methyl orange dye removal from aqueous solutions using waterborne poly vinyl pyrrolidone (PVP) stabilized poly aniline (PANI) core-shell nanoparticles. RSC Adv. 2017, 7, 20960–20968. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Khan, I.; Zada, N.; Sadiq, M.; Saeed, K. Utilization of cross-linked chitosan for cobalt adsorption and its reutilization as a photocatalyst for the photodegradation of methyl violet dye in aqueous medium. Appl. Water Sci. 2022, 12, 107. [Google Scholar] [CrossRef]
- Khan, N.A.; Saeed, K.; Khan, I.; Gul, T.; Sadiq, M.; Uddin, A.; Zekker, I. Efficient photodegradation of orange II dye by nickel oxide nanoparticles and nanoclay supported nickel oxide nanocomposite. Appl. Water Sci. 2022, 12, 131. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Shah, L.A.; Malik, T.; Siddiq, M.; Haleem, A.; Sayed, M.; Naeem, A. TiO2 nanotubes doped poly(vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye. J. Environ. Chem. Eng. 2019, 7, 103291. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Al-Degs, Y.S.; Sweileh, J.A. Simultaneous determination of five commercial cationic dyes in stream waters using diatomite solid-phase extractant and multivariate calibration. Arab. J. Chem. 2012, 5, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Kumar, A.; Tripathi, A.; Das, M. Sunset yellow FCF, a permitted food dye, alters functional responses of splenocytes at non-cytotoxic dose. Toxicol. Lett. 2013, 217, 197–204. [Google Scholar] [CrossRef]
- Liu, Y.; Song, L.; Du, L.; Gao, P.; Liang, N.; Wu, S.; Minami, T.; Zang, L.; Yu, C.; Xu, X. Preparation of polyaniline/emulsion microsphere composite for efficient adsorption of organic dyes. Polymers 2020, 12, 167. [Google Scholar] [CrossRef] [Green Version]
- Carolin, C.F.; Kumar, P.S.; Joshiba, G.J. Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technol. Environ. Policy 2021, 23, 173–181. [Google Scholar] [CrossRef]
- Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S. Degradation of methyl orange using Fenton catalytic reaction. Egypt. J. Pet. 2016, 25, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Farhan Hanafi, M.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Almutairi, M.S.; Alharthi, F.A.; Aouak, T.; Al-Kahtani, A. Adsorption of Azo Dye Methyl Orange from Aqueous Solutions Using Alkali-Activated Polypyrrole-Based Graphene Oxide. Molecules 2019, 24, 3685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohilla, S.; Gupta, A.; Kumar, V.; Kumari, S.; Petru, M.; Amor, N.; Noman, M.T.; Dalal, J. Excellent UV-Light Triggered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye. Nanomater 2021 2021, 11, 2548. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Obando, V.A.; García-Mora, A.-M.; Basante, J.S.; Hidalgo, A.; Galeano, L.-A. CWPO Degradation of Methyl Orange at Circumneutral pH: Multi-Response Statistical Optimization, Main Intermediates and by-Products. Front. Chem. 2019, 7, 772. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.H.; Huang, K.L.; Liu, S.Q.; Wang, A.T.; Yan, C. Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 330, 55–61. [Google Scholar] [CrossRef]
- Masarbo, R.S.; Ismailsab, M.; Monisha, T.R.; Nayak, A.S.; Karegoudar, T.B. Enhanced decolorization of sulfonated azo dye methyl orange by single and mixed bacterial strains AK1, AK2 and VKY1. Bioremediat. J. 2018, 22, 136–146. [Google Scholar] [CrossRef]
- Modrogan, C.; Cǎprǎrescu, S.; Dǎncilǎ, A.M.; Orbuleț, O.D.; Grumezescu, A.M.; Purcar, V.; Radițoiu, V.; Fierascu, R.C. Modified Composite Based on Magnetite and Polyvinyl Alcohol: Synthesis, Characterization, and Degradation Studies of the Methyl Orange Dye from Synthetic Wastewater. Polymers 2021, 13, 3911. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Romanholo Ferreira, L.F.; Hussain, C.M.; Mulla, S.I.; Bharagava, R.N. Degradation mechanism and toxicity reduction of methyl orange dye by a newly isolated bacterium Pseudomonas aeruginosa MZ520730. J. Water Process. Eng. 2021, 43, 102300. [Google Scholar] [CrossRef]
- Dey, P.C.; Das, R. Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 231, 118122. [Google Scholar] [CrossRef] [PubMed]
- Trofimovaite, R.; Parlett, C.M.A.; Kumar, S.; Frattini, L.; Isaacs, M.A.; Wilson, K.; Olivi, L.; Coulson, B.; Debgupta, J.; Douthwaite, R.E.; et al. Single atom Cu(I) promoted mesoporous titanias for photocatalytic Methyl Orange depollution and H2 production. Appl. Catal. B Environ. 2018, 232, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; He, D.; Huang, H.; Guo, Y.; Tang, Y.; Song, R.J. Characterization of amino-crosslinked hypromellose and its adsorption characteristics for methyl orange from water. J. Mater. Sci. 2020, 55, 7268–7282. [Google Scholar] [CrossRef]
- Ali, I.; Burakova, I.; Galunin, E.; Burakov, A.; Mkrtchyan, E.; Melezhik, A.; Kurnosov, D.; Tkachev, A.; Grachev, V. High-Speed and High-Capacity Removal of Methyl Orange and Malachite Green in Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies. ACS Omega 2019, 4, 19293–19306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, A.; El-Fakharany, E.M.; Abu-Serie, M.M.; Elkady, M.F.; Eltarahony, M. Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential. Biology 2022, 11, 76. [Google Scholar] [CrossRef]
- Fan, J.; Guo, Y.; Wang, J.; Fan, M. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 2009, 166, 904–910. [Google Scholar] [CrossRef]
- Khan, I.; Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron. 2020, 31, 8971–8985. [Google Scholar] [CrossRef]
- Maruthanayagam, A.; Mani, P.; Kaliappan, K.; Chinnappan, S. In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1. Water. Air. Soil Pollut. 2020, 231, 232. [Google Scholar] [CrossRef]
- Haque, M.M.; Haque, M.A.; Mosharaf, M.K.; Marcus, P.K. Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi J. Biol. Sci. 2021, 28, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Aziz, A.R.A.; Mazari, S.A.; Baloch, A.G.; Nizamuddin, S. Photocatalytic degradation of methyl orange from wastewater using a newly developed Fe-Cu-Zn-ZSM-5 catalyst. Environ. Sci. Pollut. Res. 2020, 27, 26239–26248. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange. Green Process. Synth. 2019, 8, 118–127. [Google Scholar] [CrossRef]
- Safavi-Mirmahalleh, S.A.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl methacrylate)/nanocrystalline cellulose hydrogels. Environ. Sci. Pollut. Res. 2020, 27, 28091–28103. [Google Scholar] [CrossRef]
- Wu, W.; Yao, T.; Xiang, Y.; Zou, H.; Zhou, Y. Efficient removal of methyl orange by a flower-like TiO2/MIL-101(Cr) composite nanomaterial. Dalt. Trans. 2020, 49, 5722–5729. [Google Scholar] [CrossRef] [PubMed]
- Haitham, K.; Razak, S.; Nawi, M.A. Kinetics and isotherm studies of methyl orange adsorption by a highly recyclable immobilized polyaniline on a glass plate. Arab. J. Chem. 2019, 12, 1595–1606. [Google Scholar] [CrossRef] [Green Version]
- Akansha, K.; Chakraborty, D.; Sachan, S.G. Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatal. Agric. Biotechnol. 2019, 18, 101044. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Almansoory, A.F.; Ismail, N.; Hasan, H.A.; Anuar, N. Role of Salvinia molesta in biodecolorization of methyl orange dye from water. Sci. Rep. 2020, 10, 13980. [Google Scholar] [CrossRef]
- Nashmi, O.A.; Mohammed, A.A.; Abdulrazzaq, N.N. Investigation of Ozone Microbubbles for the Degradation of Methylene Orange Contaminated Wastewater. Iraqi J. Chem. Pet. Eng. 2020, 21, 1997–4884. [Google Scholar] [CrossRef]
- Othmani, B.; Gamelas, J.A.F.; Rasteiro, M.G.; Khadhraoui, M. Characterization of Two Cactus Formulation-Based Flocculants and Investigation on Their Flocculating Ability for Cationic and Anionic Dyes Removal. Polymers 2020, 12, 1964. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossaini, H.; Nasseri, S.; Azizi, N.; Shahmoradi, B.; Khosravi, T. Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles. J. Nanostruct. Chem. 2020, 10, 143–159. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process. 2020, 114, 105088. [Google Scholar] [CrossRef]
- Li, M.; Guan, R.; Li, J.; Zhao, Z.; Zhang, J.; Qi, Y.; Zhai, H.; Wang, L. Photocatalytic Performance and Mechanism Research of Ag/HSTiO2on Degradation of Methyl Orange. ACS Omega 2020, 5, 21451–21457. [Google Scholar] [CrossRef]
- Chen, H.; Xue, C.; Cui, D.; Liu, M.; Chen, Y.; Li, Y.; Zhang, W. Co3O4–Ag photocatalysts for the efficient degradation of methyl orange. RSC Adv. 2020, 10, 15245–15251. [Google Scholar] [CrossRef] [Green Version]
- Oyarce, E.; Butter, B.; Santander, P.; Sánchez, J. Polyelectrolytes applied to remove methylene blue and methyl orange dyes from water via polymer-enhanced ultrafiltration. J. Environ. Chem. Eng. 2021, 9, 106297. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Mecha, A.C.; Chollom, M.N. Photocatalytic ozonation of wastewater: A review. Environ. Chem. Lett. 2020, 18, 1491–1507. [Google Scholar] [CrossRef]
- Ramos, P.G.; Luyo, C.; Sánchez, L.A.; Gomez, E.D.; Rodriguez, J.M. The Spinning Voltage Influence on the Growth of ZnO-rGO Nanorods for Photocatalytic Degradation of Methyl Orange Dye. Catalysts 2020, 10, 660. [Google Scholar] [CrossRef]
- Tsuji, M.; Matsuda, K.; Tanaka, M.; Kuboyama, S.; Uto, K.; Wada, N.; Kawazumi, H.; Tsuji, T.; Ago, H.; Hayashi, J. Enhanced Photocatalytic Degradation of Methyl Orange by Au/TiO 2 Nanoparticles under Neutral and Acidic Solutions. ChemistrySelect 2018, 3, 1432–1438. [Google Scholar] [CrossRef]
- Shaheen, K.; Suo, H.; Shah, Z.; Khush, L.; Arshad, T.; Khan, S.B.; Siddique, M.; Ma, L.; Liu, M.; Cui, J.; et al. Ag–Ni and Al–Ni nanoparticles for resistive response of humidity and photocatalytic degradation of Methyl Orange dye. Mater. Chem. Phys. 2020, 244, 122748. [Google Scholar] [CrossRef]
- Saeed, K.; Khan, I.; Shah, T.; Park, S.-Y. Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers. Fibers Polym. 2015, 16, 1870–1875. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C 3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901. [Google Scholar] [CrossRef] [PubMed]
- Dorraj, M.; Sadjadi, S.; Heravi, M.M. Pd on poly(1-vinylimidazole) decorated magnetic S-doped grafitic carbon nitride: An efficient catalyst for catalytic reduction of organic dyes. Sci. Rep. 2020, 10, 13340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Lun, Y.; Liu, S.; Liang, Y.; Yan, G.; He, G.; Wang, Y.; He, Q. A nearly complete decomposition of MO, TC and OFX over a direct Z-scheme p-n heterojunction g-C3N4/La-Bi2O3 composite. J. Alloys Compd. 2023, 934, 167554. [Google Scholar] [CrossRef]
- Hou, L.; Wu, Z.; Jin, C.; Li, W.; Wei, Q.; Chen, Y.; Wang, T. Flower-like dual-defective z-scheme heterojunction g-C3N4/Znin2s4 high-efficiency photocatalytic hydrogen evolution and degradation of mixed pollutants. Nanomaterials 2021, 11, 2483. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Chen, Q.; Chao, C.; Sun, J.; Dong, S.; Sun, Y. Synthesis of rGO/g-C3N4 for methyl orange degradation in activating peroxydisulfate under simulated solar light irradiation. J. Alloys Compd. 2022, 907, 164500. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, J.; Jin, B.; Wu, Z.; Yang, S.; Zhang, S.; Tian, Y.; Fang, Y.; Hou, Y.; Zhou, X. Sustainable synthesis of low-cost nitrogen-doped-carbon coated Co3W3C@g-C3N4 composite photocatalyst for efficient hydrogen evolution. Chem. Eng. J. 2021, 426, 131208. [Google Scholar] [CrossRef]
- Hayat, A.; Shah Syed, J.A.; Al-Sehemi, A.G.; El-Nasser, K.S.; Taha, T.A.; Al-Ghamdi, A.A.; Amin, M.A.; Ajmal, Z.; Iqbal, W.; Palamanit, A.; et al. State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. Int. J. Hydrog. Energy 2022, 47, 10837–10867. [Google Scholar] [CrossRef]
- Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022, 12, 294. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Alanazi, H.S.; Alsyahi, A.A.; Ahmad, N. Photocatalytic Degradation of the Light Sensitive Organic Dyes: Methylene Blue and Rose Bengal by Using Urea Derived g-C3N4/ZnO Nanocomposites. Catalysts 2020, 10, 1457. [Google Scholar] [CrossRef]
- Guan, R.; Li, J.; Zhang, J.; Zhao, Z.; Wang, D.; Zhai, H.; Sun, D. Photocatalytic Performance and Mechanistic Research of ZnO/g-C3N4 on Degradation of Methyl Orange. ACS Omega 2019, 4, 20742–20747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monga, D.; Basu, S. Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2. Adv. Powder Technol. 2019, 30, 1089–1098. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, J.; Ding, Y.; Liu, B.; Zhao, L.; Zhang, S. Research progress on g–C3N4–based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives. Ceram. Int. 2021, 47, 31005–31030. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Hou, H.; Shao, G.; Yang, W. Recent advances in g-C3N4-based photocatalysts incorporated by MXenes and their derivatives. J. Mater. Chem. A 2021, 9, 13722–13745. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Z.; Yao, Y.; Li, Y.; Cheema, W.A.; Wang, D.; Zhu, S. Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: A mini review. RSC Adv. 2020, 10, 29408–29418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 2019, 214, 462–479. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X. A Review on Quantum Dots Modified g-C3N4-Based Photocatalysts with Improved Photocatalytic Activity. Catalysts 2020, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. 2020, 269, 118828. [Google Scholar] [CrossRef]
- Sahoo, A.; Patra, S. A magnetically separable and recyclable g-C3N4/Fe3O4/porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo dyes. RSC Adv. 2020, 10, 6043–6051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, C.; Wang, A.; Palanisamy, K.; Chen, F. Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline. J. Environ. Sci. 2023, 127, 700–713. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Lee, K.C.; Pan, G.T.; Leo, B.F.; Chong, S.; Pan, K.L. Co-Doped, Tri-Doped, and Rare-Earth-Doped g-C3N4 for Photocatalytic Applications: State-of-the-Art. Catalysts 2022, 12, 586. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Suresh, R.; Karthikeyan, N.S.; Gnanasekaran, L.; Rajendran, S.; Soto-Moscoso, M. Facile synthesis of CuO/g-C3N4nanolayer composites with superior catalytic reductive degradation behavior. Chemosphere 2023, 315, 137711. [Google Scholar] [CrossRef]
- Mahalakshmi, G.; Rajeswari, M.; Ponnarasi, P. Synthesis of few-layer g-C3N4nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants. Inorg. Chem. Commun. 2020, 120, 108146. [Google Scholar] [CrossRef]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos. Part B Eng. 2020, 183, 107712. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Liu, X.; Yang, X.; Yang, Y. A Ternary Magnetic Recyclable ZnO/Fe3O4/g-C3N4 Composite Photocatalyst for Efficient Photodegradation of Monoazo Dye. Nanoscale Res. Lett. 2019, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int. J. Hydrogen Energy 2020, 45, 24636–24656. [Google Scholar] [CrossRef]
- Zeng, L.; He, Z.; Luo, Y.; Xu, J.; Chen, J.; Wu, L.; Huang, P.; Xu, S. A Simple g-C3N4/TNTs Heterojunction for Improving the Photoelectrocatalytic Degradation of Methyl Orange. J. Electrochem. Soc. 2021, 168, 116520. [Google Scholar] [CrossRef]
- Malik, M.; Len, T.; Luque, R.; Osman, S.M.; Paone, E.; Khan, M.I.; Wattoo, M.A.; Jamshaid, M.; Anum, A.; Rehman, A. ur Investigation on synthesis of ternary g-C3N4/ZnO–W/M nanocomposites integrated heterojunction II as efficient photocatalyst for environmental applications. Environ. Res. 2023, 217, 114621. [Google Scholar] [CrossRef]
- Kuldeep, A.R.; Dhabbe, R.S.; Garadkar, K.M. Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. Res. Chem. Intermed. 2021, 47, 5155–5174. [Google Scholar] [CrossRef]
- Pourshirband, N.; Nezamzadeh-Ejhieh, A.; Mirsattari, S.N. The CdS/g-C3N4 nano-photocatalyst: Brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119110. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Wang, X.; Wu, Y.; Lin, H.; Zhao, L.; Weng, W.; Wan, H.; Fan, M. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Wang, Y.; Yang, Y.; Wang, P.; Shi, L.; Feng, L.; Fang, S.; Liu, Q.; Ma, L.; et al. Synthesis and photocatalytic activity of g-C3N4/ZnO composite microspheres under visible light exposure. Ceram. Int. 2022, 48, 3293–3302. [Google Scholar] [CrossRef]
- Ismael, M.; Wark, M. Photocatalytic activity of CoFe2O4/g-C3N4 nanocomposite toward degradation of different organic pollutants and their inactivity toward hydrogen production: The role of the conduction band position. FlatChem 2022, 32, 100337. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Chen, Y.; Situ, Y.; Zhong, L.; Huang, H. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light. Appl. Surf. Sci. 2017, 425, 862–872. [Google Scholar] [CrossRef]
- Shi, H.; Feng, D.; Li, H.; Yu, D.; Chen, X. Hydrophilic hydrogen-bonded organic frameworks/g-C3N4 all-organic Z-scheme heterojunction for efficient visible-light photocatalytic hydrogen production and dye degradation. J. Photochem. Photobiol. A Chem. 2023, 435, 114292. [Google Scholar] [CrossRef]
- Wang, H.; Lu, J.; Wang, F.; Wei, W.; Chang, Y.; Dong, S. Preparation, characterization and photocatalytic performance of g-C3N4/Bi2WO6 composites for methyl orange degradation. Ceram. Int. 2014, 40, 9077–9086. [Google Scholar] [CrossRef]
- Yassin, J.M.; Taddesse, A.M.; Sánchez-Sánchez, M. Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocatalytic performance of its ternary composites with Ag3PO4 and g-C3N4. Appl. Surf. Sci. 2022, 578, 151996. [Google Scholar] [CrossRef]
- Mukhair, H.M.; Abdullah, A.H.; Zainal, Z.; Lim, H.N. Pes-Ag3Po4/g-C3N4 mixed matrix film photocatalyst for degradation of methyl orange dye. Polymers 2021, 13, 1746. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Di, L.J.; Dai, J.F. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J. Alloys Compd. 2015, 622, 1098–1104. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, T.; Deng, D.; Xu, L.; Chen, J.; Xiao, Y.; He, P. Constructing carbon microspheres/MnFe2O4/g-C3N4 composite photocatalysts for enhanced photocatalytic activity under visible light irradiation. Inorg. Chem. Commun. 2021, 134, 108947. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, Y.; Du, Z.; He, J.; Zhong, J.; Zhao, L.; She, H.; Liu, G.; Su, B. Synthesis of Rod-Like g-C3N4/ZnS Composites with Superior Photocatalytic Activity for the Degradation of Methyl Orange. Eur. J. Inorg. Chem. 2015, 2015, 4108–4115. [Google Scholar] [CrossRef]
- Warshagha, M.; Muneer, M. Synthesis of ZnO Co-doped Ph-g-C3N4 for enhanced photocatalytic organic pollutants removal under visible light. Int. J. Environ. Anal. Chem. 2020, 102, 6339–6358. [Google Scholar] [CrossRef]
- Huang, Z.; Jia, S.; Wei, J.; Shao, Z. A visible light active, carbon–nitrogen–sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Adv. 2021, 11, 16747–16754. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Han, C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B Environ. 2011, 108–109, 100–107. [Google Scholar] [CrossRef]
- Santha kumar, K.; Vellaichamy, B.; Paulmony, T. Visible light active metal-free photocatalysis: N-doped graphene covalently grafted with g-C3N4 for highly robust degradation of methyl orange. Solid State Sci. 2019, 94, 99–105. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Y.; Yin, B.; Chen, J.; Guo, M.; Gao, X. Wood powder biochar in CdS-WPB-g-C3N4 heterojunction as an electron transfer medium for enhancing photocatalytic performance toward degradation methyl orange. J. Environ. Chem. Eng. 2023, 11, 109135. [Google Scholar] [CrossRef]
- Manjari Mishra, P.; Pattnaik, S.; Prabha Devi, A. Green synthesis of bio-based Au@g-C3N4 nanocomposite for photocatalytic degradation of methyl orange. Mater. Today Proc. 2021, 47, 1218–1223. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Wu, J.; Zheng, X.; Liao, S.; Ou, B.; Tian, L. In situ embedment of CoOx on g-C3N4 as Z scheme heterojunction for efficient photocatalytic degradation of methyl orange and phenol under visible light. J. Alloys Compd. 2022, 927, 167047. [Google Scholar] [CrossRef]
- Han, C.; Ge, L.; Chen, C.; Li, Y.; Xiao, X.; Zhang, Y.; Guo, L. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B Environ. 2014, 147, 546–553. [Google Scholar] [CrossRef]
- Bhosale, A.; Gophane, A.; Kadam, J.; Sabale, S.; Sonawane, K.; Garadkar, K. Fabrication of visible-active ZnO-gC3N4 nanocomposites for photodegradation and cytotoxicity of methyl orange and antibacterial activity towards drug resistance pathogens. Opt. Mater. 2023, 136, 113392. [Google Scholar] [CrossRef]
- Sohrabian, M.; Mahdikhah, V.; Alimohammadi, E.; Sheibani, S. Improved photocatalytic performance of SrTiO3 through a Z-scheme polymeric-perovskite heterojunction with g-C3N4 and plasmonic resonance of Ag mediator. Appl. Surf. Sci. 2023, 618, 156682. [Google Scholar] [CrossRef]
- Rao, V.S.; Sharma, R.; Paul, D.R.; Almáši, M.; Sharma, A.; Kumar, S.; Nehra, S.P. Architecting the Z-scheme heterojunction of Gd2O3/g-C3N4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. Environ. Sci. Pollut. Res. 2023, 1–14. Online ahead of print. [Google Scholar] [CrossRef]
- Gong, W.; Wu, Q.; Ma, L.; Zhang, W.; Li, X.; Xu, A.; Zhao, S. MnOx/g-C3N4 nanocomposites mediated sulfite activation for enhanced organic pollutants degradation under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130812. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Peng, S.; Li, D.; Yang, S.; Fang, Y. Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Adv. 2014, 4, 35144–35148. [Google Scholar] [CrossRef]
- Zarei, M.; Mohammadzadeh, I.; Saidi, K.; Sheibani, H. g-C3N4 quantum dot decorated MoS2/Fe3O4 as a novel recoverable catalyst for photodegradation of organic pollutant under visible light. J. Mater. Sci. Mater. Electron. 2021, 32, 26213–26231. [Google Scholar] [CrossRef]
- Zhou, C.; Zhan, P.; Zhao, J.; Tang, X.; Liu, W.; Jin, M.; Wang, X. Long-lasting CaAl2O4:Eu2+,Nd3+ phosphor-coupled g-C3N4 QDs composites for the round-the-clock photocatalytic methyl orange degradation. Ceram. Int. 2020, 46, 27884–27891. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhang, K.; Lu, P.; Zhang, D. Facile fabrication of sandwich-like BiOI/AgI/g-C3N4 composites for efficient photocatalytic degradation of methyl orange and reduction of Cr(VI). J. Nanopart. Res. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Mishra, S.R. Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater. Mater. Res. Bull. 2021, 143, 111417. [Google Scholar] [CrossRef]
- Bai, X.; Wang, X.; Lu, X.; Hou, S.; Sun, B.; Wang, C.; Jia, T.; Yang, S.; Bai, X. High crystallinity and conjugation promote the polarization degree in O-doped g-C3N4 for removing organic pollutants. CrystEngComm 2021, 23, 1366–1376. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Z.; Wang, D.; Deng, C.; Zhao, Y.; Tang, F. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange. Mater. Sci. Eng. B 2023, 288, 116216. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Rong, J.; Zhu, X.; Yan, J.; Yang, D. Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2. Mater. Lett. 2016, 164, 127–131. [Google Scholar] [CrossRef]
- Li, S.; Zhu, T.; Dong, L.; Dong, M. Boosted visible light photodegradation activity of boron doped rGO/g-C3N4 nanocomposites: The role of C–O–C bonds. New J. Chem. 2018, 42, 17644–17651. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and Sulfur-Codoped g-C3N4: Facile Preparation, Mechanism Insight, and Application as Efficient Photocatalyst for Tetracycline and Methyl Orange Degradation under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2017, 5, 5831–5841. [Google Scholar] [CrossRef]
- Meng, Q.; Lv, H.; Yuan, M.; Cheng, Z.; Chen, Z.; Wang, X. In Situ Hydrothermal Construction of Direct Solid-State Nano-Z-Scheme BiVO4/Pyridine-Doped g-C3N4 Photocatalyst with Efficient Visible-Light-Induced Photocatalytic Degradation of Phenol and Dyes. ACS Omega 2017, 2, 2728–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Hong, Y.; Zeng, X.; Wei, J.; Wang, F.; Liu, M. Multilevel reconstruction of g-C3N4 nanorings via natural pollen for remarkable photocatalysis. Mater. Today Sustain. 2023, 21, 100267. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Qi, K.; Wang, Y.; Wen, F.; Wang, J. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction. J. Alloys Compd. 2023, 933, 167789. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Zang, J. Construction of B-doped g-C3N4/MoO3 photocatalyst to promote light absorption and Z-scheme charge transfer. Diam. Relat. Mater. 2023, 132, 109606. [Google Scholar] [CrossRef]
- Reddy, C.V.; Kakarla, R.R.; Shim, J.; Aminabhavi, T.M. Synthesis of transition metal ions doped-ZrO2 nanoparticles supported g-C3N4 hybrids for solar light-induced photocatalytic removal of methyl orange and tetracycline pollutants. Chemosphere 2022, 308, 136414. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ma, L.; Xu, X. Enhancing visible-light photocatalytic activity of g-C3N4 by doping phosphorus and coupling with CeO2 for the degradation of methyl orange under visible light irradiation. RSC Adv. 2015, 5, 68728–68735. [Google Scholar] [CrossRef]
- Liu, R.; Yang, W.; He, G.; Zheng, W.; Li, M.; Tao, W.; Tian, M. Ag-Modified g-C3N4 Prepared by a One-Step Calcination Method for Enhanced Catalytic Efficiency and Stability. ACS Omega 2020, 5, 19615–19624. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Wu, B.; Ning, Z.; Song, M.; Zhang, H.; Sun, X.; Wan, D.; Li, B. Porous g-C3N4 with defects for the efficient dye photodegradation under visible light. Water Sci. Technol. 2021, 84, 1354–1365. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Chao, C.; Yao, S.; Zhang, D.; Chen, Q. Enhanced visible-light activation of persulfate by g-C3N4 decorated graphene aerogel for methyl orange degradation. J. Alloys Compd. 2022, 926, 166904. [Google Scholar] [CrossRef]
Composites with Preparation Method | Efficient Composite | %Degradation of MO | Reason | Ref. |
---|---|---|---|---|
Z-scheme HOFs/g-C3N4 heterojunction. In situ electrostatic method | PFC-1/CNNS heterojunction | 100%/60 min under the visible light irradiation | The heterojucntion inhibits photo-generated e—h+ recombination to produce more highly reactive species (•OH, •O2− and h+) | [93] |
g-C3N4/Bi2WO6 composites. Hydrothermal method | g-C3N4:Bi2WO6 (0.5:1) hydrothermal time 6 h | 94.82%/ 180 min. | Formation of g-C3N4–Bi2WO6 heterojunctions between Bi2WO6 nanoparticles and g-C3N4 sheets. | [94] |
Ag3PO4/Ti-BDC/g-C3N4 ternary composites. Mixing of the constituents components. | Ag3PO4/Ti-BDC/g-C3N4-3% ternary composite | 99%/60 min | Multi-structural and synergistic effects. Some Ag0 was generated, which contributes to slowing the e−/h+ recombination | [95] |
PES-Ag3PO4/g-C3N4 Film. Non-solvent-induced phase inversion process | PES-Ag3PO4/g-C3N4 (13%) | 97%/180 min | g-C3N4 improved the photo-catalytic efficiency of Ag3PO4 and increased hydrophilicity of photo-catalyst film. | [96] |
BaTiO3@g-C3N4 composites. Simple mixing–calcining method | BaTiO3@g-C3N4(12%) | 76%/6 h | Efficient separation of the photogenerated e−/h+ pairs due to the carrier migration between BaTiO3 and g-C3N4. | [97] |
Mn@PC/g-C3N4 | 20% Mn@PC/g-C3N4 | --- | Improved light response and light-harvesting ability of the Mn@PC/g-C3N4 and effective charges separation. | [98] |
g-C3N4/ZnS composite. Hydrothermal process | 10 wt% g-C3N4/ZnS nanocomposite | 93.0 %/100 min | The g-C3N4 nanosheets serve as electron mediators as well as transporters to lengthen the lifetime of created charges in the composite. Moreover, the e—h+ pair recombination of ZnS has been efficiently restricted. | [99] |
ZnO/Ph-g-C3N4 nanocomposite. Single-step calcination and combustion process | 0.05% ZnO/Ph-g-C3N4 | 97.7%/120 min | Heterojunction results in improved absorption of light and efficient e−/h+ pair separation. | [100] |
(CNS-TiO2/g-C3N4) photocatalyst. One step hydrothermal and calcination methods. | CNS-TiO2/gC3N4-2 | 99.8%/80 min | Z-Scheme heterojunctions in CNS-TiO2/g-C3N4 promote the photo-generated e−/h+ ratio as well as catalyst lifetime. | [101] |
g-C3N4/Bi2WO6 composite photocatalysts. | 70 wt% gC3N4/Bi2WO6. | 100%/180 min | Synergic effect between Bi2WO6 and g-C3N4 improved photo-induced carrier separation. | [102] |
NG@g-C3N4 nanocomposite. Ultra-sonication method. | NG@g-C3N4 nanocomposite | 100%/35 min | High visible light adsorption capability, improved charge separations and high surface area owing to the synergistic effect of the NG grafted to g-C3N4. | [103] |
CdS-WPB–g-C3N4 heterojunction. simple hydrothermal synthesis | CdS-WPB(5%)-CN composite | 99%/80 min under visible light | WPB effectively transfer photogenerated electrons at the interface between g-C3N4 and CdS. | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljuaid, A.; Almehmadi, M.; Alsaiari, A.A.; Allahyani, M.; Abdulaziz, O.; Alsharif, A.; Alsaiari, J.A.; Saih, M.; Alotaibi, R.T.; Khan, I. g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023, 28, 3199. https://doi.org/10.3390/molecules28073199
Aljuaid A, Almehmadi M, Alsaiari AA, Allahyani M, Abdulaziz O, Alsharif A, Alsaiari JA, Saih M, Alotaibi RT, Khan I. g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules. 2023; 28(7):3199. https://doi.org/10.3390/molecules28073199
Chicago/Turabian StyleAljuaid, Abdulelah, Mazen Almehmadi, Ahad Amer Alsaiari, Mamdouh Allahyani, Osama Abdulaziz, Abdulaziz Alsharif, Jawaher Amer Alsaiari, Magdi Saih, Rema Turki Alotaibi, and Idrees Khan. 2023. "g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives" Molecules 28, no. 7: 3199. https://doi.org/10.3390/molecules28073199
APA StyleAljuaid, A., Almehmadi, M., Alsaiari, A. A., Allahyani, M., Abdulaziz, O., Alsharif, A., Alsaiari, J. A., Saih, M., Alotaibi, R. T., & Khan, I. (2023). g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules, 28(7), 3199. https://doi.org/10.3390/molecules28073199