Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microscopic Morphology Study
2.2. Crystal Structure
2.3. UV–Vis Absorption Spectra
2.4. Optical Band Gap Analysis
2.5. Excitation and Emission Spectra
2.6. Luminescence Quantum Efficiency
2.7. Photoluminescence Decay Time
2.8. Thermal Quenching Behaviour
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Zheng, H.; Yu, F.; Liang, Q.; Yang, H.; Yi, X.; Wang, J.; Li, J. Review of high power phosphor-converted light-emitting diodes. In Proceedings of the 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 25–27 November 2019; pp. 111–115. [Google Scholar]
- He, M.; Jia, J.; Zhao, J.; Qiao, X.; Du, J.; Fan, X. Glass-ceramic phosphors for solid state lighting: A review. Ceram. Int. 2021, 47, 2963–2980. [Google Scholar] [CrossRef]
- Nair, G.B.; Swart, H.; Dhoble, S. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Wei, Y.; Xing, G.; Liu, K.; Li, G.; Dang, P.; Liang, S.; Liu, M.; Cheng, Z.; Jin, D.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light Sci. Appl. 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Devakumar, B.; Sun, L.; Sun, Q.; Wang, S.; Huang, X. Novel Mn4+ doped Ca2GdSbO6 red–emitting phosphor: A potential color converter for light-emitting diodes. J. Am. Ceram. Soc. 2019, 102, 4730–4736. [Google Scholar] [CrossRef]
- Adachi, S. Review—Mn4+-Activated Red and Deep Red-Emitting Phosphors. ECS J. Solid State Sci. Technol. 2019, 9, 016001. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, H.; Deng, Z.; Zou, Q.; Lu, H.; Yi, X.; Guo, W.; Lu, C.; Chen, X. Moisture-Resistant Mn4+-Doped Core–Shell-Structured Fluoride Red Phosphor Exhibiting High Luminous Efficacy for Warm White Light-Emitting Diodes. Angew. Chem. Int. Ed. 2019, 58, 3843–3847. [Google Scholar] [CrossRef]
- Pucher, F.J.; Marchuk, A.; Schmidt, P.J.; Wiechert, D.; Schnick, W. Luminescent Nitridophosphates CaP2N4:Eu2+, SrP2N4:Eu2+, BaP2N4:Eu2+, and BaSr2P6N12:Eu2+. Chem. Eur. J. 2015, 21, 6443–6448. [Google Scholar] [CrossRef]
- Van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Chen, F.; Balci, M.H.; Xia, H.X.; Akram, M.N.; Chen, X.Y. Photoluminescence Properties and Quantum Efficiency of Eu3+/Mn2+-Doped ZnMoO4 Red Phosphor. In Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2020; pp. 70–78. [Google Scholar]
- Verstraete, R.; Sijbom, H.F.; Joos, J.J.; Kortholts, K.; Poelman, D.; Detavernier, C.; Smet, P.F. Red Mn4+-doped fluoride phosphors: Why purity matters. ACS Appl. Mater. Interfaces 2018, 10, 18845–18856. [Google Scholar] [CrossRef]
- Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid State Lett. 2006, 9, H22. [Google Scholar] [CrossRef]
- Xie, R.-J.; Hirosaki, N.; Suehiro, T.; Xu, F.-F.; Mitomo, M. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 2006, 18, 5578–5583. [Google Scholar] [CrossRef]
- Kondow, M.; Kitatani, T.; Nakahara, K.; Tanaka, T. Temperature dependence of lasing wavelength in a GaInNAs laser diode. IEEE Photonics Technol. Lett. 2000, 12, 777–779. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, J.; Kou, K.; Zhang, Y.; Wu, G. Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 2018, 120, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, G.; Wang, L.; Tian, L.; Chen, S.; Wu, G.; Kong, B.; Cheng, Y. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 2021, 11, 2495. [Google Scholar] [CrossRef]
- Tian, Y.; Qi, X.; Wu, X.; Hua, R.; Chen, B. Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J. Phys. Chem. C 2009, 113, 10767–10772. [Google Scholar] [CrossRef]
- Bispo-Jr, A.G.; Shinohara, G.M.M.; Pires, A.M.; Cardoso, C.X. Red phosphor based on Eu3+-doped Y2(MoO4)3 incorporated with Au NPs synthesized via Pechini’s method. Opt. Mater. 2018, 84, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Laufer, S.; Strobel, S.; Schleid, T.; Cybinska, J.; Mudring, A.-V.; Hartenbach, I. Yttrium (III) oxomolybdates (VI) as potential host materials for luminescence applications: An investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7]. New J. Chem. 2013, 37, 1919–1926. [Google Scholar] [CrossRef]
- Wang, S.F.; Koteswara Rao, K.; Wang, Y.R.; Hsu, Y.F.; Chen, S.H.; Lu, Y.C. Structural characterization and luminescent properties of a red phosphor series: Y2−xEux(MoO4)3 (x = 0.4–2.0). J. Am. Ceram. Soc. 2009, 92, 1732–1738. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Wang, J.; Yang, G.; Li, M.; Wu, G. The Investigation of the Effect of Filler Sizes in 3D-BN Skeletons on Thermal Conductivity of Epoxy-Based Composites. Nanomaterials 2022, 12, 446. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Abe, M.; Benino, Y.; Fujiwara, T.; Kim, H.; Komatsu, T. Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies. J. Non-Cryst. Solids 2007, 353, 85–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, B. RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: Controlled synthesis, microstructure and tunable luminescence. CrystEngComm 2013, 15, 5694–5702. [Google Scholar] [CrossRef]
- Kodaira, C.A.; Brito, H.F.; Felinto, M.C.F. Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE = La and Gd) produced using the Pechini method. J. Solid State Chem. 2003, 171, 401–407. [Google Scholar] [CrossRef]
- Zhuravlev, K.; Tsaryuk, V.; Kudryashova, V. Photoluminescence of europium and terbium trifluoroacetylacetonates. Participation of LMCT state in processes of the energy transfer to Eu3+ ion. J. Fluor. Chem. 2018, 212, 137–143. [Google Scholar] [CrossRef]
- Wood, D.; Tauc, J. Weak absorption tails in amorphous semiconductors. Phys. Rev. B 1972, 5, 3144. [Google Scholar] [CrossRef]
- Ran, W.; Wang, L.; Zhang, W.; Li, F.-f.; Jiang, H.; Li, W.; Su, L.; Houzong, R.; Pan, X.; Shi, J. A super energy transfer process based S-shaped cluster in ZnMoO4 phosphors: Theoretical and experimental investigation. J. Mater. Chem. C 2015, 3, 8344–8350. [Google Scholar] [CrossRef]
- An, Y.; Schramm, G.E.; Berry, M.T. Ligand-to-metal charge-transfer quenching of the Eu3+ (5D1) state in europium-doped tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) gadolinium (III). J. Lumin. 2002, 97, 7–12. [Google Scholar] [CrossRef]
- Dutta, P.; Khanna, A. Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region. ECS J. Solid State Sci. Technol. 2012, 2, R3153. [Google Scholar] [CrossRef]
- Ye, S.; Xiao, F.; Pan, Y.; Ma, Y.; Zhang, Q. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep. 2010, 71, 1–34. [Google Scholar] [CrossRef]
- Lei, F.; Yan, B.; Chen, H.H.; Zhao, J.T. Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2. Inorg. Chem. 2009, 48, 7576–7584. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, M.; Vaidyanathan, S. New red emitting phosphors NaSrLa(MO4)3:Eu3+ [M = Mo and W] for white LEDs: Synthesis, structural and optical study. J. Alloys Compd. 2019, 789, 919–931. [Google Scholar] [CrossRef]
- Huang, X.; Guo, H.; Li, B. Eu3+-activated Na2Gd(PO4)(MoO4): A novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J. Alloys Compd. 2017, 720, 29–38. [Google Scholar] [CrossRef]
- Grzyb, T.; Lis, S. Structural and spectroscopic properties of LaOF:Eu3+ nanocrystals prepared by the sol–gel Pechini method. Inorg. Chem. 2011, 50, 8112–8120. [Google Scholar] [CrossRef] [PubMed]
- Balci, M.H.; Chen, F.; Cunbul, A.B.; Svensen, Ø.; Akram, M.N.; Chen, X. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies. Opt. Rev. 2018, 25, 166–174. [Google Scholar] [CrossRef]
- Pagonis, V.; Ankjærgaard, C.; Murray, A.; Jain, M.; Chen, R.; Lawless, J.; Greilich, S. Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence. J. Lumin. 2010, 130, 902–909. [Google Scholar] [CrossRef]
- Pązik, R.; Zawisza, K.; Watras, A.; Maleszka-Bagińska, K.; Boutinaud, P.; Mahiou, R.; Dereń, P.J. Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19. J. Mater. Chem. 2012, 22, 22651–22657. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, B.; Liang, Z.; Li, X.; Sun, J.; Cheng, L.; Zhong, H. Optical transition and thermal quenching mechanism in CaSnO3:Eu3+ phosphors. J. Alloys Compd. 2014, 612, 204–209. [Google Scholar] [CrossRef]
- Fang, Y.-C.; Chu, S.-Y.; Kao, P.-C.; Chuang, Y.-M.; Zeng, Z.-L. Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors. J. Electrochem. Soc. 2010, 158, J1. [Google Scholar] [CrossRef]
- Geng, X.; Xie, Y.; Ma, Y.; Liu, Y.; Luo, J.; Wang, J.; Yu, R.; Deng, B.; Zhou, W. Abnormal thermal quenching and application for w-LEDs: Double perovskite Ca2InSbO6:Eu3+ red-emitting phosphor. J. Alloys Compd. 2020, 847, 156249. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, X.; Hua, X.; Dong, Y.; Li, H.; Feng, C.; Wang, Y.; Xia, M. Engineering mixed polyanion red-emitting Rb2Bi(PO4)(WO4):Eu3+ phosphors with negligible thermal quenching and high quantum yield. J. Alloys Compd. 2020, 844, 155875. [Google Scholar] [CrossRef]
- Zhu, G.; Ci, Z.; Shi, Y.; Que, M.; Wang, Q.; Wang, Y. Synthesis, crystal structure and luminescence characteristics of a novel red phosphor Ca19Mg2(PO4)14:Eu3+ for light emitting diodes and field emission displays. J. Mater. Chem. C 2013, 1, 5960–5969. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, Z.-C.; Milićević, B.; Zhou, L.; Khan, W.U.; Hong, J.; Shi, J.; Wu, M. Na2Tb0.5(MoO4)(PO4):0.5Eu3+: A red-emitting phosphor with both high thermal stability and high colour purity. Opt. Mater. 2019, 97, 109376. [Google Scholar] [CrossRef]
- Wang, C.; Ye, S.; Zhang, Q. Unraveling the distinct luminescence thermal quenching behaviours of A/B-site Eu3+ ions in double perovskite Sr2CaMoO6:Eu3+. Opt. Mater. 2018, 75, 337–346. [Google Scholar] [CrossRef]
- Chen, F.; Akram, M.N.; Chen, X. Nanocomposite phosphor materials fabricated by solid-state reaction for optoelectronics application. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tønsberg, Norway, 15–18 September 2020; pp. 1–4. [Google Scholar]
- Peng, T.; Huajun, L.; Yang, H.; Yan, C. Synthesis of SrAl2O4: Eu, Dy phosphor nanometer powders by sol–gel processes and its optical properties. Mater. Chem. Phys. 2004, 85, 68–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Akram, M.N.; Chen, X. Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice. Molecules 2023, 28, 1014. https://doi.org/10.3390/molecules28031014
Chen F, Akram MN, Chen X. Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice. Molecules. 2023; 28(3):1014. https://doi.org/10.3390/molecules28031014
Chicago/Turabian StyleChen, Fan, Muhammad Nadeem Akram, and Xuyuan Chen. 2023. "Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice" Molecules 28, no. 3: 1014. https://doi.org/10.3390/molecules28031014
APA StyleChen, F., Akram, M. N., & Chen, X. (2023). Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice. Molecules, 28(3), 1014. https://doi.org/10.3390/molecules28031014