
molecules

Article

Adsorption of Azo Dye Methyl Orange from Aqueous
Solutions Using Alkali-Activated Polypyrrole-Based
Graphene Oxide

Abdulaziz Ali Alghamdi, Abdel-Basit Al-Odayni * , Waseem Sharaf Saeed *,
Mohammed S. Almutairi, Fahad A. Alharthi, Taieb Aouak and Abdullah Al-Kahtani

Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
aalghamdia@ksu.edu.sa (A.A.A.); 436105200@student.ksu.edu.sa (M.S.A.); fharthi@ksu.edu.sa (F.A.A.);
taouak@ksu.edu.sa (T.A.); akahtani@ksu.edu.sa (A.A.-K.)
* Correspondence: aalodayni@ksu.edu.sa (A.-B.A.-O.); wsaeed@ksu.edu.sa (W.S.S.);

Tel.: +966-11-469-9889 (A.-B.A.-O.)

Received: 10 September 2019; Accepted: 12 October 2019; Published: 13 October 2019
����������
�������

Abstract: The adsorption of methyl orange (MO) from aqueous solutions onto a KOH-activated
polypyrrole-based adsorbent (PACK) was investigated using batch and fixed-bed column techniques.
The structural, thermal, and morphological properties of the PACK, analyzed by various methods,
support its applicability as an adsorbent. An adsorption kinetic study revealed a preferably
pseudo-second-order (R2 = 0.9996) and rate-limiting step controlled by both film and intra-particle
diffusions. The thermodynamic adsorption tests resulted in negative ∆G◦, ∆H◦, and ∆S◦ values,
which decreased as the temperature and concentration increased, indicating the spontaneous and
exothermic adsorption over 25–45 ◦C. The adsorption isotherms fit the experimental data in the order
of Langmuir ≈ Freundlich > Temkin, with evidence of adsorption operating well via the monolayer
physical adsorption process, and maximum monolayer adsorption ranging from 520.8 to 497.5 mg/g.
The breakthrough curve of the fixed-bed column experiment was modeled using the Thomas,
Yoon–Nelson, and Hill models, resulting in an equilibrium capacity of 57.21 mg/g. A 73% MO recovery
was achieved, indicating the possibility of column regeneration. Compared to other adsorbents
reported, PACK had comparable or even superior capacity toward MO. For cost-effectiveness, similar
nitrogen-containing polymeric wastes could be exploited to obtain such excellent materials for
various applications.

Keywords: polypyrrole-based activated carbon; alkali activation; adsorption; methyl orange; water
pollution; dye removal

1. Introduction

Dye pollution is a global issue owing to the hazardous nature of dyes. It is considerably visible in
the environment, as dyes are commonly highly water-soluble and not readily degradable under natural
conditions, resulting in a relatively long-time residence in the environment. Therefore, the removal of
dyes from various toxic effluents has become of special concern to environmental specialists. Azo dyes
such as methyl red and methyl orange (MO) are well known to be human carcinogens [1] that pervade
aqua systems from various sources, including textile, pharmaceutical, and printing industries, as well
as medical and chemical labs. Although most dyes are not highly toxic, they should be recognized as
visual pollutants that can reduce light penetration into water, consequently decreasing the efficiency of
photosynthesis and affecting the growth of aquatic organisms [2]. Moreover, dye pollution presents
aesthetic changes that are harmful in the natural environment. Methyl orange (MO) is an anionic,
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water-soluble (5 g/L, H2O, 20 ◦C) azo dye, which can function as a weak acid having an approximate
pH of 6.5 when dissolved in water. Besides its use for industrial coloring, it also serves as a pH indicator
in various laboratories, with a red to yellow color-change range of 3.1–4.4. MO is a sulfonated azo dye,
and the functional groups that are responsible for their bright color in water make them difficult to
remediate through conventional methods. Dyes bearing aromatic amines in their chemical structures
are carcinogenic due to the production of benzidine compounds via biotransformation [3].

Various physical–chemical methods have been employed for the removal of dyes from wastewater,
including filtration, adsorption, precipitation, coagulation, and photo-degradation [3]. Among these,
the adsorption technique is the most competitive method, with a number of advantages, such as
low cost, high efficiency, and simple operation [4]. In this technique, different adsorbents from
various sources are explored to find the best material, subsequently, a convenient adsorption system
is built. These adsorbents are comprised of microorganisms, activated carbon, zeolite, biomasses,
polymers, and polymer-based adsorbents [5]. Among the available adsorbents, activated carbon is the
most effective owing largely to its high surface-area, internal porous structure, and varying surface
functional group, as well as its simplicity, high efficiency, and cost-effectiveness [6,7]. The production of
carbon materials can be accomplished through a programmed heating process of the carbon precursor.
Basically, there are two methods for activation: physical and chemical. The former requires a relatively
high temperature, and the chemical activation requires a low temperature, which can be accomplished
in the presence of acid, base, or salt.

Due to the limitations in the adsorption efficiency associated with each type of adsorbents,
no single adsorbent has been found to be effective for the removal of different types of pollutants.
This necessitates a continual effort to overcome such a challenge in this field. In this context, the prepared
polypyrrole-based activated carbon (PACK), in this work, was reported to exhibit promising properties,
including a high surface area and appropriate pore sizes. Moreover, its gas storage application,
sensing properties, and the removal of metal ions from their aqueous solutions have been investigated,
and based on the results, PACK is an effective adsorbent [4,8,9].

The present work was designed to test the feasibility and adsorption performance of PACK as a
promising adsorbent for the removal of MO, a representative dye pollutant, from synthetic aqueous
solutions in batch and fixed-bed column systems. The adsorption kinetic behavior, thermodynamic,
and isothermal adsorption properties as well as the column efficiency were evaluated using different
models, and the best adsorption-describing parameters were determined and reported.

2. Results and Discussion

2.1. Characterization of the Adsorbent

The PACK adsorbent was prepared following the method from a previous work [4]. Its features,
including the surface texture, thermal stability, and crystallinity, were also reported [4,8,9]. The SEM
micrographs of Polypyrrole (PPy) (shown in Supplementary Data, Figure S1), revealed a cauliflower-like
typical surface morphology, while the PACK image indicates a rough and peel-like structure having
a surface with large, irregularly shaped pores, with an average internal diameter of 2.2–4.2 µm.
To gain insight into the elemental composition for the material under investigation, elemental analyses
using both carbon, hydrogen and nitrogen (CHN) and energy-dispersive X-ray (EDX) methods were
performed and compared with the reference [9] (Table for elemental compositions and selected EDX
images of PPy and PACK are given in the Supplementary Data (Figures S1–S3)). However, the PACK
C/N ratios were found to be as low as 11.3 (CHN method result) compared to the literature (55.2) [9],
indicating high nitrogen content. The Fourier transform infrared (FTIR) spectra of PACK before and
after the adsorption process are shown in Figure 1 along with the PPy spectrum for comparison.
The structural differences between the material under investigation were noticeable. Therefore,
the spectrum of PPy was in a good agreement with those reported in the literature [10], in which
the fundamental peaks of PPy-ring were observed at 1548.9 and 1470.7 cm−1, the =C–H in-plane
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vibration at 1285.9 and 1038.7 cm−1, and the C–N stretching at 1170.3 cm−1. The apparent absence
of an O–H peak in the PACK spectrum indicated a reduced structure. The existing of a peak around
1550 cm−1 (reported at 1556 cm−1 [11]) is due to the superposition of the vibrations of both C=N and
C=C, and is an evidence of the embedding of nitrogen-containing groups [11]. However, a peak at
about 1035 cm−1 attributed to C–OH (or epoxy group) is still present, revealing a partial reduction,
furthermore, no evidence for the presence of C=O exists. The peaks at 930.4 and 679.9 cm−1 may be
attributed to the ring deformation and physisorbed carbon dioxide, respectively [12]. The MO FTIR
spectrum is similar to the reported one [13]. After adsorption of MO by PACK, the peaks assigned to
C=N (about 1550 cm−1) and C–O (1035 cm−1) in the PACK spectrum shifted slightly toward higher
values (1557.6 and 1195.8 cm−1), suggesting new types of interactions of each of the nitrogen and
oxygen functional groups of PACK in the presence of MO. Indeed, additional peaks were observed in
the PACK–MO spectrum due to the attachment of MO molecules. The chemical structure of MO in
acidic and basic media is depicted in Figure 2.
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The thermogravimetric analysis (TGA) shown in Figure 3 indicate the multistep degradation of
PACK before and after the adsorption of MO (Table 1). The observed total mass loss of 48.2% of PACK
before the adsorption may indicate the incomplete carbonaceous property, however, volatiles were lost
first below 100 ◦C with a mass loss of 5.6%. After that, a significant step around the derivative-TGA
(DTG) value of 295.8 was observed with a total mass loss of 8.6%. Thereafter, the mass loss continued
to degrade gradually up to 1000 ◦C, with a slight drop after 650 ◦C, which may be due to the reduction
in the presence of nitrogen atmosphere. Compared to PACK thermogram, the PACK–MO thermogram
also exhibited almost three steps of degradation with distinct differences due to the presence of MO
attached to its surface. Evidently, the mass loss due to the MO molecules is between approximately
100 and 400 ◦C. The relatively high mass loss (19.1%) between 100 and 265 ◦C may indicate more
adsorption of MO into the external surface compared to the internal surface, which is possibly lost
between 265 and 445 ◦C (15.6%).
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Table 1. TGA degradation steps of PACK and PACK–MO.

Material Step TGA, T (◦C) DTG, T (◦C) Mass Loss (%) Notes

PACK

1 25–95 64 5.6 Moisture, volatiles

2 95–336 296 8.6
Total mass loss =

48.2%, Residue = 51.8%3 336–820 767 25.2

4 820–1000 - gradual

PACK–MO

1 25–95 51 2.1 Moisture, volatiles

2 95–265 199 19.1
Total mass loss =

61.1%, Residue = 38.1%3 265–445 360 15.6

4 445–1000 720 gradual

Figure 4 shows the differential scanning calorimetry (DSC) profiles of PPy, PACK, MO,
and PACK–MO. The PPy exothermic peak at 305 ◦C (onset 245 ◦C) may indicate that a chemical reaction
has taken place, involving bond cleavage, depolymerization, crosslinking, and decomposition. The DSC
curve of PACK shows no clear heat transitions in this temperature range. However, the endothermic
trend became sharper at the approximate onset of 250 ◦C, which is consistent with the TGA second-step
of decomposition. Two exothermic peaks of MO centered at 330 and 349 ◦C were observed indicating
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its instability above 270 ◦C, i.e., decomposition before melting [14]. After adsorption, the attached
MO molecules onto PACK resulting in an exothermicity at 320 ◦C (onset approximately at 240 ◦C),
assuming early degradation of MO stimulated by carbon.Molecules 2019, 24, x FOR PEER REVIEW 5 of 17 
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2.2. Adsorption Kinetic

Figure 5 shows the time-dependent adsorption behavior of MO by PACK. In this figure, the rapid
adsorption in the initial period (5 min) reveals that the adsorption mainly occurs on the surface
of the adsorbent, assuming the chemisorption mechanism. After that, the adsorption increased
slowly, showing practically negligible increase after 195 min (reference samples were measured after
24 h) assuming a physisorption mechanism, which may be controlled by the diffusion process [15].
Commonly, a high number of adsorbent vacant sites are available for the MO molecules to be adsorbed
in the first stage of the adsorption, after which repulsive forces, as well as the diffusion mechanism, may
be dominant, thereby reducing the adsorption rate. Thus, the mechanism involved in the mass transfer
of the MO dye from liquid phase to the PACK surface was evaluated using the pseudo-first-order (PFO)
(Equation (11)) and pseudo-second-order (PSO) (Equation (12)) kinetic models (Figure 6A). By ignoring
the adsorbate movement from the bulk liquid to the adsorbent near the liquid film, three stages of the
adsorption process can be defined: (1) the outer (or boundary layer) diffusion, the external adsorbate
mass transfer across the liquid film to the adsorbent exterior surface; (2) the inner (or intra-particle)
diffusion, which is the transport of adsorbate particles from the adsorbent exterior surface to its internal
pores; and (3) the interaction process [16], which is the step that is very fast and thus cannot be treated
as rate-limiting. To determine the actual rate-controlling step involved in the adsorption process,
the intra-particle diffusion model described by the Weber–Morris (W–M) equation (Equation (14))
was also applied (Figure 6B) Table 2. The relatively high correlation coefficient value of the PSO
(R2 = 0.9996) compared to that of the PFO (R2 = 0.9639) as well as the proximity of the adsorption
capacity (qe) (143.89 mg/g) to the experimental one (143.38 mg/g) of the PSO model indicate that the
adsorption system is a PSO reaction. The linear plot of the W–M model passing through the origin
suggests the intra-particle diffusion, while its deviation from the origin suggests the participation
of other mechanisms in the rate-controlling step, including the film diffusion mechanism. The high
value of C (117.98 mg/g) indicates a large boundary effect, thus, this external film resistance cannot be
ignored. Due to the mass-transfer effects, the intra-particle plot is curved at a small time-limit (from 30
to 45 min), below and above which the intra-particle diffusion model operates efficiently (R2 = 0.9994
and 0.9773, respectively). Since the slope (kid) of the first stage is greater than that in the final stage,
the diffusion model mainly controlled the uptake of MO onto PACK, as shown in the plot of the two
stages (insert in Figure 6B) [17].
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C0 = 50 mg/L, volume = 500 mL, adsorbent = 0.04 g, temperature = 23 ± 2 ◦C, and agitation speed =
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Table 2. Kinetic parameters of the pseudo-first-order (PFO), pseudo-second-order (PSO), and
intra-particle diffusion equations for the adsorption of the MO dye on PACK. Adsorbate C0 = 50 mg/L,
volume = 500 mL, adsorbent = 0.04 g, temperature = 23 ± 2 ◦C, and agitation speed = 150 rpm.

qe. Exp.
(mg/g)

Pseudo-First-Order Pseudo-Second-Order Intra-Particle Diffusion

qe
(mg/g)

k1
(min−1)

R2 qe
(mg/g)

k2
(g/(mg·min)) R2 h

(mg/(g·min))
kid

(mg/(g·min0.5))
C

(mg/g) R2

143.38 23.67 0.0115 0.9639 143.89 0.0025 0.9996 51.71 1.925 117.98 0.9303

2.3. Adsorption Isotherms

Table 3 summarizes the isotherm parameters expressed by the Langmuir, Freundlich, and Temkin
linearized equations. Based on the data obtained, the applicability of the three isotherms for the present
data was in the following order: Langmuir > Freundlich > Temkin. The values of the 1/n and the
heterogeneity factor (RL) indicate favorable adsorption. As the value of 1/n approaches zero, more
heterogeneous conditions are expected. The maximum adsorption capacity (qm, mg/g) obtained from
the Langmuir equation was relatively decreased from 520.8 to 497.5 mg/g as the temperature increased
from 298 to 318 K, indicating a less favorable adsorption at relatively high temperatures. Moreover,
this case is confirmed by the ∆G◦ magnitudes, which approach less negative values at relatively
high temperatures. In addition, the KF values predict a decrease in the adsorption capacity as the
temperature increases, thereby supporting this argument. The Temkin equilibrium binding constant
(A), corresponding to the maximum binding energy, decreased as the temperature increased from 298 to
318 K, indicating that the adsorption process is exothermic [18]. Hereinafter, the adsorption, preferably
spontaneous and exothermic, is operated well, based on the monolayer physisorption process.

Table 3. Parameters obtained from the Langmuir, Freundlich, and Temkin isotherms.

T (K)
Langmuir Freundlich Temkin

qm
(mg/g)

KL
(L/mg)

RL (C0 (mg/L) = 100,
200, 300, 500) R2 KF (mg/g)

(L/mg)1/n 1/n R2 A
(g/mg)

KT
(J/mol) B R2

298 520.8 0.323 0.030, 0.015, 0.010, 0.006 0.9951 221.8 0.176 0.9979 245.58 53.69 46.15 0.9347

308 512.8 0.263 0.037, 0.019, 0.013, 0.008 0.9961 205.6 0.185 0.9915 134.11 53.61 47.77 0.9229

318 497.5 0.244 0.039, 0.020, 0.013, 0.008 0.9962 198.9 0.183 0.9938 124.03 56.72 46.61 0.9322

2.4. Adsorption Thermodynamics

The thermodynamic parameters can be obtained from a curve established between the apparent
equilibrium constant K0 (Equation (9)) versus 1/T according to the Van′t Hoff equation (Equation (8))
(Table 4). The negative values of ∆G◦ and ∆H◦ show that the adsorption of the MO dye is spontaneous
and exothermic. However, the temperature-dependent ∆G◦ change was trivial, showing a slight
decrease as the temperature increased from 298 to 318 K, although a considerable decrease with
concentration increase was observed. The negative ∆S◦ value suggests a decrease in the randomness at
the solid–liquid interface during the adsorption of the MO dye on PACK [19]. Moreover, a decreasing
trend of the ∆H◦ and ∆S◦ values was observed. Generally, the value of ∆G◦ for physical adsorption
(from −20 to 0 kJ/mol) is smaller than that for chemisorption (from −80 to −400 kJ/mol) [20]. Similarly,
a ∆H◦ value of less than 40 kJ/mol indicates the physical process [21].

Based on the above results, it could be concluded that the adsorption reaction mechanism is PSO,
monolayer, physical, spontaneous, exothermic, and less favorable at high temperatures.



Molecules 2019, 24, 3685 8 of 17

Table 4. Thermodynamic functions ∆G◦, ∆H◦, and ∆S◦ of the MO dye adsorbed onto PACK.

Co (mg/L) T (K) lnK0
∆G◦

(kJ/mol)
∆H◦

(kJ/mol)
∆S◦

(J/mol·K) R2

100

298 8.1962 −20.31

−27.61 −24.87 0.9521308 7.6851 −19.68

318 7.5027 −19.84

200

298 4.7303 −11.72

−29.27 −59.48 0.8911308 4.1101 −10.52

318 3.9995 −10.57

300

298 3.0944 −7.667

−7.974 −0.85 0.8479308 3.0573 −7.829

318 2.8881 −7.636

500

298 1.6840 −4.172

−9.210 −16.844 0.9849308 1.5821 −4.051

318 1.4489 −3.831

2.5. Column Behavior

The applicability of the PACK column adsorption of MO was evaluated through the breakthrough
curve analysis generated by plotting the quantity of MO adsorbed (Cads, mg/L) or the normalized values
of the effluent concentration (Ce/C0), against the time (t, min), resulting in a noticeable S-shaped curve
(Figure 7), from which the performance of the established column system can be evaluated. Using the
given data, the adsorption capacity (qe) (mg/g) of the column can be calculated as in Equation (1) [22]:

qe =
QA

1000 m
(1)

where A is the breakthrough curve area, Q is the volumetric flow rate (mL/min), and m (g) is the
mass of the adsorbent in the column. Accordingly, the experimental capacity at equilibrium (qe. Exp.)
was found to be 57.21 (mg/g), and the breakthrough point (Ce/C0 = 0.05) and exhaustion times were
evidently at 90 and 290 min, respectively, under the applied operation conditions (MO C0 = 30 mg/L,
PACK bed amount = 0.1 g, flow rate = 1 mL/min, and operation temperature = 23 ± 2 ◦C). Moreover,
the breakthrough curve was fitted to the three-parameter logistic model (also known as the Hill model)
(3-PL) (Figure 7), and the data obtained are listed in Table 5. Despite the goodness fitting (R2 = 9968) of
this model to the experimental data, it reflects no much information, therefore, it cannot be used for
designing the fixed-bed column. The predicted inlet concentration (b value, 1.17) is, however, close to
unity. The value of c, the time taken to attain a 50% inlet concentration, was predicted as 219.8, which
is not considerably far from that determined value by the Yoon–Nelson model (209.2). Commonly,
the value of the parameter (c) depends on many factors, including the bed height, initial concentration,
and flow rate. The steepness determiner (the Hill slop n) was found to be 3.67, which may reflect the
degree to which the adsorbate diffusion delayed due, supposedly, to the intra-particle diffusion or
ion-exchange before the column exhaustion. However, the n value is in the range reported for some
data analysis [23].
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Table 5. Column parameters from the Thomas, Yoon–Nelson, and Hill models. C0 = 30 mg/L, flow rate
(Q) = 1.0 mL/min, and temperature = 23 ± 2 ◦C.

qe. Exp.
(mg/g)

Thomas Yoon–Nelson 3-PL Hill

KTh
(L/(mg·min))

qe
(mg/g) R2 KYN

(L/(mg·min))
τ

(min) R2 c b α R2

57.21 0.858 69.71 0.9676 0.0286 209.12 0.9676 219.8 1.17 3.67 0.9968

Despite the limitation of this experimental part, the intended fundamental information concerning
the feasibility of the designed column has been acquired. Nevertheless, adequate data have been
obtained through modeling the breakthrough curve using the Thomas, Yoon–Nelson (Y–N), and Hill
models. The results indicate that both models are suitable for describing the column adsorption behavior,
indicated by the reasonable value and equality of the regression coefficient (R2) of 0.9676. The theoretical
Thomas value of the bed capacity, qe, was higher than the experimental value (69.7 and 57.2 mg/g,
respectively), indicating an adequate adsorption condition including the initial MO concentration and
flow rate for optimal uptake. Both the Y–N and 3-PL models predicted relatively close values for the
time of 50% uptake: 209.1 and 219.8 min, corresponding to the τ and c parameters, respectively.

Figure 7 also shows the regeneration curve of the PACK adsorbent. In the adsorption step, around
87% MO removal was achieved, of which around 73% was recovered in the regeneration step during
80 min. However, about 66% was desorbed at the first 20 min. The relatively low regeneration
percentage may be due to the insufficient NaOH, which allowed some MO molecules to remain in
the binding sites. However, surface destruction and possibly other effects may be responsible for low
reusability, this may necessitate further experiments.

The maximum monolayer adsorption capacities, qm (mg/g), of some other absorbents for the MO
dye uptake obtained from literature are listed in Table 6 for comparison. As can be seen, the value of qm

of the investigated PACK for MO adsorption is higher than that of the other potential adsorbents listed
in the table. However, the differences of the MO adsorption capacities are due to the diversity in the
adsorbent characteristics concerning its chemical structure and the surface texture, such as the surface
area, porosity, and functional groups. To select the most suitable adsorbent, many factors have to be
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considered, such as the availability, reusability, and cost-effectiveness. The adsorbent produced from
naturally available materials including agricultural, biosource, industrial waste, or readily naturally
available ones may be less expensive, but less efficient. By some modification, their capacity to
remove dye pollutants may be increased. Synthetic materials including activated carbon have shown
enhanced adsorption depending on the source as well as the type of treatment and method of synthesis.
Nitrogen-containing adsorbents may have resulted in an elevated efficiency owing to the presence
of nitrogen, which offers beneficial sites for the electrostatic interaction with charged adsorbates.
Regeneration, however, is the major drawback associated with the potential adsorbents. In most cases,
it is not done or not disclosed in publications. Conversely, the regeneration trials of some adsorbents
have resulted in a low-performance percentage as can be seen in the listed examples. Comparing the
column capacity at equilibrium (qe, mg/g) may provide indication about the column efficiency. For this
reason, data from some columns used for the removal of MO from its aqueous solutions are tabulated
(Table 7). Evidently, the qe value observed in this work was higher than those in the list, suggesting the
use of an appropriate adsorption system. However, the regeneration efficiency is somehow relatively
low, suggesting the need for future exploratory study for the optimum eluent. Accordingly, the overall
finding may suggest the great potential application of PACK in dye removal from aqueous solution.

Table 6. Comparison of the adsorption capacities of various adsorbents for MO removal.

Adsorbent
qm

(mg/L)

Adsorption Conditions
Reference Source Type ReusabilityCo

(mg/L) pH T (◦C) Adsorbent
Dosage (g/L)

Polyaniline microspheres 154.6 - - RT 2.0 [15] Synthetic -
Banana peels 21.0 100 5.7 30 1.0 [24] Agriculture -
Orange peels 20.5 100 5.7 30 1.0 [24] Agriculture -

Hyper crosslinked polymer 70.9 100 - 20 2.5 [2] Synthetic -
NH3

+-MCM-41 366.6 98.2 5.6 24.5 0.5 [25] Synthetic -
PANI/CPL 333.3 50 4.0 - 2.0 [26] Synthetic -

Organo-modified silkworm
exuviae (MSE) 87.03 300 - 30 2.0 [26] Biosource waste 17.25%

surfactants modified
montmorillonite 128.21 120 - 30 2.0 [6] Modified-Natural

source 11.5%

PACK 520.8 100–500 6.5 25 0.8 This
work Synthetic -

Table 7. Comparison of column equilibrium capacity of various adsorbents for MO removal.

Adsorbent
Column Conditions

qe (mg/g) R2 Reference RegenerationC0
(mg/L) pH Flow Rate

(mL/min) Bed (cm)

Iron oxide-coated
zeolite (IOCZ) 30 2.5 11 6 0.334 0.772 [5] -

Waste tyre activated
carbon (WTAC) 40 - 3 1.5 6.89 0.983 [27] 89%

De-oiled Soya 33 6.5 0.5 1 g 3.5 - [28] 93%
PACK 30 6.5 1.1 0.7 69.1 0.9676 This work 73%

3. Materials and Methods

3.1. Materials

Pyrrole monomer C4H5N (Py, +98%), ammonium persulfate (NH4)2S2O8 (APS, 98%),
and potassium hydroxide KOH (pellets, 85%) were purchased from Alfa Aesar, Karlsruhe, Germany.
Hydrochloric acid HCl (~36%) and ethanol (99.5%) were obtained from Fisher Chemical, Loughborough,
UK. Methyl orange sodium salt C14H14N3NaO3S (MO, 99.8%) powder was obtained from BDH
Chemicals Ltd., Poole, UK and was dried at 100 ◦C for 1.5 h. All the reagents were used as received
without any further treatment unless otherwise stated, and distilled water was used throughout the
experimental process.
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3.2. Adsorbent

The adsorbent, polypyrrole-based activated carbon (PACK), was prepared following a two-step
method described elsewhere [4]. The pyrrole (Py) monomer (0.08 mol) was polymerized using APS
(0.12 mol) as an oxidant and HCl (1 L, 0.1 M) as a dopant in a cool ice bath. After an extensive
washing process using ethanol and water, the obtained dried polypyrrole (PPy) was subjected to
chemical activation using KOH (1:4 weight ratio). Therefore, PPy was thoroughly mixed with KOH,
homogenized, and carbonized in a horizontal Carbolite MTF 12/38/250 tube furnace (Walf Laboratories,
UK) under the following condition: nitrogen atmosphere, heating ramp rate of 3 ◦C/min; activation
time of 2 h, and activation temperature of 650 ◦C. The carbon obtained was washed several times,
severally, using 0.5 M HCl and water until neutrality, followed by drying in an oven at 100 ◦C overnight.

Scanning electron microscope (SEM) images were obtained using a JSM-6380 LA, JEOL, Tokyo,
Japan. The Fourier transform infra-red (FTIR) spectra of PPy, PACK, MO, and MO-loaded PACK
(PACK–MO) were recorded using an FTIR spectrometer (Nicolet iS10, Thermo scientific, Madison, WI,
USA) equipped with an attenuated total reflection accessory (ATR; diamond crystal), in the range of
4000–500 cm−1 with a resolution of 4 cm−1 and total scans of 32 per spectrum. Thermogravimetric
analysis (TGA) was performed on a Mettler Toledo TGA/DSC 1 Star system (Columbus, OH, USA),
in which about 10 mg of the sample was heated from 25 to 1000 ◦C at 20 ◦C/min under a nitrogen flow
of 10 mL/min. Differential scanning calorimetry (DSC) thermograms were obtained by a Shimadzu
DSC 60 system (Shimadzu, Kyoto, Japan). Samples of 6–10 mg were packed in the aluminum DSC
pans and heated under nitrogen gas from 30 to 400 ◦C with a heating rate of 10 ◦C/min.

3.3. Adsorbate

A 1000 ppm stock solution of MO was prepared in distilled water. The working solutions were
obtained by successive dilutions to the desired concentrations, and their pH values were measured
prior to each application using a Benchtop pH meter (Orion 3 Star, Thermo Scientific, Beverly, MA,
USA) and were found to be 6.65 ± 0.05. A standard curve was established employing 0.5, 1, 2, 4,
and 8 ppm MO solutions (R2 = 9959). The sample concentrations were measured using a double beam
UV-Vis spectrophotometer (U-2910, Hitachi, Tokyo, Japan) at room temperature (23 ± 2 ◦C) and λmax

of 465 nm.

3.4. Batch Adsorption Studies

3.4.1. Batch Adsorption Experiments

The batch adsorption technique was performed on 25 mL MO solutions of 100, 200, 300,
and 500 ppm concentrations in a 50-mL Erlenmeyer flask at temperatures of 25, 35, and 45 ◦C
using 0.02 g of the adsorbent (PACK). The adsorption experiments were conducted using a digital
shaker (GLF 3017, GmbH, Burgwedel, Germany) with a constant speed of 150 rpm for 24 h to ensure
equilibrium. Thereafter, the solutions were filtered for the remaining MO concentration analyses.
The data obtained here were used for the adsorption isotherms and thermodynamic analysis. For the
adsorption kinetic study, 0.04 g of the PACK adsorbent was added to 500 mL of a 50 ppm MO solution,
agitated at 150 rpm and at 23 ± 2 ◦C. Subsequently, the MO residual concentration was determined
spectrophotometrically at the given intervals (0, 5, 15, 30, 45, 75, 135, and 195 min, then after 24 h).
All the experiments were carried out in duplicate without pH adjustment, and at least three replicates
of measurements were performed and averaged.

3.4.2. Adsorption Data Evaluation

The adsorbent capacity at equilibrium (qe, mg/g) and the removal percentage (Re%) were calculated
according to Equations (2) and (3):

qe =
(C0 −Ce)V

m
(2)
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Re% =

(
C0 −Ce

C0

)
100 (3)

where C0 and Ce (mg/L) are the MO day liquid phase concentrations before and after adsorption,
respectively; V (L) and m (g) are the volume of the adsorption solution and the mass of the dry
adsorbent used, respectively.

The adsorption isotherm was evaluated using different models, including Langmuir, Freundlich,
and Temkin. The linearized forms of these models are shown respectively in Equations (4)–(6):

Ce

qe
=

Ce

qm
+

1
KLqm

(4)

lnqe = lnKF +
1
n

lnCe (5)

qe =
RT
KT

lnA +
RT
KT

lnCe = BlnA + BlnCe (6)

where qe and C0 have the same meanings as in the previous equation; qm (mg/g) is the
maximum monolayer capacity; KL (L/mg), KF (mg/g)(L/mg)1/n, and KT (J/mol) are the Langmuir,
Freundlich, and Temkin isotherm constants, respectively; T (K), R (8.314 J/mol·K), and A (L/g) are
the absolute temperature, the universal gas constant, and Temkin isotherm equilibrium binding
constant, respectively.

However, each model has to report certain characteristics that describe the adsorption behavior,
adsorbent surface properties, adsorption capacity, and type of interaction between the adsorbate and
the adsorbent. The Langmuir isotherm basically assumes a homogeneous adsorbent surface having
identical and fixed number of equivalent sites; monolayer and uniform adsorption processes with no
lateral interaction occurs between the adsorbed molecules on adjacent sites [29]. The essential feature
of the Langmuir equation is the equilibrium or separation factor (RL, dimensionless) that relates to
the adsorption shape, and it can be calculated using Equation (7), in which C0 (mg/L) is the initial
adsorbate concentration. Therefore, RL > 1 indicates an unfavorable monolayer process; RL = 1, linear;
0 < RL < 1, favorable; and RL = 0 irreversible [30,31]:

RL =
1

1 + KLC0
(7)

The empirical Freundlich isotherm is a multilayer model that describes a non-uniform surface,
a heterogeneous and an exponential distribution of active sites, and their energies [32]. The isotherm
equation (Equation (5)) defines the adsorption process, showing that the relatively strong binding sites
are initially employed, after which the binding strength reduces as the degree of site occupation increases.
The Freundlich constant (KF) is an approximate indicator of the adsorption capacity. The magnitude
of the heterogeneity factor (1/n) (also called the energy of distribution) indicates the tendency of
the system equilibrium (i.e., sorption/desorption equilibrium) and depends on the temperature and
interactions. The value, 1/n = 1, implies a linear adsorption isotherm, indicating that the equilibrium is
independent of the concentration and that the energy of all sites is indistinguishable; 1/n < 0 indicates
a normal adsorption (Langmuir); 1/n > 1 indicates a cooperative (multi-layer) adsorption; 0.1 < 1/n
< 1.0 represents a favorable adsorption condition, i.e., becoming more heterogeneous as the value
approaches zero [33,34]. The Temkin isotherm model (Equation (6)) contains a factor that explicitly
describes the sorbent/sorbate interaction. By ignoring the exceptionally high and low concentrations
of the adsorbate, the model assumes that the heat of adsorption of all the molecules in the layer
would reduce linearly rather than logarithmically with [35]. The expression, B = RT/KT, containing the
Temkin (KT) equilibrium binding constant, is related to the heat of adsorption, and thus, the maximum
binding energy.
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Adsorption thermodynamic parameters such as the Gibbs free energy (∆G◦), enthalpy (∆H◦),
and entropy (∆S◦) change were calculated using the Van′t Hoff equations [36] as follows:

lnK0 =
∆S◦

R
−

∆H◦

RT
(8)

K0 =
qe

Ce
(9)

∆G◦ = −RTlnK0 (10)

where K0 (L/g) is the apparent equilibrium constant; the other notations have the same meaning
as above.

The adsorption mechanism, as well as the rate-controlling steps, may be established via kinetic
models. In this study, the kinetics of the adsorption systems were investigated using the PFO, PSO
as well as the intra-particle diffusion models, described by Lagergren–Svenska [37], Ho–McKay [38],
and Weber–Morris [36,39], respectively. The linear forms of these models can be expressed as
Equations (11)–(14):

log
(
qe − qt

)
= log(qe) −

k1t
2.303

(11)

t
qt

=
1

k2q2
e
+

t
qe

(12)

h = k2q2
e (13)

qt = kidt0.5 + C (14)

where qt (mg/g) is the amount of MO dye (mg) adsorbed per mass of PACK (g) at time t (min);
k1 (min−1), k2 (g/(mg·min)), and kid (mg/L·min−0.5) are the rate constants of the PFO, PSO, and the
initial rate constant of intra-particle diffusion models, respectively; h (mg/(g·min)) is the initial rate
constant given by the second-order rate constant; and C (mg/g) is the y-intercept, providing information
about the thickness of the boundary layer. The PFO model (Equation (11)) assumes the adsorption rate
based on the adsorption capacity. The PSO (Equation (12)) model is based on the assumption that the
adsorption is controlled by the chemisorption mechanism, involving valency forces through electron
sharing or transfer between the adsorbent and the adsorbate [38,40]. For the intra-particle diffusion
model (Equation (14)), the plot of qt versus t0.5 is assumed to be linear, passing through the origin;
otherwise, some other mechanism may be involved.

3.5. Column Adoption Studies

3.5.1. Column Experimental Set-Up

Continuous adsorption experiments were conducted in a glass column of 1 cm internal diameter
and 25 cm height at room temperature (23 ± 2 ◦C) and without solution pH adjustment (pH 6.65 ± 0.05).
A portion (0.1 g) of PACK (~0.7 cm layer height) was loaded into the glass column and carefully
sandwiched between two supporting layers of glass wool. The MO solution (30 mg/L) was fed from
the top (1 mL/min) in a predesigned set-up working under gravity. That is, the MO solution to be
treated was stored in an overhead tank, and two valves at the inlet and outlet were used to control
the flow rate, which was further permanently monitored (10 ± 0.56 mL per 10 min). Fractions of
10 mL MO were collected and analyzed spectrophotometrically as above. The operation was halted
when almost no change in the effluent concentrations was observed. The column regeneration step
was carried out using 0.1 M NaOH under similar operation condition as in the sorption experiments.
The adsorption experiment was performed in duplicate, and the data were averaged while one trial
column-regeneration experiment was accomplished.
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3.5.2. Column Data Analysis

The performance of the column is usually evaluated with the concept of the breakthrough curve.
Several theoretical models have been used to describe the column breakthrough behavior in continues
adsorption, of which Thomas (Th) and Yoon–Nelson (Y–N) are very common. The linearized forms of
the two models are given in Equations (15) and (16), respectively.

ln
(C0

Ce
− 1

)
=

KThqem
Q

−KThC0t (15)

ln
Ce

C0 −Ce
= KYNt− τKYN (16)

Ce =
btα

cα + tα
(17)

where KTh (L/(mg·min)) and KYN (min−1) are the constants of the model; Q (mL/min) and τ (min) are
the volumetric flow rate and the time required for 50% adsorbate breakthrough, respectively; b, c, α
are the three-parameters logistic Hill model. The other parameters have the same meaning as in the
adsorption batch method. The Thomas model is one of the most widely used in column performance
theory. It is a surface reaction model, assuming that the mass transfer and adsorption-desorption mode
flows both the Langmuir model and the second-order reversible reaction kinetics [41]. The model
assumes no axial dispersion, and the adsorption is the rate driving force. Yoon–Nelson (Y–N) is a
relatively simple theoretical assumption, which does not focus on the adsorbate properties but, rather,
it provides a probable statement: that the decreasing rate of the adsorption is directly proportional
to adsorbate adsorption and breakthrough. It predicts the column run time before regeneration or
when replacement of the column becomes necessary. The major advantage of this model is that few
data concerning the type of adsorption, characteristic of the adsorbate, and physical properties of
the adsorbent bed are required. The three-parameters logistic (3PL), otherwise called the Hill model,
(Equation (17)) is a basic expression used for evaluating the data obtained from certain experiments [42].
Here, the equation was used for the breakthrough curve analysis to examine how steep the curve
is as indicated by the value of the Hill coefficient (α) at the time (termed as c) when the effluent
concentration (Ce) is half the influent concentration (b).

4. Conclusions

In this work, polypyrrole-based activated carbon (PACK) was prepared, characterized, and its MO
removing capability was investigated. The essential properties of the materials under investigation
were also analyzed by various analytical techniques. The adsorption of MO onto PACK was found to
be a spontaneous monolayer adsorption through a physical process, described better by the Langmuir
isotherm and PSO kinetic model with a rate-limiting step mainly controlled by both the film and
intra-particle diffusions. The maximum monolayer adsorption capacity, qm, of PACK was 520.8 mg/g.
Thermodynamic results indicated an exothermic and spontaneous adsorption at all the tested conditions,
while ∆G◦ became less negative with temperature and the concentration increased. In the column
operations, the equilibrium adsorption capacity (qe), the saturation percentage, breakthrough point,
and exhaustion times were found to be 57.21 mg/g, 87%, 90, and 290 min, respectively. The column
regeneration indicates a recovery of 73% during 80 min, with 66% desorbed in the first 20 min. Thus,
it can be concluded that PACK is a highly effective adsorbent for the removal of dyes from wastewater.

Supplementary Materials: The following are available. Figure S1: Scanning electron microscope (SEM) of PPy
(left) and PACK (right); Figure S2: EDX results of PPy elemental composition; Figure S3: EDX results of PPy
elemental composition. Table S1: Elemental composition of PPy and PACK.
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