Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts
Abstract
:1. Introduction
2. Results
2.1. α-Glucosidase Inhibition Assay
2.2. DPPH Assay
2.3. MTT Assay
2.4. Scratch Assay
2.5. HPLC Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Sample Collection
4.2. Plant Extract Preparation
4.3. DPPH Assay
4.4. α-Glucosidase Inhibition Assay
4.5. MTT Assay
4.6. Scratch Assay
4.7. HPLC Analysis
4.8. Calibration
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021. [Google Scholar]
- Agyare, C.; Boakye, Y.D.; Bekoe, E.O.; Hensel, A.; Dapaah, S.O.; Appiah, T. Review: African Medicinal Plants with Wound Healing Properties. J. Ethnopharmacol. 2016, 177, 85–100. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, J.H.; Kim, S.H.; Jung, Y. Skin Regeneration with Self-Assembled Peptide Hydrogels Conjugated with Substance P in a Diabetic Rat Model. Tissue Eng. Part A 2018, 24, 21–33. [Google Scholar] [CrossRef]
- Orendu Attah, M.; Watson Jacks, T.; Jacob, A.; Eduitem, O.; John, B. The Effect of Aloe Vera (Linn) On Cutaneous Wound Healing and Wound Contraction Rate in Adult Rabbits. Nova J. Med. Biol. Sci. 2016, 5, 1–8. [Google Scholar] [CrossRef]
- Oso, B.; Abey, N.; Oyeleke, O.; Olowookere, B. Comparative Study of the in Vitro Antioxidant Properties of Methanolic Extracts of Chromolaena Odorata and Ageratum Conyzoides Used in Wound Healing. Int. Ann. Sci. 2018, 6, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S. Influence of Ethanol Extract of Vinca Rosea on Wound Healing in Diabetic Rats. J. Biol. Sci. 2006, 6, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Okur, M.E.; Karantas, I.D.; Şenyiğit, Z.; Üstündağ Okur, N.; Siafaka, P.I. Recent Trends on Wound Management: New Therapeutic Choices Based on Polymeric Carriers. Asian J. Pharm. Sci. 2020, 15, 661–684. [Google Scholar] [CrossRef]
- Sari, Y.; Purnawan, I.; Kurniawan, D.W.; Sutrisna, E. A Comparative Study of the Effects of Nigella Sativa Oil Gel and Aloe Vera Gel on Wound Healing in Diabetic Rats. J. Evid. Based Integr. Med. 2018, 23, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, K.; Gothai, S.; Tan, W.S.; Kumar, S.S.; Mohd Esa, N.; Chandramohan, G.; Al-Numair, K.S.; Arulselvan, P. In Vitro Wound Healing Potential of Stem Extract of Alternanthera Sessilis. Evid. Based Complement. Altern. Med. 2018, 2018, 3142073. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal Plants and Their Components for Wound Healing Applications. Futur. J. Pharm. Sci. 2021, 7, 53. [Google Scholar] [CrossRef]
- Budovsky, A.; Yarmolinsky, L.; Ben-Shabat, S. Effect of Medicinal Plants on Wound Healing. Wound Repair Regen. 2015, 23, 171–183. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Akinmoladun, A.C.; Ibukun, E.O.; Afor, E.; Akinrinlola, B.L.; Onibon, T.R.; Akinboboye, O.; Obuotor, E.M.; Farombi, E.O. Chemical Constituents and Antioxidant Activity of Alstonia Boonei. Afr. J. Biotechnol. 2007, 6, 1197–1201. [Google Scholar]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical Constituents of Some Nigerian Medicinal Plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Mfotie Njoya, E.; Coopoosamy, R.M.; Van Staden, J. Antioxidant, Anti-Inflammatory and Wound Healing Properties of Medicinal Plant Extracts Used to Treat Wounds and Dermatological Disorders. South Afr. J. Bot. 2019, 126, 232–240. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, Q.; Yang, Y. Comprehensive Investigation of Moringa Oleifera from Different Regions by Simultaneous. Molecules 2020, 25, 676690. [Google Scholar]
- Fard, M.T.; Arulselvan, P.; Karthivashan, G.; Adam, S.K.; Fakurazi, S. Bioactive Extract from Moringa Oleifera Inhibits the Pro-Inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages. Pharmacogn. Mag. 2015, 11, S556–S563. [Google Scholar] [PubMed] [Green Version]
- Shih, M.-C.; Chang, C.-M.; Kang, S.-M.; Tsai, M.-L. Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa Oleifera. Int. J. Mol. Sci. 2011, 12, 6077–6088. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, J.R.O.; Silva, G.C.; Costa, R.A.; de Sousa Fontenelle, J.R.L.; Vieira, G.H.F.; Filho, A.A.F.; dos Fernandes Vieira, R.H.S. In Vitro Antibacterial Effect of Aqueous and Ethanolic Moringa Leaf Extracts. Asian Pac. J. Trop. Med. 2011, 4, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Galuppo, M.; De Nicola, G.R.; Iori, R.; Dell’utri, P.; Bramanti, P.; Mazzon, E. Antibacterial Activity of Glucomoringin Bioactivated with Myrosinase against Two Important Pathogens Affecting the Health of Long-Term Patients in Hospitals. Molecules 2013, 18, 14340–14348. [Google Scholar] [CrossRef]
- Tuorkey, M.J. Effects of Moringa Oleifera Aqueous Leaf Extract in Alloxan Induced Diabetic Mice. Interv. Med. Appl. Sci. 2016, 8, 109–117. [Google Scholar]
- Gothai, S.; Arulselvan, P.; Tan, W.S.; Fakurazi, S. Wound Healing Properties of Ethyl Acetate Fraction of Moringa Oleifera in Normal Human Dermal Fibroblasts. J. Intercult. Ethnopharmacol. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, L.; Li, W.; Dai, T.; Nie, L.; Xie, J.; Ai, Y.; Li, L.; Tian, Y.; Sheng, J. Polyphenol Extract of Moringa Oleifera Leaves Alleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. Evid. Based Complement. Altern. Med. 2020, 2020, 6295402. [Google Scholar] [CrossRef]
- Al-Ghanayem, A.A.; Alhussaini, M.S.; Asad, M.; Joseph, B. Moringa oleifera Leaf Extract Promotes Healing of Infected Wounds in Diabetic Rats: Evidence of Antimicrobial, Antioxidant and Proliferative Properties. Pharmaceuticals 2022, 15, 528. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa Oleifera: A Review of Their Nutritional, Therapeutic and Industrial Significance. 3 Biotech 2016, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Hartman, M.J. Review of the Safety and Efficacy of Moringa Oleifera. Phytother. Res. 2015, 29, 796–804. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R. Antioxidant Activity and Total Phenolic Content of Moringa Oleifera Leaves in Two Stages of Maturity. Plant Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef]
- Ferreira, P.P.M.; Farias, D.F.; Oliveira, J.T.D.A.; Carvalho, A.D.F. Moringa Oleifera: Bioactive Compounds and Nutritional Potential. Rev. Nutr. 2008, 21, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa Oleifera Lam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Singh, A.; Mishra, A. Gallic Acid: Molecular Rival of Cancer. Environ. Toxicol. Pharmacol. 2013, 35, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Onyebuchi, C.; Kavaz, D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci. Rep. 2020, 10, 21760. [Google Scholar] [CrossRef]
- Guimarães, I.; Baptista-Silva, S.; Pintado, M.; Oliveira, A.L. Polyphenols: A Promising Avenue in Therapeutic Solutions for Wound Care. Appl. Sci. 2021, 11, 1230. [Google Scholar] [CrossRef]
- Annan, K.; Houghton, P.J. Antibacterial, Antioxidant and Fibroblast Growth Stimulation of Aqueous Extracts of Ficus Asperifolia Miq. and Gossypium Arboreum L., Wound-Healing Plants of Ghana. J. Ethnopharmacol. 2008, 119, 141–144. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, S.R.; Soni, H. Efficacy of Hydrogel Containing Rutin in Wound Healing. EAS J. Pharm. Pharmacol. 2020, 6, 161–167. [Google Scholar]
- Kant, V.; Jangir, B.L.; Kumar, V.; Nigam, A.; Sharma, V. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors. Growth Factors. 2020, 38, 105–119. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Huang, C.-N.; Liao, C.-K.; Chang, H.-M.; Kuan, Y.-H.; Tseng, T.-J.; Yen, K.-J.; Yang, K.-L.; Lin, H.-C. Effects of Rutin on Wound Healing in Hyperglycemic Rats. Antioxidants. 2020, 9, 1122. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef]
- Stolzing, A.; Coleman, N.; Scutt, A. Glucose-Induced Replicative Senescence in Mesenchymal Stem Cells. Rejuvenation Res. 2006, 9, 31–35. [Google Scholar] [CrossRef]
- Willershausen-Zönnchen, B.; Lemmen, C.; Hamm, G. Influence of High Glucose Concentrations on Glycosaminoglycan and Collagen Synthesis in Cultured Human Gingival Fibroblasts. J. Clin. Periodontol. 1991, 18, 190–195. [Google Scholar] [CrossRef]
- Spampinato, S.F.; Caruso, G.I.; De Pasquale, R.; Sortino, M.A.; Merlo, S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020, 13, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- auf dem Keller, U.; Kümin, A.; Braun, S.; Werner, S. Reactive Oxygen Species and Their Detoxification in Healing Skin Wounds. J. Investig. Dermatol. Symp. Proc. 2006, 11, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.F.S.; Argolo, A.C.C.; Paiva, P.M.G.; Coelho, L.C.B.B. Antioxidant Activity of Moringa Oleifera Tissue Extracts. Phytother. Res. 2012, 26, 1366–1370. [Google Scholar] [CrossRef] [Green Version]
- Fitriana, W.D.; Ersam, T.; Shimizu, K.; Fatmawati, S. Antioxidant Activity of Moringa Oleifera Extracts. Indones. J. Chem. 2016, 16, 297–301. [Google Scholar] [CrossRef]
- Rao, S.; Al-subaie, A.M.; Al-jindan, R.Y.; Papayya, J.; Kanchi, P.; Priya, V.; Arumugam, A.; Shankar, S.; Gollapalli, R.; Palpath, J.; et al. In Vitro Wound Healing Potency of Methanolic Leaf Extract of Aristolochia Saccata Is Possibly Mediated by Its Stimulatory Effect on Collagen-1 Expression. Heliyon 2019, 5, e01648. [Google Scholar]
- Zubair, M.; Ekholm, A.; Nybom, H.; Renvert, S.; Widen, C.; Rumpunen, K. Effects of Plantago Major L. Leaf Extracts on Oral Epithelial Cells in a Scratch Assay. J. Ethnopharmacol. 2012, 141, 825–830. [Google Scholar] [CrossRef]
- Zubair, M.; Nybom, H.; Lindholm, C.; Rumpunen, K. Major Polyphenols in Aerial Organs of Greater Plantain (Plantago Major L.), and Effects of Drying Temperature on Polyphenol Contents in the Leaves. Sci. Hortic. 2011, 128, 523–529. [Google Scholar] [CrossRef]
- Thamer, F.H.; Dauqan, E.M.A.; Naji, K.M. The effect of drying temperature on the antioxidant activity of thyme extracts. J. Food Technol. Pres 2018, 2, 3. [Google Scholar]
- Prathapan, A.; Lukhman, M.; Arumughan, C.; Sundaresan, A.; Raghu, K.G. Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome. Int. J. Food Sci. Technol. 2009, 44, 1438–1444. [Google Scholar] [CrossRef]
- Saleem, A.; Saleem, M.; Akhtar, M.F.; Muhammad, M.; Ashraf, F.; Azhar, B. HPLC analysis, cytotoxicity, and safety study of Moringa oleifera Lam. (wild type) leaf extract. J. Food Biochem. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Jahan, I.A.; Jahan, F.; Hossain, H. Antioxidant activities and simultaneous HPLC—DAD profiling of polyphenolic compounds from Moringa oleifera Lam. Leaves grown in Bangladesh. Food Res. 2021, 5, 401–408. [Google Scholar] [CrossRef]
- Abdalla, H.A.; Ali, M.; Amar, M.H.; Chen, L.; Wang, Q.F. Characterization of Phytochemical and Nutrient Compounds from the Leaves and Seeds of Moringa oleifera and Moringa peregrina. Horticulturae 2022, 8, 1081. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Mašković, P.; Đurović, S.; Zengin, G.; Delerue-Matos, C.; Lozano-Sánchez, J.; Jakšić, A. Chemical and biological insights on aronia stems extracts obtained by different extraction techniques: From wastes to functional products. J. Supercrit. Fluids 2017, 128, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Muzammil, S.; Wang, Y.; Siddique, M.H.; Zubair, E.; Hayat, S.; Zubair, M.; Roy, A.; Mumtaz, R.; Azeem, M.; Emran, T.B.; et al. Polyphenolic Composition, Antioxidant, Antiproliferative and Antidiabetic Activities of Coronopus didymus Leaf Extracts. Molecules 2022, 27, 6263. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zubair, M.; Khan, M.A.; Muzammil, S.; Siddique, M.H. Extracts of Eucalyptus alba Promote Diabetic Wound Healing by Inhibiting α-Glucosidase and Stimulating Cell Proliferation. Evi. Based Complement. Alternat. Med. 2022, 2022, 495310. [Google Scholar] [CrossRef] [PubMed]
Polyphenols | Retention Time (min) | Concentration (mg/kg) in M. oleifera 10 °C Dried Leaves | Concentration (mg/kg) in M. oleifera 30 °C Dried Leaves | Concentration (mg/kg) in M. oleifera 50 °C Dried Leaves | Concentration (mg/kg) in M. oleifera 100 °C Dried Leaves |
---|---|---|---|---|---|
Chlorogenic acid | 2.880 | 228.43 | 225.01 | 130.93 | 120.54 |
p-Coumaric acid | 3.075 | 346.49 | 288.82 | 267.02 | 14.03 |
Caffeic acid | 7.494 | 261.14 | 203.74 | 198.83 | 8.38 |
Vanillic acid | 7.687 | 19.45 | 7.47 | 7.56 | 18.55 |
Kaempferol | 11.074 | 20.17 | 4.08 | 2.01 | ND |
Sinapic acid | 12.237 | 36.83 | 34.74 | 26.02 | ND |
Salicylic acid | 15.296 | 34.82 | 33.42 | ND | 2.36 |
Coumarin | 16.085 | 69.02 | 65.15 | ND | ND |
Quercetin | 16.954 | 63.19 | 45.34 | ND | ND |
Rutin | 23.989 | 54.23 | 32.19 | 3.13 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzammil, S.; Neves Cruz, J.; Mumtaz, R.; Rasul, I.; Hayat, S.; Khan, M.A.; Khan, A.M.; Ijaz, M.U.; Lima, R.R.; Zubair, M. Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts. Molecules 2023, 28, 710. https://doi.org/10.3390/molecules28020710
Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA, Khan AM, Ijaz MU, Lima RR, Zubair M. Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts. Molecules. 2023; 28(2):710. https://doi.org/10.3390/molecules28020710
Chicago/Turabian StyleMuzammil, Saima, Jorddy Neves Cruz, Rabia Mumtaz, Ijaz Rasul, Sumreen Hayat, Muhammad Asaf Khan, Arif Muhammad Khan, Muhammad Umar Ijaz, Rafael Rodrigues Lima, and Muhammad Zubair. 2023. "Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts" Molecules 28, no. 2: 710. https://doi.org/10.3390/molecules28020710
APA StyleMuzammil, S., Neves Cruz, J., Mumtaz, R., Rasul, I., Hayat, S., Khan, M. A., Khan, A. M., Ijaz, M. U., Lima, R. R., & Zubair, M. (2023). Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts. Molecules, 28(2), 710. https://doi.org/10.3390/molecules28020710