Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage
Abstract
:1. Introduction
2. Carbon Materials for Electrochemical Energy Storage Technologies
2.1. Electrochemical Storage Systems and Carbon-Based Nanostructures
2.2. Supercapacitor Electrode Materials
2.3. Batteries and Porous Carbon Materials
2.4. Advancing Carbon Electrodes from Waste Sources
3. Refinery Wastes and Coal as a Source of Electrode Materials
3.1. Preparation of Carbon Materials
Carbon Materials | Carbon Source | Preparation Method | Method of Activation | Morphology | Surface Area (m2/g) | Total Pore Volume (cm3/g) | Specific Capacitance (F/g), Current Density (A/g) | Ref. |
---|---|---|---|---|---|---|---|---|
AC | Pet coke | pyrolysis | HCl | rough, fractured, and smooth surfaces, porous | 450 | 0.08 | 140, 0.5 | [3] |
Hierarchically porous carbon | Coal tar pitch | pyrolysis | KHCO3 | coral-like laminar structure | 1643 | 0.99 | 660 mAh/g, 1 | [45] |
N, S-CLPACF | Coal liquefaction residue/polyacrylonitrile/terephthalic acid composite | pyrolysis | … | rough crosslinked nonwoven nanofiber | 589 | 0.280 | 267, 0.2 | [77] |
AC | High-ash coal liquefaction residue | pyrolysis | KOH | irregular coral-type | 1787.2 | … | 250, 1 | [78] |
Nitrogen-doped porous carbon (CNPCs) | Anthracite coal | pyrolysis | … | folded carbon nanosheet | 1673.5 | 0.77 | 750 mAh/g, 0.1 | [80] |
AC | Coal liquefaction residue | pyrolysis | KOH | similar to tremella with internal overlapping, loose reticulated structure | 3102 | … | 457, 0.5 | [81] |
Porous carbon | Coal-based green needle coke | pyrolysis | KOH | sheet-like streamline structure | 807.7 | 0.370 | 274.9, 1 | [82] |
AC | Low-quality sub-bituminous coal | pyrolysis | KOH and KOH + NaOH | slightly crystalline and amorphous | 789.910 | 0.103 | 57.63, 20 mV/s | [84] |
AC | Anthracite coal | pyrolysis | KOH | uniformly distributed honeycomb pores | 1207 | 1.346 | 243.6, 0.5 | [86] |
Hierarchical porous carbon | Coal and rice husk | pyrolysis | … | inter-connected hierarchical porous | … | … | 352, 1 | [88] |
AC Graphitized carbon | Anthracite coal | pyrolysis | KOH | crystalline | 2256.0 18.7 | 1.21 0.07 | 568.1 mAh/g, 0.1 | [90] |
High-value capacitive carbon | Coal-coke | pyrolysis | KOH | rough | 1633 | … | 237, 0.2 | [91] |
AC | Pet coke | pyrolysis | KOH | sheetlike | 1952 | 1.1 | 145, 0.1 | [92] |
Sulfur-doped porous carbon composite | Pet coke | pyrolysis | KOH | porous composite with nanowires | 3318 | 1.67 | 327, 1 | [93] |
Carbon nano-onions (CNOs) | Pet coke | pyrolysis | KOH | sponge-like morphology | 2665.5 | 1.2 | 312, 1 | [94] |
Multi-heteroatom self-doped graphene | Pet coke | sonication | … | amorphous | … | … | 44, 0.5 | [95] |
Ni3S2/HPCs | Pet coke | pyrolysis | KOH | rough | 2738 | 1.61 | 360, 1 | [96] |
PAC | Pet coke | pyrolysis | KOH | crystal | 2105.6 | 0.941 | 470, 0.5 | [97] |
AC | Pitch coke and pet coke | pyrolysis | KOH | amorphous structure | 2391 1819 | 1.15 0.88 | 146.4 mAh/g, 0.1 | [98] |
AC | Pet coke | pyrolysis | KOH | nanosheets | 2394 | 1.44 | 128@1 | [101] |
AC | Semi coke | pyrolysis | KOH | amorphous | 2522 | 1.5 | 310, 1 | [102] |
AC | Treated ultra-fine needle coke particles (UNCs) | pyrolysis | CO2 | rough and hollow fibrous | 919.3 | 0.37 | 387.2, 0.5 | [103] |
MoSx/ HPC-133 | Refinery solid waste | pyrolysis | KCl and KOH | rough | 2908.9 | 1.53 | 349.7, 1 | [104] |
Hierarchical porous carbon | Petroleum asphalt | pyrolysis | potassium citrate | thick and honeycomb-like carbon structure with thin and crumpled carbon nanosheets | 1574 | 1.06 | 437, 1 | [108] |
Active C=carbon | Vacuum residue (VR) | pyrolysis | KOH | irregular shapes of micron-sized particles | 1250.6 | 5.3 | 91.91, 0.5 | [109] |
Porous graphene | Fuel coke | pyrolysis | … | heterogeneous and rough surface | 405.1 | … | 322, 1 | [110] |
PCPC/NiCoP/S composite | Pet coke | pyrolysis | KOH | multilayered graphene-like nanosheets | 2471.20 | … | 1462.7 mAh/g, 0.1 C | [113] |
AC | Anthracite coal | pyrolysis | KOH | amorphous | 3550.7 | 2.168 | [email protected] | [116] |
AC | Coal gasification fine ash | pyrolysis | KOH | rough and significantly augmented pore structure, amorphous | 2167.5 | 1.66 | 220@1 | [117] |
Mn/N-APC | Pet coke | pyrolysis | KOH | … | … | … | 76.1, 0.1 | [118] |
Coal-derived carbon | Bituminous coal | pyrolysis | … | low crystalline, amorphous carbon | 272.97 | 0.0249 | 270.1 mAh/g, 0.1 C | [119] |
Graphitic carbon | Coal | pyrolysis | … | crystalline | 372 | 0.52 | 262.2 mAh/g, 0.1C | [120] |
Hierarchical porous carbon (HPC) | Coal tar pitch | pyrolysis | KOH | irregular dense carbon | 1388.62 | 0.61 | 329, 1 | [121] |
Nanoporous carbon | Bitumen | pyrolysis | KOH | flaky appearance due to sheet-like structures | 2117 | 1.1 | 380, 1 | [122] |
Carbon composite | Asphaltene | pyrolysis | KOH | honeycomb-like structure with spherical macropores | 2264.6 | 1.246 | 112, 0.4 | [123] |
3.2. Performance of Carbon Materials as Supercapacitor Electrodes
Electrode Materials | Carbon Source | Electrolyte | Specific Capacitance (F/g) @ Current Density (A/g) | Energy Density (Wh/kg) | Power Density (kW/kg) | Cyclic Stability | Capacitance Retention | Ref. |
---|---|---|---|---|---|---|---|---|
AC | Pet coke | TEABF4/AN | 296 @ 1 | 20.2 | 32.8 | 2000 | >91% | [101] |
AC | Anthracite coal | 6M KOH | 280 @ 0.5 | 38.9 | 20 | 30,000 | 99% | [116] |
AC | Pet coke | 1M KOH | 140 @ 0.5 | 20 | 250 | 1000 | … | [3] |
AC | Coal gasification fine ash | 1 M Et4NBF4/AN | 219.7 @ 1 | 13.4 | 0.475 | 15,000 | 82.6% | [117] |
N, S-CLPACF | Coal liquefaction residue/polyacrylonitrile/terephthalic acid composite | 6M KOH | 267 @ 0.2 | 4.7 | 1.2 | 10,000 | 98% | [77] |
AC | Semi coke | 6M KOH | 301 @ 1 | … | … | 10,000 | 95.9% | [102] |
AC | High-ash coal liquefaction residue | 6M KOH | 250 @ 1 | 6.9 | 0.0625 | 10,000 | 99.7% | [78] |
AC | Treated ultra-fine needle coke particles (UNCs) | 6M KOH | 387.2 @ 0.5 | 27.87 | 0.489 | 10,000 | 97.5% | [103] |
Mn/N-APC | Pet coke | 5M KOH | … | 105 | 131.2Wh/kg | … | … | [118] |
Nitrogen-doped porous carbon (CNPCs) | Anthracite coal | ethyl carbonate (EC)/diethyl carbonate (DEC)/dimethyl carbonate (DMC) was used as an electrolyte | 56.1 @ 0.1 | 137.6 | 0.410 | 3000 | 97% | [80] |
AC | Coal liquefaction residue | 6M KOH | 457 @ 0.5 | 46.5 | 10 | 10,000 | 93% | [81] |
Porous carbon | Coal-based green needle coke | 6M KOH | 274.9 @ 1 | 20.51 | 1.0314 | 5000 | 95.6% | [82] |
MoSx/ HPC-133 | Refinery solid waste | 6M KOH and 1 M Na2SO4 | 349.7 @ 1 | 33.99 | 0.450 | 10,000 | … | [104] |
Hierarchical porous carbon (HPC) | Coal tar pitch | 6 M KOH | 198 @ 1 | 6.45 | 0.483 | 4000 | 56.9% | [121] |
AC | Anthracite coal | 6 MKOH | 243.6 @ 0.5 | … | … | 10,000 | 98.1% | [86] |
AC | Low-quality subbituminous coal | 1 M TEABF4 in Acetonitrile (ACN) 6 M KOH | 7.00 @ 20 mV/s 57.63 @ 20 mV/s | 1.40 | 13.775 25,920 | 1000 | … | [84] |
Hierarchical porous carbon | Hierarchical porous carbon | 6.0 M KOH | 268 @ 20 | 6.98 | 0.5 | 10,000 | … | [88] |
AC | Pitch coke and pet coke | ZnSO4 solution | 146.4 mAh/g @ 0.1 A/g | 117 | 15.8 | 5000 | 95% | [98] |
PAC | Pet coke | 3-M KOH | 470 @ 0.5 | 16.3 | 0.062 | 15,000 | 98% | [97] |
AC Graphitized carbon | Anthracite coal | mixed solvent of ethylene carbonate/ethyl methyl carbonate/dimethyl carbonate | 302 @ 0.2 mV/s 568.1 mAh/g at 0.1 A/g | 315.1 | 0.300 | 10,000 300 10,000 | 75% 97% 78% | [90] |
Hierarchical porous carbon | Petroleum asphalt | 6MKOH | 93.3 @ 1 | 12.95 | 0.250 | 20,000 | 98% | [108] |
Carbon composite | Asphaltene | 1 M H2SO4 | 112 @ 0.4 | 8.6 | 0. 645 | 2000 | - | [123] |
Ni3S2/HPCs | Pet coke | 1 M Na2SO4 solution | 360 @ 1 | 19.65 | 0.450 | 20,000 | 86 % | [96] |
Multi-heteroatom self-doped graphene | Pet coke | 1 M H2SO4 electrolytes | 44 @ 0.5 | 8.8 | 0.800 | 3000 | 98.78% | [95] |
Porous graphene | Fuel coke | 6 M KOH | 167 @ 1 | 14 | 0.812 | 5000 | 90% | [110] |
High-value capacitive carbon | Coal-coke | 6 M KOH | 191 @ 0.5 | … | … | 3000 | 92 % | [91] |
Carbon nano-onions (CNOs) | Pet coke | 6 M KOH | 58 @ 1 | 7.47 | 0.221 | 10,000 | 94.4% | [94] |
Sulfur-doped porous carbon composite | Pet coke | 1 M Na2SO4 | 110.4 @ 0.5 | 49.7 | 0.450 | 5000 | 96.5% | [93] |
AC | Pet coke | 1 M LiPF6 in EC:DMC:DEC | 145 @ 0.1 | 80 | 8.4 | 10,000 | 85% | [92] |
3.3. Performance of Carbon Materials as Battery Electrodes
Materials | Carbon Precursor | Battery Type | Electrolyte | Initial Discharge Capacity (mAh/g) | Final Discharge (mAh/g) | No. of Cycles | Coulombic Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
CG-2500 | Coal | Lithium-ion battery | 1 M LiPF6 in EC/PE | 165 @ 0.5 A/g | 174 @ 0.5 A/g | 1000 | 99.8% | [111] |
FJH | Coal | Lithium-ion battery Potassium-ion battery | 1 M LiPF6 in EC/DEC 0.8 M KPF6 in EC/DEC | 450.6 at (0.1C) 498.1 at (0.1C) | 166.1 at (2C) 73.88 at (2C) | 100 100 | 99% 97% | [120] |
PCPC/NiCoP | Pet coke | Lithium–sulfur battery | DOL/DME/LITFSI | 1207.8 mAh/g at 0.2C | 753mAh at 2C | 800 | >98% | [113] |
HPC-3 | Coal tar pitch (CTP) | Lithium-ion battery | 1M LiPF6/EC/DC/EMC | 1066.8mAh/g at 0.1 A/g | 660 @ 1 A/g | 1400 | … | [45] |
CTP-CNSs | Coal tar pitch | Lithium-ion battery | 1 M LiPF6 EC/DEC | 1322 @ 0.05 A/g | 623 @ 2A/g | 500 | 99.7% | [112] |
ESO-NC | Slurry oil (SO) from fluidized catalytic cracking (FCC) | Lithium-ion battery | … | 379 @ 100 mA/g | 275 @ 500 mA/g | 400 | 99.7% | [126] |
LiMn2O4/bituminous coal composite | Bituminous coal | Lithium-ion battery | 1M LiSO4 DI water | … | … | … | … | [82] |
WFC-1400 WFC-1800 | Waste coal | Potassium-ion batteries (PIBs) Sodium-ion batteries (SIBs) | 0.8 M KPF6 in EC/DEC 1M NaPF6 in DME | 224.7 mAh/g at 0.05 A/g 241.7 mAh/g at 0.02 A/g | 245.6 mAh/g at 0.05 A/g 239.0 mAh/g at 0.02 A/g | 50 | 93.7% 102.5% | [114] |
Coal-based graphene (rCG) | Coal | Sodium-ion batteries | 0.8 M NaClO4 in EC/DEC | 1162 mA h/g at 50 mA/g. | 175.3 mAh/g at 500 mA/g | 1000 | 88.4% | [127] |
Hard–soft carbon (HC-SC) | Biomass (pomelo peel) and coal waste (bitumen) | Sodium-ion batteries | … | 261 mAh/g at 50 mA/g | 241 mAh/g at 50 mA/g | 100 | 92.3% | [128] |
N-PCNS | Coal | Lithium-ion battery | … | 923.8 mAh/g at 0.2 A/g | 175 mAh/g at 5 A/g | 1000 | 100% | [129] |
PCLC-1 | Coal | Sodium-ion batteries | 1 M NaClO4 in EC/DEC/FEC | 246.8 mAh/g at 0.3 A/g | 230.5 mAh/g at 0.3 A/g | 1000 | 93.4% | [130] |
Coal-based carbon (CBC) | Coal | LIBs | 1.0M LiPF6 in EC/DEC | 531.3 mAh/g at 0.2C | 243 mAh/g at 0.2C | 100 | 98% | [125] |
MCMB-2 | Coal tar | LIBs | 1 M LiPF6 in EC/DMC/DEC | 639 mAh/g at 0.04C | 336 mAh/g at 0.04C | 60 | … | [143] |
CMCMB-3 | FCC and CCB | LIBs | 1 M LiPF6 in EC/DMC | 773.7 mAh/g at 100 mA/g. | 394.5 mAh/g at 500 mA/g | 400 | 99.6% | [115] |
P-HC | coal | sodium-ion batteries | 1.0 M NaClO4 in PC/EC/FEC | 284.4 mAh/g at 20 mA/g | 212.1 mAh/g at 100 mA/g | 500 | … | [144] |
MoO2@coal gangue | coal gangue | Li–O2 batteries | … | 9748 mAh/g at 100 mA/g | … | … | … | [145] |
CMCMB-12 | FCC decant oi | LIBs | 1.0 M LiPF6 in EC/DEC | 782.5 mAh/g at 100 mA/g | 405 mAh/g at 500 mA/g | 200 | 100% | [131] |
4. Economic Aspects of Carbon-Based Energy Storage Materials
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skyllas-Kazacos, M. Electro-Chemical Energy Storage Technologies for Wind Energy Systems. In Stand-Alone and Hybrid Wind Energy Systems: Technology, Energy Storage and Applications; Elsevier: Amsterdam, The Netherlands, 2010; pp. 323–365. ISBN 9781845695279. [Google Scholar]
- Solaun, K.; Cerdá, E. Climate Change Impacts on Renewable Energy Generation. A Review of Quantitative Projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Yamani, Z.H. High-Yield Petroleum Coke Derived Activated Carbon with Self-Sulfur Confinement for High-Performance Supercapacitor. Diam. Relat. Mater. 2023, 140, 110450. [Google Scholar] [CrossRef]
- Shah, S.S.; Niaz, F.; Ehsan, M.A.; Das, H.T.; Younas, M.; Khan, A.S.; Rahman, H.U.; Nayem, S.M.A.; Oyama, M.; Aziz, M.A. Advanced Strategies in Electrode Engineering and Nanomaterial Modifications for Supercapacitor Performance Enhancement: A Comprehensive Review. J. Energy Storage 2024, 79, 110152. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Rasool, P.I.; Mohmand, N.Z.K.; Khan, A.J.; Ullah, H.; Feng, X.; Oyama, M. Electrochemical Synergy and Future Prospects: Advancements and Challenges in MXene and MOFs Composites for Hybrid Supercapacitors. Sustain. Mater. Technol. 2024, 39, e00814. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A. Properties of Electrode Materials and Electrolytes in Supercapacitor Technology. J. Chem. Environ. 2024, 3, 1–45. [Google Scholar] [CrossRef]
- Fan, L.-Q.; Liu, G.-J.; Zhao, J.-C.; Wu, J.-H.; Zhong, J.; Lin, J.-M.; Huo, J.-H.; Liu, L. Facile One-Step Hydrothermal Syntheses and Supercapacitive Performances of Reduced Graphene Oxide/MnO2 Composites. Compos. Sci. Technol. 2014, 103, 113–118. [Google Scholar] [CrossRef]
- Lopes, P.P.; Stamenkovic, V.R. Past, Present, and Future of Lead–Acid Batteries. Science 2020, 369, 923–924. [Google Scholar] [CrossRef]
- Dhundhara, S.; Verma, Y.P.; Williams, A. Techno-Economic Analysis of the Lithium-Ion and Lead-Acid Battery in Microgrid Systems. Energy Convers. Manag. 2018, 177, 122–142. [Google Scholar] [CrossRef]
- Shah, S.S.; Qasem, M.A.A.; Berni, R.; Del Casino, C.; Cai, G.; Contal, S.; Ahmad, I.; Siddiqui, K.S.; Gatti, E.; Predieri, S.; et al. Physico-Chemical Properties and Toxicological Effects on Plant and Algal Models of Carbon Nanosheets from a Nettle Fibre Clone. Sci. Rep. 2021, 11, 6945. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- Mauter, M.S.; Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef]
- Hagemann, N.; Spokas, K.; Schmidt, H.-P.; Kägi, R.; Böhler, M.; Bucheli, T. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef]
- Xu, C.; Strømme, M. Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture. Nanomaterials 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Aziz, M.A.; Ali, M.; Hakeem, A.S.; Yamani, Z.H. Advanced High-Energy All-Solid-State Hybrid Supercapacitor with Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets. Small 2023, 2306665. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Shah, S.S.; Mahnashi, Y.A.; Mahfoz, W.; Alzahrani, A.S.; Hakeem, A.S.; Shaikh, M.N. A High-Energy Asymmetric Supercapacitor Based on Tomato-Leaf-Derived Hierarchical Porous Activated Carbon and Electrochemically Deposited Polyaniline Electrodes for Battery-Free Heart-Pulse-Rate Monitoring. Small 2023, 19, 2300258. [Google Scholar] [CrossRef]
- Ghanem, A.S.; Ba-Shammakh, M.; Usman, M.; Khan, M.F.; Dafallah, H.; Habib, M.A.M.; Al-Maythalony, B.A. High Gas Permselectivity in ZIF-302/Polyimide Self-consistent Mixed-matrix Membrane. J. Appl. Polym. Sci. 2020, 137, 48513. [Google Scholar] [CrossRef]
- Liu, K.; Ran, Q.; Li, F.; Shaheen, S.M.; Wang, H.; Rinklebe, J.; Liu, C.; Fang, L. Carbon-Based Strategy Enables Sustainable Remediation of Paddy Soils in Harmony with Carbon Neutrality. Carbon Res. 2022, 1, 12. [Google Scholar] [CrossRef]
- Masarapu, C.; Wang, L.; Li, X.; Wei, B. Tailoring Electrode/Electrolyte Interfacial Properties in Flexible Supercapacitors by Applying Pressure. Adv. Energy Mater. 2012, 2, 546–552. [Google Scholar] [CrossRef]
- Ania, C.O.; Pernak, J.; Stefaniak, F.; Raymundo-Piñero, E.; Béguin, F. Polarization-Induced Distortion of Ions in the Pores of Carbon Electrodes for Electrochemical Capacitors. Carbon N. Y. 2009, 47, 3158–3166. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, F.; Zhang, W.; Li, X. Biochar Made into Efficient Electrodes for Capacitive Deionization. J. Phys. Conf. Ser. 2023, 2520, 012010. [Google Scholar] [CrossRef]
- Gang-Wei, S.; Wen-Hua, S.; Xiao-Jun, L.; Wen-Ming, Q.; Li-Cheng, L. Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size. Acta Physico Chimica Sin. 2011, 27, 449–454. [Google Scholar] [CrossRef]
- Dai, Z.; Ren, P.; Chen, Z.; Guo, Z.; Hou, X.; He, W.; Jin, Y.; Ren, F. Pore- and Heteroatom-Controlled Superabsorbent-Resin-Derived Carbon Aerogels for Supercapacitors via Adjusting the Methylene Blue Concentration. Adv. Mater. Interfaces 2021, 8, 2101266. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Z.; Zhou, X.; Hao, Z.; Chen, J.; Wang, Z.; Chen, X.; Wu, X.; Li, L.; Li, L.; et al. Recent Progress on Electrolyte Boosting Initial Coulombic Efficiency in Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2303457. [Google Scholar] [CrossRef]
- Kurc, B. Sulfolane with LiPF6, LiNTf2 and LiBOB-as a Non-Flammable Electrolyte Working in a Lithium-Ion Batteries with a LiNiO2 Cathode. Int. J. Electrochem. Sci. 2018, 13, 5938–5955. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, J.; Du, L.; Liu, Z.; Zou, X.; Tang, X.; Cao, Z.; Wang, C.; Xiong, D.; Shi, Q.; et al. Overcharge Investigations of LiCoO 2 /Graphite Lithium Ion Batteries with Different Electrolytes. ACS Appl. Energy Mater. 2019, 2, 8615–8624. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Aziz, M.A.; Al Marzooqi, M.; Khan, A.Z.; Yamani, Z.H. Enhanced Light-Responsive Supercapacitor Utilizing BiVO4 and Date Leaves-Derived Carbon: A Leap towards Sustainable Energy Harvesting and Storage. J. Power Sources 2024, 602, 234334. [Google Scholar] [CrossRef]
- Shaheen Shah, S.; Abu Nayem, S.M.; Sultana, N.; Saleh Ahammad, A.J.; Abdul Aziz, M. Preparation of Sulfur-Doped Carbon for Supercapacitor Applications: A Review. ChemSusChem 2022, 15, e202101282. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Cevik, E.; Ali, M.; Gunday, S.T.; Bozkurt, A.; Yamani, Z.H. Sulfur Nano-Confinement in Hierarchically Porous Jute Derived Activated Carbon towards High-Performance Supercapacitor: Experimental and Theoretical Insights. J. Energy Storage 2022, 56, 105944. [Google Scholar] [CrossRef]
- Haque, M.A.; Akanda, M.R.; Hossain, D.; Haque, M.A.; Buliyaminu, I.A.; Basha, S.I.; Oyama, M.; Aziz, M.A. Preparation and Characterization of Bhant Leaves-Derived Nitrogen-Doped Carbon and Its Use as an Electrocatalyst for Detecting Ketoconazole. Electroanalysis 2020, 32, 528–535. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Yamani, Z.H. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects. Chem. Rec. 2022, 22, e202200018. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Shah, S.S. Biomass-Based Supercapacitors; Aziz, M.A., Shah, S.S., Eds.; Wiley: Hoboken, NJ, USA, 2023; ISBN 9781119866404. [Google Scholar]
- Kothandam, G.; Singh, G.; Guan, X.; Lee, J.M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J.; Kumar, P.; et al. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. Adv. Sci. 2023, 10, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Bansal, S.; Sharma, B.B.; Saini, S.; Joshi, A. Waste Biomass-Derived Activated Carbons for Various Energy Storage Device Applications: A Review. J. Energy Storage 2024, 78, 109996. [Google Scholar] [CrossRef]
- Hong, H.; Tu, H.; Jiang, L.; Du, Y.; Wong, C. Advances in Fabric-Based Supercapacitors and Batteries: Harnessing Textiles for next-Generation Energy Storage. J. Energy Storage 2024, 75, 109561. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Guan, Z.; Zhang, Y.; Li, Y.; Song, B.; Shao, W.; Zhen, L. Unveiling the Sp2─sp3 C─C Polar Bond Induced Electromagnetic Responding Behaviors by a 2D N-doped Carbon Nanosheet Absorber. Adv. Sci. 2024, 11, e2306159. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.S.; Lee, G.; Schwartz, B.; Autrey, T.; Ginovska, B. Leveraging Curvature on N-Doped Carbon Materials for Hydrogen Storage. Small 2024. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Mei, X.; He, X.; Bie, Z.; Cui, J. In-Situ Investigation on Structure Transformation of Single-Walled Carbon Nanotubes. Appl. Surf. Sci. 2024, 649, 159028. [Google Scholar] [CrossRef]
- Lu, S.; Jin, M.; Zhang, Y.; Niu, Y.; Gao, J.; Li, C.M. Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv. Energy Mater. 2018, 8, 1702545. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Usman, M.; Hakeem, A.S.; Ali, S.; Alzahrani, A.S. Biomass-based Supercapacitors: Lab to Industry. In Biomass-Based Supercapacitors; Wiley: Hoboken, NJ, USA, 2023; pp. 435–459. ISBN 9781119866435. [Google Scholar]
- Basirun, W.J.; Saeed, I.M.; Saidur, M.R.; Ahmed, S. Manganese Oxides-Graphene Nanocomposites as Advanced Supercapacitors. In Encyclopedia of Energy Storage: Volume 1–4; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1–4, pp. 523–556. ISBN 9780128197233. [Google Scholar]
- Sharma, P.; Kumar, V. Study of Electrode and Electrolyte Material of Supercapacitor. Mater. Today Proc. 2019, 33, 1573–1578. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, M.; Yuan, W.; Mu, J.; He, Z.; Wu, M. Green Synthesis of Hierarchically Porous Carbon Derived from Coal Tar Pitch for Enhanced Lithium Storage. Batteries 2023, 9, 473. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-Derived Renewable Carbon Materials for Electrochemical Energy Storage. Mater. Res. Lett. 2017, 5, 69–88. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, Z.; Zhou, S.; Wang, H.; Tang, Y.; Sun, D.; Wang, H. Renewable Waste Biomass-Derived Carbon Materials for Energy Storage. J. Phys. D Appl. Phys. 2022, 55, 313002. [Google Scholar] [CrossRef]
- Zhu, J.; Roscow, J.; Chandrasekaran, S.; Deng, L.; Zhang, P.; He, T.; Wang, K.; Huang, L. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors. ChemSusChem 2020, 13, 1275–1295. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Xu, Z.; Han, X.; Gou, W.; Sun, Y.; Ming Li, C. Highly Microporous Carbon from Enteromorpha for High-Performance Aqueous Zinc-chalcogen (S, SeS2) Batteries. Batter. Supercaps 2023, 6, e202300145. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Gou, W.; Liu, M.; Sun, Y.; Han, X.; Sun, W.; Li, C. The Key Role of Concentrated Zn(OTF)2 Electrolyte in the Performance of Aqueous Zn–S Batteries. Chem. Commun. 2022, 58, 8145–8148. [Google Scholar] [CrossRef] [PubMed]
- Gul, E.; Shah, S.A.; Shah, S.N.A. Chloride Salt-activated Carbon for Supercapacitors. In Biomass-Based Supercapacitors; Wiley: Hoboken, NJ, USA, 2023; pp. 179–200. [Google Scholar]
- Elkasabi, Y.; Mullen, C.A. Progress on Biobased Industrial Carbons as Thermochemical Biorefinery Coproducts. Energy Fuels 2021, 35, 5627–5642. [Google Scholar] [CrossRef]
- Dutta, V.; Verma, R.; Gopalkrishnan, C.; Yuan, M.-H.; Batoo, K.M.; Jayavel, R.; Chauhan, A.; Lin, K.-Y.A.; Balasubramani, R.; Ghotekar, S. Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. Inorganics 2022, 10, 169. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Zhao, Y.; Chen, T.; Wang, J.; Gui, L.; Lu, C. Recent Progress and Future Directions of Biomass-Derived Hierarchical Porous Carbon: Designing, Preparation, and Supercapacitor Applications. Energy Fuels 2023, 37, 3523–3554. [Google Scholar] [CrossRef]
- Antal, M.J.; Allen, S.G.; Dai, X.; Shimizu, B.; Tam, M.S.; Grønli, M. Attainment of the Theoretical Yield of Carbon from Biomass. Ind. Eng. Chem. Res. 2000, 39, 4024–4031. [Google Scholar] [CrossRef]
- Islam, T.; Hasan, M.M.; Shah, S.S.; Karim, M.R.; Al-Mubaddel, F.S.; Zahir, M.H.; Dar, M.A.; Hossain, M.D.; Aziz, M.A.; Ahammad, A.J.S. High Yield Activated Porous Coal Carbon Nanosheets from Boropukuria Coal Mine as Supercapacitor Material: Investigation of the Charge Storing Mechanism at the Interfacial Region. J. Energy Storage 2020, 32, 101908. [Google Scholar] [CrossRef]
- Marine Benchmark Maritime CO2 Emissions. Res. Brief 2020, 11, 1–4.
- Wang, M.; Wang, Q.; Li, T.; Kong, J.; Shen, Y.; Chang, L.; Xie, W.; Bao, W. Catalytic Upgrading of Coal Pyrolysis Volatiles by Porous Carbon Materials Derived from the Blend of Biochar and Coal. ACS Omega 2021, 6, 3800–3808. [Google Scholar] [CrossRef] [PubMed]
- Manera, C.; Fragoso, H.P.; Agra, A.A.; Flores, B.D.; Osório, E.; Godinho, M.; Vilela, A.C.F. Systematic Mapping of Studies on Coal Tar and Pitch over the Last Five Decades (1970–2023). Chem. Eng. Res. Des. 2023, 196, 427–450. [Google Scholar] [CrossRef]
- Mahler, B.J.; Van Metre, P.C.; Crane, J.L.; Watts, A.W.; Scoggins, M.; Williams, E.S. Coal-Tar-Based Pavement Sealcoat and PAHs: Implications for the Environment, Human Health, and Stormwater Management. Environ. Sci. Technol. 2012, 46, 3039–3045. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wu, M. Heavy Oil-Derived Carbon for Energy Storage Applications. J. Mater. Chem. A 2020, 8, 7066–7082. [Google Scholar] [CrossRef]
- Zhang, H.; He, X.; Gu, J.; Xie, Y.; Shui, H.; Zhang, X.; Xiao, N.; Qiu, J. Wrinkled Porous Carbon Nanosheets from Methylnaphthalene Oil for High-Performance Supercapacitors. Fuel Process. Technol. 2018, 175, 10–16. [Google Scholar] [CrossRef]
- Wei, F.; Bi, H.; Jiao, S.; He, X. Interconnected Graphene-like Nanosheets for Supercapacitors. Acta Physico-Chimica Sin. 2020, 36, 1903043. [Google Scholar] [CrossRef]
- Mo, B.; Wang, L.; Li, L.; Han, B.; Xu, G.; Wang, K.; Zhang, J.; Ni, Z.; He, X.; Zhou, W. Supercapacitor Performances of Coal Tar Pitch Based Spherical Active Carbons Fabricated by the SiO2 Template Method. J. Chem. Eng. Japan 2023, 56, 2217863. [Google Scholar] [CrossRef]
- Gao, F.; Zang, Y.H.; Wang, Y.; Guan, C.Q.; Qu, J.Y.; Wu, M.B. A Review of the Synthesis of Carbon Materials for Energy Storage from Biomass and Coal/Heavy Oil Waste. Xinxing Tan Cailiao/New Carbon Mater. 2021, 36, 34–48. [Google Scholar] [CrossRef]
- Azizian, S.; Khosravi, M. Advanced Oil Spill Decontamination Techniques. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 283–332. [Google Scholar]
- Boateng, A.A. Rotary Kiln Petroleum Coke Calcination Process. In Rotary Kilns; Elsevier: Amsterdam, The Netherlands, 2016; pp. 265–290. ISBN 978-0-12-803780-5. [Google Scholar]
- Boateng, A.A. Combustion and Flame. In Rotary Kilns; Elsevier: Amsterdam, The Netherlands, 2016; pp. 107–143. ISBN 978-0-12-803780-5. [Google Scholar]
- Okeke, I.J.; Adams, T.A. Life Cycle Assessment of Petroleum Coke Gasification to Fischer-Tropsch Diesel. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 1495–1500. [Google Scholar]
- Phillips, R.D. Coal Tar. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2005; pp. 628–631. ISBN 9780123694003. [Google Scholar]
- Ozbayoglu, G. Energy Production From Coal. Compr. Energy Syst. 2018, 3, V3-788–V3-821. [Google Scholar] [CrossRef]
- Roberts, L. Coal Tar. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 993–995. ISBN 9780123864543. [Google Scholar]
- Basha, S.I.; Aziz, A.; Maslehuddin, M.; Ahmad, S.; Hakeem, A.S.; Rahman, M.M. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material—A Review. Chem. Rec. 2020, 20, 1568–1595. [Google Scholar] [CrossRef] [PubMed]
- Huth, M.; Heilos, A. Fuel Flexibility in Gas Turbine Systems: Impact on Burner Design and Performance. In Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 635–684. ISBN 9781845697280. [Google Scholar]
- Rauf, M.; Shah, S.S.; Shah, S.K.; Shah, S.N.A.; Haq, T.U.; Shah, J.; Ullah, A.; Ahmad, T.; Khan, Y.; Aziz, M.A.; et al. Facile Hydrothermal Synthesis of Zinc Sulfide Nanowires for High-Performance Asymmetric Supercapacitor. J. Saudi Chem. Soc. 2022, 26, 101514. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Al-Betar, A.-R.; Mahfoz, W. Electrodeposition of Polyaniline on High Electroactive Indium Tin Oxide Nanoparticles-Modified Fluorine Doped Tin Oxide Electrode for Fabrication of High-Performance Hybrid Supercapacitor. Arab. J. Chem. 2022, 15, 104058. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Li, Y.; Tian, X.; Zheng, H.; Li, X. Flexible and Cross-Linked N, S Co-Doped Carbon Nanofiber Nonwovens Derived from Coal Liquefaction Residue for High Performance Supercapacitors. J. Mater. Sci. 2022, 57, 9357–9369. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Yang, C.; Cao, Y.; Su, X.; Tahir, M.U. Self-Template Porous Carbon by Direct Activation of High-Ash Coal Liquefaction Residue for High-Rate Supercapacitor Electrodes. Int. J. Energy Res. 2021, 45, 4782–4792. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; Xia, W.; Sheng, L.; Wang, T.; He, J. Regulating Surface State of WO3 Nanosheets by Gamma Irradiation for Suppressing Hydrogen Evolution Reaction in Electrochemical N2 Fixation. Nano Res. 2020, 13, 2784–2790. [Google Scholar] [CrossRef]
- Jiang, J.; Shen, Q.; Chen, Z.; Wang, S. Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Nanomaterials 2023, 13, 2525. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Wang, S.; Xie, H.; Zha, Y.; Huang, X.; Santos, D.M.F.; Li, Y. Oxygen Self-Doped Hierarchical Porous Carbons Derived from Coal Liquefaction Residue for High-Performance Supercapacitors in Organic and Ionic Liquid-Based Electrolytes. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131552. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, Z.; Zhao, X.; Chen, X.; Liu, Y. Green Needle Coke-Derived Porous Carbon for High-Performance Symmetric Supercapacitor. J. Power Sources 2021, 494, 229770. [Google Scholar] [CrossRef]
- Lee, S.I.; Mitani, S.; Yoon, S.H.; Korai, Y.; Mochida, I. Preparation of Spherical Activated Carbon with High Electric Double-Layer Capacitance. Carbon N. Y. 2004, 42, 2332–2334. [Google Scholar] [CrossRef]
- Bora, M.; Benoy, S.M.; Tamuly, J.; Saikia, B.K. Ultrasonic-Assisted Chemical Synthesis of Activated Carbon from Low-Quality Subbituminous Coal and Its Preliminary Evaluation towards Supercapacitor Applications. J. Environ. Chem. Eng. 2021, 9, 104986. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Li, D.; Lei, Y.; Gao, T.; Wu, B.; Zhao, J.; Wang, Y.; Zhou, G.; Yao, H. Mechanism of Ultrasonic Impregnation on Porosity of Activated Carbons in Non-Cavitation and Cavitation Regimes. Ultrason. Sonochem. 2019, 51, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jia, J.; Sun, Y.; Xu, B.; Jiang, Z.; Qu, X.; Zhang, C. An Effective Strategy to Synthesize Well-Designed Activated Carbon Derived from Coal-Based Carbon Dots via Oxidation before Activation with a Low KOH Content as Supercapacitor Electrodes. Nanomaterials 2023, 13, 2909. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Han, X.; Wang, G.; Liu, J.; Cui, X.; Zhang, C.; Wang, J. Preparation of Activated Carbon Adsorption Materials Derived from Coal Gasification Fine Slag via Low-Temperature Air Activation. Gas Sci. Eng. 2023, 117, 205069. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, B.; Fan, X.; Liang, P.; Zhao, G.; Saikia, B.K.; Wei, X. Hierarchical Porous Carbon Derived from Coal and Biomass for High Performance Supercapacitors. Fuel 2022, 311, 122552. [Google Scholar] [CrossRef]
- Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Abdul Aziz, M.; Saleh Ahammad, A.J. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2—Nanomaterials Excluding Carbon Nanotubes and Graphene. Chem. Rec. 2021, 21, 1073–1097. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Wang, X.; Huang, Y.; Li, L.; Gao, S.; Tian, Y.; Shen, W.; Zhang, J.; Guo, S. Anthracite-Derived Carbon-Based Electrode Materials for High Performance Lithium Ion Capacitors. Fuel Process. Technol. 2022, 228, 107146. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Huang, H.; Deng, C.; Cheng, Y. Low-Cost Carbon Derived from Coal-Coke for High-Performance Supercapacitors. J. Electroanal. Chem. 2022, 921, 116678. [Google Scholar] [CrossRef]
- Veluri, P.S.; Katchala, N.; Anandan, S.; Pramanik, M.; Narayansrinivasan, K.; Ravi, B.; Rao, T.N. Petroleum Coke as an Efficient Single Carbon Source for High-Energy and High-Power Lithium-Ion Capacitors. Energy Fuels 2021, 35, 9010–9016. [Google Scholar] [CrossRef]
- Cai, W.; Li, K.; Jiang, K.; Lv, D.; Liu, Y.Q.; Wang, D.; Wang, X.; Lai, C. Utilization of High-sulfur-Containing Petroleum Coke for Making Sulfur-Doped Porous Carbon Composite Material and Its Application in Supercapacitors. Diam. Relat. Mater. 2021, 116, 108380. [Google Scholar] [CrossRef]
- Lei, J.; Liu, J.; Tang, N.; Han, H.; Li, Z.; Li, K.; Zhai, T.; Chen, H.; Xia, H. Novel Gram-Scale Synthesis of Carbon Nano-Onions from Heavy Oil for Supercapacitors. Adv. Mater. Interfaces 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Mandal, D.; Mahapatra, P.L.; Kumari, R.; Kumbhakar, P.; Biswas, A.; Lahiri, B.; Chandra, A.; Tiwary, C.S. Convert Waste Petroleum Coke to Multi-Heteroatom Self-Doped Graphene and Its Application as Supercapacitors. Emergent Mater. 2021, 4, 531–544. [Google Scholar] [CrossRef]
- Hou, Y.; Sun, Q.; Du, H. Fabrication of Nickel Sulfide/Hierarchical Porous Carbon from Refining Waste for High-Performance Supercapacitor. J. Alloys Compd. 2023, 937, 168399. [Google Scholar] [CrossRef]
- Pati, S.K.; Hwang, Y.; Lee, H.M.; Kim, B.J.; Park, S. Porous Activated Carbon Derived from Petroleum Coke as a High-Performance Anodic Electrode Material for Supercapacitors. Carbon Lett. 2023, 34, 153–162. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, X.; Song, Y.; Wu, J.; Yang, T.; Liu, Z. High-Performance Activated Carbon Cathodes from Green Cokes for Zn-Ion Hybrid Supercapacitors. Fuel 2022, 310, 122485. [Google Scholar] [CrossRef]
- Strelkov, V.; Shirkunov, A.; Ryabov, V.; Chuchalina, A. Granulated Activated Carbon Production Based on Petroleum Coke. IOP Conf. Ser. Earth Environ. Sci. 2021, 678, 012004. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Yang, J.; Li, J.; Li, X. Facile Preparation of Oxygen-Rich Activated Carbon from Petroleum Coke for Enhancing Methylene Blue Adsorption. Carbon Lett. 2020, 30, 627–636. [Google Scholar] [CrossRef]
- Nanaji, K.; Nirogi, A.; Srinivas, P.; Anandan, S.; Vijay, R.; Bathe, R.N.; Pramanik, M.; Narayan, K.; Ravi, B.; Rao, T.N. Translational Materials Research—From Laboratory to Product: A 1200 F Cylindrical Supercapacitor from Petroleum Coke Derived Activated Carbon Sheets. J. Energy Storage 2022, 55, 105650. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Han, J.; Liu, K.; Wu, Y. Preparation of High Specific Surface Area Activated Carbon from Semi-Coke for Carbon-Based Supercapacitor Applications. J. Phys. Conf. Ser. 2023, 2529, 012022. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; He, T.; Zhang, M.; Wang, Z.; Zhang, B.; Weng, X. Highly Conductive, Hierarchical Porous Ultra-Fine Carbon Fibers Derived from Polyacrylonitrile/Polymethylmethacrylate/Needle Coke as Binder-Free Electrodes for High-Performance Supercapacitors. J. Power Sources 2022, 521, 230943. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Y.; Gao, R.; Chen, Z.; Yue, Y.; An, W.; Du, H. Upcycling of Refinery Solid Waste by Chemical Activation: Fabrication of Molybdenum Sulfide/Hierarchical Porous Carbon Composites for Highly Stable Supercapacitor. Fuel 2023, 342, 127770. [Google Scholar] [CrossRef]
- Wan, D.; Cheng, X.; Shi, Y.; Chen, Z.; Liu, Y.; Han, X.; Liu, Y.; Zhang, Z. Insights into Lead Removal in Water Using a Novel Carbonized Material Derived from the By-Product of Oil Refining: Action Mechanism and Performance Optimization. J. Chem. Technol. Biotechnol. 2021, 96, 3224–3236. [Google Scholar] [CrossRef]
- Yang, W.; Yan, L.; Jiang, B.; Wang, P.; Li, Z.; Wang, C.; Bai, H.; Zhang, C.; Li, Y. Crumpled Nitrogen-Doped Porous Carbon Nanosheets Derived from Petroleum Pitch for High-Performance and Flexible Electromagnetic Wave Absorption. Ind. Eng. Chem. Res. 2022, 61, 2799–2808. [Google Scholar] [CrossRef]
- Kudinova, A.A.; Poltoratckaya, M.E.; Gabdulkhakov, R.R.; Litvinova, T.E.; Rudko, V.A. Parameters Influence Establishment of the Petroleum Coke Genesis on the Structure and Properties of a Highly Porous Carbon Material Obtained by Activation of KOH. J. Porous Mater. 2022, 29, 1599–1616. [Google Scholar] [CrossRef]
- Yang, W.; Wang, P.; Tu, Z.; Hou, L.; Yan, L.; Jiang, B.; Zhang, C.; Huang, G.; Yang, F.; Li, Y. Heteroatoms-Doped Hierarchical Porous Carbon with Multi-Scale Structure Derived from Petroleum Asphalt for High-Performance Supercapacitors. Carbon N. Y. 2022, 187, 338–348. [Google Scholar] [CrossRef]
- Albaiz, A.; Alsaidan, M.; Alzahrani, A.; Almoalim, H.; Rinaldi, A.; Jalilov, A.S. Active Carbon-Based Electrode Materials from Petroleum Waste for Supercapacitors. C-Journal Carbon Res. 2023, 9, 4. [Google Scholar] [CrossRef]
- Thomas, R.; Balachandran, M. Fuel Coke Derived Nitrogen and Phosphorus Co-Doped Porous Graphene Structures for High-Performance Supercapacitors: The Trail towards a Brown-to-Green Transition. J. Energy Storage 2023, 72, 108799. [Google Scholar] [CrossRef]
- Han, L.; Zhu, X.; Yang, F.; Liu, Q.; Jia, X. Eco-Conversion of Coal into a Nonporous Graphite for High-Performance Anodes of Lithium-Ion Batteries. Powder Technol. 2021, 382, 40–47. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, B.; Zeng, H.; Huang, G.; Liu, X.; Guo, H.; Zhang, C.; Cao, Y.; Chen, Z. Space-Confined Carbonization Strategy for Synthesis of Carbon Nanosheets from Glucose and Coal Tar Pitch for High-Performance Lithium-Ion Batteries. Appl. Surf. Sci. 2021, 547, 149228. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Wang, B.; Zhai, Y.; Zeng, S.; Zhang, M.; Qian, Y.; Xu, L. Petroleum Coke Derived Porous Carbon/NiCoP with Efficient Reviving Catalytic and Adsorptive Activity as Sulfur Host for High Performance Lithium—Sulfur Batteries. Nano Res. 2022, 15, 4058–4067. [Google Scholar] [CrossRef]
- Wang, H.; Shi, L.; Yang, Z.; Liu, J.; Xu, Y.; Song, M.; Jiang, J.; Zhuang, Q.; Chen, Y.; Ju, Z. Recycling of Waste Coal-Based Filter Materials into Carbon Anode Materials for Potassium and Sodium-Ion Batteries. Mater. Today Sustain. 2023, 24, 100578. [Google Scholar] [CrossRef]
- Gong, X.; Guo, S.; Ding, Y.; Lou, B.; Shi, N.; Wen, F.; Yang, X.; Li, G.; Wu, B.; Zhu, W.; et al. Preparation of Mesocarbon Microbeads as Anode Material for Lithium-Ion Battery by Co-carbonization of FCC Decant Oil and Conductive Carbon Black. Fuel Process. Technol. 2022, 227, 107110. [Google Scholar] [CrossRef]
- Shi, M.; Xin, Y.; Chen, X.; Zou, K.; Jing, W.; Sun, J.; Chen, Y.; Liu, Y. Coal-Derived Porous Activated Carbon with Ultrahigh Specific Surface Area and Excellent Electrochemical Performance for Supercapacitors. J. Alloys Compd. 2021, 859, 157856. [Google Scholar] [CrossRef]
- Tian, X.; Chen, Z.; Hou, J.; Li, Z. Electrochemical Properties of Porous Carbon Derived from Coal Gasification Fine Ash via Low-Temperature Alkaline Fusion and KOH Activation. J. Energy Storage 2024, 75, 109557. [Google Scholar] [CrossRef]
- Priyadharshini, R.; Saravanathamizhan, R.; Manimozhi, V.; Manokaran, J.; Balasubramanian, N. Preparation of Activated Petroleum Coke for Supercapacitor Application. Energy Storage 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Tian, Q.-Q.; Li, X.-M.; Xie, L.-J.; Su, F.-Y.; Yi, Z.-L.; Dong, L.; Chen, C.-M. Insights into the Carbonization Mechanism of Bituminous Coal-Derived Carbon Materials for Lithium-Ion and Sodium-Ion Batteries. New Carbon Mater. 2023, 38, 939–953. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Dong, S.; Elhefnawey, M.; Dong, G.; Gao, Y.; Zhu, K.; Cao, D. A Comparison of the Electrochemical Performance of Graphitized Coal Prepared by High-Temperature Heating and Flash Joule Heating as an Anode Material for Lithium and Potassium Ion Batteries. Chem. Phys. Lett. 2023, 815, 140362. [Google Scholar] [CrossRef]
- Jiang, Y.; He, Z.; Cui, X.; Liu, Z.; Wan, J.; Liu, Y.; Ma, F. Hierarchical Porous Carbon Derived from Coal Tar Pitch by One Step Carbonization and Activation Combined with a CaO Template for Supercapacitors. New J. Chem. 2022, 46, 6078–6090. [Google Scholar] [CrossRef]
- Mishra, D.; Zhou, R.; Hassan, M.M.; Hu, J.; Gates, I.; Mahinpey, N.; Lu, Q. Bitumen and Asphaltene Derived Nanoporous Carbon and Nickel Oxide/Carbon Composites for Supercapacitor Electrodes. Sci. Rep. 2022, 12, 4095. [Google Scholar] [CrossRef]
- Ortiz-González, J.D.; Vásquez, F.A.; Bedoya-Lora, F.E.; Vargas, O.A.; Calderón, J.A. Facile Transformation of Heavy Oil Residues into Carbon Composites Used for High-Performance Supercapacitors. Fuel Process. Technol. 2023, 247, 107803. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhou, C.; Liu, J.; Zeng, H. Integrating Large Specific Surface Area and High Conductivity in Hydrogenated NiCo2O4 Double-Shell Hollow Spheres to Improve Supercapacitors. NPG Asia Mater. 2015, 7, e165. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Cao, D.; Chand, K.; Elhefnawey, M. Catalytic Graphitization of Amorphous Coal at Low Temperature and Its Application in Lithium-Ion Batteries. In Proceedings of the 2021 IEEE 4th International Conference on Nanoscience and Technology, ICNST 2021, Chengdu, China, 26–28 June 2021; IEEE: New York, NY, USA; pp. 81–86. [Google Scholar]
- Jiao, S.; Guo, A.; Wang, F.; Yu, Y.; Biney, B.W.; Liu, H.; Chen, K.; Liu, D.; Wang, Z.; Sun, L. Sequential Pretreatments of an FCC Slurry Oil Sample for Preparation of Feedstocks for High-Value Solid Carbon Materials. Fuel 2021, 285, 119169. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Gu, Y.; Xu, H.; Shi, Y.; Ju, Z.; Zhuang, Q. Coal-Based Modified Carbon for High Performance Sodium-Ion Battery. Solid State Ion. 2021, 368, 115701. [Google Scholar] [CrossRef]
- Wei, C.; Dang, W.; Li, M.; Ma, X.; Li, M.; Zhang, Y. Hard-Soft Carbon Nanocomposite Prepared by Pyrolyzing Biomass and Coal Waste as Sodium-Ion Batteries Anode Material. Mater. Lett. 2023, 330, 133368. [Google Scholar] [CrossRef]
- Gao, S.; Liu, L.; Mao, F.; Zhang, Z.; Pan, K.; Zhou, Z. Coal-Based Ultrathin N-Doped Carbon Nanosheets Synthesized by Molten-Salt Method for High-Performance Lithium-Ion Batteries. Nanotechnology 2022, 33, 425401. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, N.; Wang, Y.; Soomro, R.A.; Xu, B. One Stone Two Birds: Pitch Assisted Microcrystalline Regulation and Defect Engineering in Coal-Based Carbon Anodes for Sodium-Ion Batteries. Energy Storage Mater. 2023, 56, 532–541. [Google Scholar] [CrossRef]
- Gong, X.; Lou, B.; Yu, R.; Zhang, Z.; Guo, S.; Li, G.; Wu, B.; Liu, D. Carbonization of Mesocarbon Microbeads Prepared from Mesophase Pitch with Different Anisotropic Contents and Their Application in Lithium-Ion Batteries. Fuel Process. Technol. 2021, 217, 106832. [Google Scholar] [CrossRef]
- Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. Mesoporous Soft Carbon as an Anode Material for Sodium Ion Batteries with Superior Rate and Cycling Performance. J. Mater. Chem. A 2016, 4, 6472–6478. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, N.; Wang, Y.; Li, H.; Wang, G.; Dong, Q.; Bai, J.; Xiao, J.; Qiu, J. Carbon Clusters Decorated Hard Carbon Nanofibers as High-Rate Anode Material for Lithium-Ion Batteries. Fuel Process. Technol. 2018, 180, 173–179. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage. Chem. Asian J. 2018, 13, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xi, Y.; Chen, S.; Li, D.; She, X.; Sun, J.; Han, W.; Yang, D.; Guo, S. Prolifera-Green-Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Adv. Funct. Mater. 2016, 26, 8487–8495. [Google Scholar] [CrossRef]
- Li, T.-K.; Ye, X.-J.; Zheng, X.-H.; Jia, R.; Liu, C.-S. Theoretical Prediction of Janus TQ-Graphene as a Metallic Two-Dimensional Carbon Allotrope with Negative Poisson’s Ratios for High Capacity Sodium-Ion Batteries. ACS Appl. Nano Mater. 2023, 6, 13188–13195. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Li, T.-K.; Ye, X.-J.; Meng, L.; Liu, C.-S. THFS-Carbon: A Theoretical Prediction of Metallic Carbon Allotrope with Half-Auxeticity, Planar Tetracoordinate Carbon, and Potential Application as Anode for Sodium-Ion Batteries. Phys. Chem. Chem. Phys. 2023, 25, 15295–15301. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Alfasane, M.A.; Bakare, I.A.; Aziz, M.A.; Yamani, Z.H. Polyaniline and Heteroatoms–Enriched Carbon Derived from Pithophora Polymorpha Composite for High Performance Supercapacitor. J. Energy Storage 2020, 30, 101562. [Google Scholar] [CrossRef]
- Sharghi, H.; Shiri, P.; Aberi, M. An Overview on Recent Advances in the Synthesis of Sulfonated Organic Materials, Sulfonated Silica Materials, and Sulfonated Carbon Materials and Their Catalytic Applications in Chemical Processes. Beilstein J. Org. Chem. 2018, 14, 2745–2770. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Cao, Q.; Liu, H.; Shi, X.; Wang, X.; Li, H.; Han, Y.; Li, Y.; Zhou, J. Biomimetic Biomass-Bsed Carbon Fibers: Effect of Covalent-Bnd Connection on Performance of Derived Carbon Fibers. ACS Sustain. Chem. Eng. 2019, 7, 16084–16093. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Xiong, Y.; Jin, C.; Sun, Q. Simple Synthesis of N-Doped Interconnected Porous Carbon from Chinese Tofu for High-Performance Supercapacitor and Lithium-Ion Battery Applications. J. Electrochem. Soc. 2017, 164, A3832–A3839. [Google Scholar] [CrossRef]
- Prakash, S.; Kumar, R.; Gupta, A.; Chaudhary, A.; Chandaliya, V.K.; Dash, P.S.; Gurunathan, P.; Ramesha, K.; Kumari, S.; Dhakate, S.R. A Process for Developing Spherical Graphite from Coal Tar as High Performing Carbon Anode for Li-Ion Batteries. Mater. Chem. Phys. 2022, 281, 125836. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Liu, J.; Xiao, S.; Zhang, Y.; Gao, Y.; Yang, C.; Liu, L. Mild Pretreatment Synthesis of Coal-Based Phosphorus-Doped Hard Carbon with Extended Plateau Capacity as Anodes for Sodium-Ion Batteries. J. Alloys Compd. 2023, 946, 169384. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Zeng, K.; Li, M.; Zhao, S.; Zhang, J. Turn “Waste” Into Wealth: MoO2@coal Gangue Electrocatalyst with Amorphous/Crystalline Heterostructure for Efficient Li–O2 Batteries. Small 2023, 19, 2208145. [Google Scholar] [CrossRef] [PubMed]
- Lithium-Ion Battery Manufacturing Capacity, 2022–2030—Charts—Data & Statistics—IEA. Available online: https://www.iea.org/data-and-statistics/charts/lithium-ion-battery-manufacturing-capacity-2022-2030 (accessed on 6 April 2024).
- The Role of Critical Minerals in Clean Energy Transitions; OECD: Paris, France, 2021; ISBN 9789264679948.
- Graphite Market—Westwater Resources. Available online: https://westwaterresources.net/minerals-portfolio/graphite-market/ (accessed on 6 April 2024).
- Zhang, J.; Liang, C.; Dunn, J.B. Graphite Flows in the U.S.: Insights into a Key Ingredient of Energy Transition. Environ. Sci. Technol. 2023, 57, 3402–3414. [Google Scholar] [CrossRef]
- Li, H.; Zhu, T.; Chen, X.; Liu, H.; He, G. Improving China’s Global Lithium Resource Development Capacity. Front. Environ. Sci. 2022, 10, 938534. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Y.; Zhang, Y.; Xu, H.; He, X.; Wu, X.; Chou, S. Hard Carbon for Sodium-Ion Batteries: Progress, Strategies and Future Perspective. Chem. Sci. 2024. [Google Scholar] [CrossRef]
- Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded Graphite as Superior Anode for Sodium-Ion Batteries. Nat. Commun. 2014, 5, 4033. [Google Scholar] [CrossRef]
- Liu, H.; Baumann, M.; Dou, X.; Klemens, J.; Schneider, L.; Wurba, A.K.; Häringer, M.; Scharfer, P.; Ehrenberg, H.; Schabel, W.; et al. Tracing the Technology Development and Trends of Hard Carbon Anode Materials—A Market and Patent Analysis. J. Energy Storage 2022, 56, 105964. [Google Scholar] [CrossRef]
- Karabelli, D.; Singh, S.; Kiemel, S.; Koller, J.; Konarov, A.; Stubhan, F.; Miehe, R.; Weeber, M.; Bakenov, Z.; Birke, K.P. Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance. Front. Energy Res. 2020, 8, 605129. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Supercapacitor Activated Carbon Market Size [2024 To 2031] Share, Trend, Growth And Industry Analysis. Available online: https://www.businessresearchinsights.com/market-reports/supercapacitor-activated-carbon-market-104798 (accessed on 6 April 2024).
- Veeramani, V.; Sivakumar, M.; Chen, S.M.; Madhu, R.; Alamri, H.R.; Alothman, Z.A.; Hossain, M.S.A.; Chen, C.K.; Yamauchi, Y.; Miyamoto, N.; et al. Lignocellulosic Biomass-Derived, Graphene Sheet-like Porous Activated Carbon for Electrochemical Supercapacitor and Catechin Sensing. RSC Adv. 2017, 7, 45668–45675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdous, A.R.; Shah, S.S.; Shah, S.N.A.; Johan, B.A.; Al Bari, M.A.; Aziz, M.A. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules 2024, 29, 2081. https://doi.org/10.3390/molecules29092081
Ferdous AR, Shah SS, Shah SNA, Johan BA, Al Bari MA, Aziz MA. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules. 2024; 29(9):2081. https://doi.org/10.3390/molecules29092081
Chicago/Turabian StyleFerdous, Ar Rafi, Syed Shaheen Shah, Syed Niaz Ali Shah, Bashir Ahmed Johan, Md Abdullah Al Bari, and Md. Abdul Aziz. 2024. "Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage" Molecules 29, no. 9: 2081. https://doi.org/10.3390/molecules29092081
APA StyleFerdous, A. R., Shah, S. S., Shah, S. N. A., Johan, B. A., Al Bari, M. A., & Aziz, M. A. (2024). Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules, 29(9), 2081. https://doi.org/10.3390/molecules29092081