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Abstract: The delayed healing of wounds among people with diabetes is a severe problem worldwide.
Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing
in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective
agent for wound healing. Drying temperature and extraction solvent highly affect the stability of
polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure
the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on
the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were
examined in the present research. Fresh leaves were oven dried at different temperatures (10 ◦C, 30 ◦C,
50 ◦C, and 100 ◦C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve
extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects
using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a
scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal
pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal
pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance
liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that
an ethanol-based extract prepared by drying the leaves at 10 ◦C contained the highest amounts of
identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell
migration properties. The best results were obtained with leaves dried at 10 ◦C and 30 ◦C. Decreased
activities were observed with drying temperatures of 50 ◦C and above. Moreover, M. oleifera extracts
exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study
revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their
antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent
therapeutic option when extracted at optimum conditions.

Keywords: antidiabetic; antioxidant; wound healing; phenolic compounds

1. Introduction

Diabetes is a global health concern, with an estimated 537 million individuals suffer-
ing from this disease worldwide, and the number is anticipated to reach 643 million by
2030 and 784 million by 2045. Over 81% of the people affected by diabetes are living in
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economically developing countries. Diabetes accounts for an estimated 966 billion dollars
in global healthcare costs in 2021, representing a 316% rise during the last 15 years [1]. Dia-
betes mellitus leads to the progression of various micro and macrovascular problems and
non-healing skin ulcers [2]. Wounds in diabetic patients are prone to infections, are slow to
recover, and can last for months, making them a significant healthcare burden [3–6]. High
blood glucose in diabetic patients causes increased infection development, prolonged in-
flammation, and reactive oxygen species production, associated with impaired proliferation
and the remodeling stages and reduced strength of the wounded area [7].

Clinicians and wound care staff in developed countries are using advanced therapies
such as hyperbaric oxygen therapy, negative pressure therapy, antibiotics, and growth
factors to improve healing in diabetics [8]. Unfortunately, the available treatments are
limited by their disadvantages, including high costs, allergic reactions, and microbial
resistance. Moreover, these therapies are not available in developing countries, so to
minimize the toxic effects, an effective and safe alternative from natural resources must be
found [9].

Medicinal plants and herbal preparations represent a significant portion of the global
healthcare market. In developing countries, 80% of people use traditional medicines due to
their easy availability, low cost, and effectiveness. Various ailments can be cured with herbal
remedies, including ulcers, skin infections, inflammation, and diabetic wounds [10]. Plants
used to treat wounds provide disinfection, debridement, and adequate moisture to facilitate
the natural healing process [11,12]. The pharmaceutical importance of plants lies in their
bioactive compounds, which can enhance the healing and restoration of tissues by various
mechanisms such as reducing oxidative stress, maintaining blood glucose levels, and col-
lagen deposition [13]. These bioactive compounds belong to different chemical families,
i.e., flavonoids, alkaloids, tannins, saponins, terpenoids, essential oils, and phenolic com-
pounds [14]. Polyphenols have gained therapeutic importance mainly to promote wound
healing. Generally, polyphenols possess strong antioxidant potential to protect against
reactive oxygen species by neutralizing free radicals. Moreover, some polyphenols have
antimicrobial potential against bacteria colonizing chronic wounds [15,16]. The presence of
polyphenols in medicinal plants with high levels of antimicrobial, anti-inflammation, and
antioxidant activities has encouraged scientists to explore their potential wound-healing
effects [15].

Moringa oleifera, also called the miracle tree, is a widely cultivated species within the
Moringaceae family. It is distributed all over the world, especially in Asia and Africa.
Leaves, roots, flowers, and fruits of M. oleifera are edible and can be used as dietary sup-
plements [17]. Moringa oleifera has been traditionally used for its anti-inflammatory [18],
antioxidant [19], antifungal, antibacterial [20,21], antidiabetic [22], and healing activi-
ties [23]. This plant has also been used to treat hypertension, hypo-immunity, anemia, and
other diseases [24]. Moringa oleifera leaf extract has been reported to promote the healing of
infected wounds [25]. Studies have confirmed the presence of bioactive compounds in M.
oleifera with beneficial health effects [26,27]. The leaves, however, are the most commonly
used plant part which contains calcium, potassium, iron, proteins, vitamins E, C, and A,
polyphenols, carotenoids, β-carotene, oxidase, alkaloids, isothiocyanates, tannins, and
saponins [17,28,29]. Moringa oleifera dried leaves are rich in polyphenols, of which phenolic
acids and flavonoids are most abundantly found [30]. Flavonoids and phenolic acids
effectively scavenge oxygen free radicals and have antitumor effects [31,32]. The extraction
of bioactive compounds from raw plant material is significantly affected by the drying
temperature and type of the solvents used. However, the optimization of the extraction
protocol, drying temperature, and choice of solvent is essentially required to improve the
concentration of known compounds in plant extracts and also to maintain their biological
activities [33].

The research is being conducted to evaluate the wound-healing effects of M. oleifera
leaves dried at different temperatures, i.e., 10 ◦C, 30 ◦C, 50 ◦C, and 100 ◦C, and ex-
tracted in acetone, ethanol, and methanol. The extracts were analyzed using a DPPH
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(2,2-diphenylpicrylhydrazyl) assay, α-glucosidase inhibition assay, scratch assay, and MTT
(3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay. Moreover, the iden-
tification of major polyphenols present in the dried leaf extracts of M. oleifera was also
performed using HPLC (high-performance liquid chromatography) analysis.

2. Results
2.1. α-Glucosidase Inhibition Assay

The results of the inhibition of α-glucosidase by M. oleifera extracts confirmed that
ethanol and methanol-based extracts showed the highest inhibition of α-glucosidase with
10 ◦C dried leaves, i.e., 76.82% and 75.23%, respectively. Acetone-based extracts displayed
a moderate amount of activity as compared to other solvents. Likewise, 30 and 100 ◦C
dried leaves followed the same order showing maximum inhibition with ethanol and
minimum inhibition with acetone-based extracts. For extracts prepared with 50 ◦C dried
leaves, there was no substantial difference in the percent inhibition of α-glucosidase among
all the solvents (Figure 1). Overall, the highest activity was displayed by 10 ◦C dried
leaves extracted in ethanol among all the tested extracts (IC50 value 0.05 mg/mL). The
dose–response curves and IC50 values of the extracts showing the percentage inhibition
above 50% at 0.1 mg/mL are represented in Figure S1.
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Figure 1. Effects of M. oleifera leaf extracts on α-glucosidase inhibition. The positive control was
acarbose (10 mM). Bars displayed the mean based on 3 replicates of each treatment. Significant
variations (p < 0.05) among all extracts are represented by different letters (a–h) above the bars.

2.2. DPPH Assay

Moringa oleifera extracts prepared by drying the leaves at variable temperature ranges
and extracting in three solvents were tested for antioxidant activity by a DPPH assay
(Figure 2). The results showed that the extracts prepared with 10 and 30 ◦C dried leaves
extracted in methanol and ethanol had shown strong inhibitory potential against DPPH
(greater than 50%) for the temperature studied. The leaves dried at 50 and 100 ◦C caused a
significant reduction in the scavenging activity against DPPH compared to the gallic acid
used as the positive control. For the solvents under study, substantial differences (p < 0.05)
were seen among the different solvents, and ethanol-based extracts obtained the highest
activity. The dose–response curves and IC50 of the extracts with percentage inhibitory
activity above 50% at 0.1 mg/mL are shown in Figure S2.



Molecules 2023, 28, 710 4 of 13

Molecules 2023, 28, x FOR PEER REVIEW 4 of 14 
 

 

a significant reduction in the scavenging activity against DPPH compared to the gallic 
acid used as the positive control. For the solvents under study, substantial differences (p 
< 0.05) were seen among the different solvents, and ethanol-based extracts obtained the 
highest activity. The dose–response curves and IC50 of the extracts with percentage inhib-
itory activity above 50% at 0.1 mg/mL are shown in Figure S2. 

 
Figure 2. Antioxidant potential of M. oleifera leaves using DPPH assay. The positive control was 
gallic acid (0.3 mM). Bars displayed the mean based on 3 replicates of each treatment. Significant 
variations (p < 0.05) among all extracts are represented by different letters (a–e) above the bars. 

2.3. MTT Assay 
The evaluation of cell viability of RPE and Huh-7 cells after exposure to methanol, 

acetone, and ethanol-based M. oleifera extracts was performed using an MTT assay. All the 
extracts exhibited no toxicity on the RPE cells, as the percent viability of the cells remained 
at 91 to 99% (Figure 3). At the same time, the same extracts were cytotoxic for Huh-7 cells 
and caused a significant reduction in cell viability (Figure 4). Among the samples dried at 
variable temperatures, the extracts prepared by drying the leaves at 10 °C and 30 °C and 
extracting them in ethanol were more effective at inhibiting the cancer cell line growth 
(Figure 5). 

 
Figure 3. Retinal pigment epithelial cell viability after exposure to twelve different M. oleifera ex-
tracts prepared by drying the leaves at variable temperatures and extracting them in three different 

Figure 2. Antioxidant potential of M. oleifera leaves using DPPH assay. The positive control was gallic
acid (0.3 mM). Bars displayed the mean based on 3 replicates of each treatment. Significant variations
(p < 0.05) among all extracts are represented by different letters (a–e) above the bars.

2.3. MTT Assay

The evaluation of cell viability of RPE and Huh-7 cells after exposure to methanol,
acetone, and ethanol-based M. oleifera extracts was performed using an MTT assay. All the
extracts exhibited no toxicity on the RPE cells, as the percent viability of the cells remained
at 91 to 99% (Figure 3). At the same time, the same extracts were cytotoxic for Huh-7 cells
and caused a significant reduction in cell viability (Figure 4). Among the samples dried
at variable temperatures, the extracts prepared by drying the leaves at 10 ◦C and 30 ◦C
and extracting them in ethanol were more effective at inhibiting the cancer cell line growth
(Figure 5).

Molecules 2023, 28, x FOR PEER REVIEW 4 of 14 
 

 

a significant reduction in the scavenging activity against DPPH compared to the gallic 
acid used as the positive control. For the solvents under study, substantial differences (p 
< 0.05) were seen among the different solvents, and ethanol-based extracts obtained the 
highest activity. The dose–response curves and IC50 of the extracts with percentage inhib-
itory activity above 50% at 0.1 mg/mL are shown in Figure S2. 

 
Figure 2. Antioxidant potential of M. oleifera leaves using DPPH assay. The positive control was 
gallic acid (0.3 mM). Bars displayed the mean based on 3 replicates of each treatment. Significant 
variations (p < 0.05) among all extracts are represented by different letters (a–e) above the bars. 

2.3. MTT Assay 
The evaluation of cell viability of RPE and Huh-7 cells after exposure to methanol, 

acetone, and ethanol-based M. oleifera extracts was performed using an MTT assay. All the 
extracts exhibited no toxicity on the RPE cells, as the percent viability of the cells remained 
at 91 to 99% (Figure 3). At the same time, the same extracts were cytotoxic for Huh-7 cells 
and caused a significant reduction in cell viability (Figure 4). Among the samples dried at 
variable temperatures, the extracts prepared by drying the leaves at 10 °C and 30 °C and 
extracting them in ethanol were more effective at inhibiting the cancer cell line growth 
(Figure 5). 

 
Figure 3. Retinal pigment epithelial cell viability after exposure to twelve different M. oleifera ex-
tracts prepared by drying the leaves at variable temperatures and extracting them in three different 

Figure 3. Retinal pigment epithelial cell viability after exposure to twelve different M. oleifera extracts
prepared by drying the leaves at variable temperatures and extracting them in three different solvents.
Extracts were tested at 0.1 mg/mL. Data are expressed as percent cell viability after treatment with
plant extract. Bars displayed the mean ± standard deviation.



Molecules 2023, 28, 710 5 of 13

Molecules 2023, 28, x FOR PEER REVIEW 5 of 14 
 

 

solvents. Extracts were tested at 0.1 mg/mL. Data are expressed as percent cell viability after treat-
ment with plant extract. Bars displayed the mean ± standard deviation. 

 
Figure 4. Cytotoxicity of 12 different M. oleifera extracts on Huh-7 cells after 48 h of exposure. (a–d) 
represent ethanol-based extract-treated cells, (e–h) are the methanol-based extract-treated cells, and 
(i–l) are acetone-based extract-treated cells. (m) represents PBS (used as negative control)-treated 
cells. 

 
Figure 5. The cytotoxic effects of M. oleifera leaf extract on Huh-7 cells. Twelve different M. oleifera 
extracts were prepared by drying the leaves at variable temperatures and extracting them in three 
different solvents. Extracts were tested at 0.1 mg/mL. The data are expressed as the percent cell 
death of Huh-7 cells after treatment with plant extracts. Bars displayed the mean ± standard devia-
tion. Significant variations (p < 0.05) among all extracts are represented by different letters (a–f) 
above the bars. 

2.4. Scratch Assay 
The healing potential of M. oleifera leaves on RPE cells using a scratch assay was in-

vestigated (Figure 6). After 24 h of exposure to each extract at 0.1 mg/mL concentration, it 
was seen that cell migration towards the artificially created scratch was induced. The anal-
ysis of the pictures captured at different time intervals has been represented as a graph 
(Figure 7, Table S1). The platelet-derived growth factor (PDGF as a positive control) 
showed the maximum wound closure rate of 99% after 24 h of treatment. The negative 

Figure 4. Cytotoxicity of 12 different M. oleifera extracts on Huh-7 cells after 48 h of exposure. (a–d)
represent ethanol-based extract-treated cells, (e–h) are the methanol-based extract-treated cells, and
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Figure 5. The cytotoxic effects of M. oleifera leaf extract on Huh-7 cells. Twelve different M. oleifera
extracts were prepared by drying the leaves at variable temperatures and extracting them in three
different solvents. Extracts were tested at 0.1 mg/mL. The data are expressed as the percent cell death
of Huh-7 cells after treatment with plant extracts. Bars displayed the mean ± standard deviation.
Significant variations (p < 0.05) among all extracts are represented by different letters (a–f) above
the bars.

2.4. Scratch Assay

The healing potential of M. oleifera leaves on RPE cells using a scratch assay was
investigated (Figure 6). After 24 h of exposure to each extract at 0.1 mg/mL concentration,
it was seen that cell migration towards the artificially created scratch was induced. The
analysis of the pictures captured at different time intervals has been represented as a
graph (Figure 7, Table S1). The platelet-derived growth factor (PDGF as a positive control)
showed the maximum wound closure rate of 99% after 24 h of treatment. The negative
control exhibited the standard rate of healing without the effect of any treatment. Among
the twelve different extracts, the 10 ◦C dried leaves extracted in ethanol-induced wound
closure to a greater extent (81%) than the controls. An increase in the drying temperature
significantly reduced the cell migration activity of M. oleifera leaves. The choice of solvent



Molecules 2023, 28, 710 6 of 13

also considerably affected (p < 0.05) the healing of the scratch, and the activity was decreased
in the order of ethanol > methanol > acetone-based extracts.
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Figure 7. Cell proliferation activity of M. oleifera extracts on RPE cells. Twelve different M. oleifera
extracts were prepared by drying the leaves at variable temperatures and extracting them in three
different solvents at 0.1 mg/mL. Evaluations were conducted after different intervals, i.e., 4, 8, 16,
and 24 h of incubation. The negative and positive controls were PBS and PDGF, respectively. Bars
represent the mean ± standard deviation.
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2.5. HPLC Analysis

Polyphenol identification in ethanol-based M. oleifera leaf extracts was performed
using HPLC analysis (Figure S3). The peaks were confirmed by the comparison of retention
times with standards. Table 1 presents the identified compounds with their corresponding
retention times. p-Coumaric acid, caffeic acid, and chlorogenic acid were found in very
high concentrations in the extracts at 3.075, 7.494, and 2.88 min, respectively. At a lower
temperature of 10 ◦C the amount of p-Coumaric acid was 346.49 mg/kg, chlorogenic acid
was 228.43 mg/kg, and caffeic acid was 261.14 mg/kg. The concentrations of phenolic
compounds identified in the tested extracts indicate significant differences among the
extracts, with the highest amounts found at 10 ◦C. However, a decline in the number of
polyphenols was seen with the temperature rise. The content of phenolic compounds
potentially declines as the temperature rises to 100 ◦C. These results confirmed that the
concentration of identified polyphenols and the biological activities determined in M.
oleifera extracts are directly correlated.

Table 1. Polyphenols identified in ethanol-based M. oleifera leaf extracts.

Polyphenols Retention Time
(min)

Concentration
(mg/kg) in M.
oleifera 10 ◦C
Dried Leaves

Concentration
(mg/kg) in M.
oleifera 30 ◦C
Dried Leaves

Concentration
(mg/kg) in M.
oleifera 50 ◦C
Dried Leaves

Concentration
(mg/kg) in M.
oleifera 100 ◦C
Dried Leaves

Chlorogenic acid 2.880 228.43 225.01 130.93 120.54

p-Coumaric acid 3.075 346.49 288.82 267.02 14.03

Caffeic acid 7.494 261.14 203.74 198.83 8.38

Vanillic acid 7.687 19.45 7.47 7.56 18.55

Kaempferol 11.074 20.17 4.08 2.01 ND

Sinapic acid 12.237 36.83 34.74 26.02 ND

Salicylic acid 15.296 34.82 33.42 ND 2.36

Coumarin 16.085 69.02 65.15 ND ND

Quercetin 16.954 63.19 45.34 ND ND

Rutin 23.989 54.23 32.19 3.13 ND

3. Discussion

Wounds are a major healthcare concern, and the available therapeutic approaches
cannot completely address the associated risk factors. There is an emerging demand to
explore natural, biodegradable agents for wound healing as an alternative to conventional
therapies [34]. Medicinal plants are being used to heal wounds because of their bioactive
constituents, e.g., phenols, flavonoids, alkaloids, and triterpenes. These bioactive com-
ponents of the plants have antimicrobial, anti-inflammation, and antioxidant properties
and help to induce the collagen deposition and cell proliferation of keratinocytes and
fibroblasts [2,35]. Recently, several reports on the potential effectiveness of polyphenols
in the prevention and treatment of skin disorders, especially wound healing, have been
published [36,37]. The evaluation of diverse polyphenol-rich plant extracts results in the de-
velopment of innovative and cost-efficient wound-healing medications [38]. In this regard,
M. oleifera leaves extracts were tested for antioxidant, antihyperglycemic, and cell migration
properties assuming that this plant could promote wound healing in diabetic conditions.

Hyperglycemia is a major inhibiting factor of wound healing and is always accom-
panied by an increased level of inflammation and an imbalanced state of free radical
production and antioxidant availability [39]. High blood glucose reduces cell migration [40]
and collagen deposition [41] in various cells. The inhibition of α-glucosidase by phyto-
chemical enriched plant extracts is an efficient strategy to cure hyperglycemia which can
ultimately promote the healing of wounds in diabetic patients [42]. Extracts of M. oleifera
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were tested in the present study, suggesting that this plant could inhibit the α-glucosidase.
The highest activity was obtained when leaves were dried at 10 and 30 ◦C. Increasing the
temperature from 50 to 100 ◦C resulted in decreased activity. Moreover, ethanol-based
extracts were more efficient than methanol- or acetone-based extracts, suggesting that both
solvent and drying temperature may cause the changes in the chemical characteristics of
the different extracts.

Oxidative stress is another risk factor associated with delayed wound healing. The
excessive production of reactive oxygen species harms proteins, lipids, and DNA in cells,
which promotes cellular and tissue dysfunction [43]. Plant-based antioxidants have been
proven to have potent radical scavenging effects, thereby reducing the damage caused
by free radicals during wound healing. Previous reports have supported the presence
of polyphenols, i.e., gallic acid, quercetin, and kaempferol, with antioxidant potential in
M. oleifera [44,45]. Our results suggested that M. oleifera leaves possess strong antioxidant
potential. However, extracts prepared by drying the leaves at less than 50 ◦C, using ethanol
and methanol as solvents, effectively scavenged the free radicals.

Cell migration is one of the most essential phases of wound healing. The efficacy of
numerous plant extracts on cell migration has been previously studied using a scratch
assay [46,47]. In line with that, the effectiveness of M. oleifera leaf extracts on the cell
migration of the RPE cell line was evaluated in this research. The study suggested that
ethanolic M. oleifera extracts were highly effective in inducing cell migration towards
the artificially created scratch. Plant extracts were also examined for cytotoxic effects
through an MTT assay. The cytotoxic evaluation may help to determine the biological and
therapeutic relevance of plant material [33]. In our study, M. oleifera extracts were non-toxic
for RPE cells. After 48 h of exposure to leaf extracts, RPE cells still had a 91–99% viability
rate, whereas the cancerous Huh-7 cells were highly affected after the extracts were applied.
These findings demonstrated that M. oleifera extracts could be used as a wound-healing
agent for further research.

Plant ethnomedicinal activities have been ascribed to polyphenolic and other bioactive
compounds. The drying temperature and solvent used for extraction directly influence the
polyphenol content and the biological activities of the extracts [48]. The recent literature has
reported the effects of drying temperature on the antioxidant potential of thyme extracts.
The study suggested that an increase in drying temperature causes a significant reduction
in the antioxidant activity and total phenol content of the extracts [49]. Drying Eucalyptus
alba leaves at high temperatures >50 ◦C causes the degradation of phenolic compounds
and the reduced healing property of plant extracts [35]. However, a contradictory study
has reported that the total phenolic content in turmeric rhizome was highest when dried
at 100 ◦C [50]. Different solvents of high polarities are used to extract polyphenols from
plant materials with high accuracy [48]. In line with that, M. oleifera leaves were dried at
different temperatures and extracted in three different solvents to optimize the extraction
of polyphenols.

Previous research has reported the phytochemicals, namely, kaempferol and quercetin
in M. oleifera leaf extracts [51]. Another study reported the ethanolic extract of M. oleifera
contained p-Coumaric acid and quercetin [52]. Chlorogenic acid, catechin, caffeic acid,
rutin, quercetin, and kaempferol were identified in the leaves of M. oleifera using HPLC
analysis [53]. M. oleifera leaves dried at four different temperatures were analyzed using
high-performance liquid chromatography in the present research. Chlorogenic acid, p-
Coumaric acid, caffeic acid, vanillic acid, kaempferol, sinapic acid, salicylic acid, coumarin,
quercetin, and rutin were identified in ethanolic extract of M. oleifera. The results showed
that the lowest concentrations of identified polyphenols were obtained in extracts dried
at 100 ◦C, whereas the concentrations were higher in 10 and 30 ◦C -dried leaves. The
difference in the concentrations of polyphenols in the plant materials could be due to
the heat sensitivity of the compounds. The research outcomes are consistent with earlier
studies, where drying at low temperatures resulted in the highest polyphenolic contents of
Aronia melanocarpa stem extract [54].
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4. Materials and Methods
4.1. Plant Sample Collection

Leaves of M. oleifera were obtained from AARI (Ayub Agricultural Research Institute,
Faisalabad, Pakistan). A voucher specimen (B&BMOL-20-a) was submitted to the depart-
mental herbaria. The plant name was affirmed by https://www.theplantlist.org (accessed
on 16 May 2020). Moringa oleifera leaves were collected, washed, and allowed to dry in
Memmert, Schwabach, Germany, in a convection oven at variable temperature ranges, i.e.,
10, 30, 50, and 100 ◦C until they gained constant weight. For further analysis, the samples
were finely ground and stored at −20 ◦C.

4.2. Plant Extract Preparation

The samples were extracted at room temperature. Briefly, the plant leaves (1 g from
each sample) were soaked in pure methanol, acetone, and ethanol (10 mL) overnight with
continual agitation. The solutions were sieved through filter paper (Whatman No.1). The
solvents were vaporized at room temperature, and the dried mass was mixed in phosphate-
buffered saline (PBS) to form 0.1 mg/mL of the final concentration [55,56]. To calculate the
IC50 values for the antidiabetic and antioxidant activities, the extracts were diluted to 0.075,
0.05, 0.025, and 0.0125 mg/mL.

4.3. DPPH Assay

The antioxidant effects of M. oleifera extract were assessed using a DPPH assay. A
stock solution of DPPH (0.3 mM) was formed in ethanol. Plant extract or gallic acid as a
positive control (10 µL) and 190 µL of DPPH were pipetted into each well of 96-well plates
following incubation of a half-hour in the dark. Optical density (OD) was measured using
a 96-well plate reader (ELx808IU Biotek USA) at 517 nm. The percent inhibition of DPPH
was calculated using OD values as follows:

Percent inhibition of DPPH = (OD of negative control − OD of sample)/OD of negative
control × 100.

4.4. α-Glucosidase Inhibition Assay

The inhibition of α-glucosidase by tested plant extracts was evaluated using 5 mM
p-nitrophenyl-β-D-glucopyranoside (PNPG) as a substrate. A mixture of 40 µL of α-
glucosidase (0.5 U/mL) was incubated with 12.5 µL of extract at varying concentrations
with an additional 120 µL of PBS for 5 min. After incubation, 40 µL of 5 mM PNPG was
added to the reaction mixture. The plate was placed at 37◦C for a half-hour. Acarbose
(10 mM) was used as the positive control and PBS as the negative control. Optical density
was taken at 405 nm using a 96-well plate reader (ELx808 BioTek USA). The percent
inhibition of α-glucosidase was calculated using OD values as follows:

Percentage inhibition = (OD of negative control − OD of sample)/OD of negative
control × 100.

4.5. MTT Assay

The cell viability of human retinal pigment epithelial (RPE) and hepatocellular car-
cinoma (Huh-7) cells was determined upon the treatment of M. oleifera extract using an
MTT assay. The cells were cultured at 2 × 104 cells/well. The plate was placed in a CO2
incubator for 24 h in the above-stated conditions. The culture medium was replaced with
fresh DMEM (Dulbecco’s modified Eagle medium) with 10 µL of tested plant extracts. The
cells were again incubated for 48 h. After incubation, 5 mg/mL MTT solution was pipetted
into each well, which was reduced to purple-color crystals of formazan by the viable cells.
Dimethyl sulfoxide (DMSO) 150 µL was added to each well. The optical density was
observed at 560 nm.

Percent cell death = (OD of negative control − OD of sample)/OD of negative control × 100.

https://www.theplantlist.org
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Percent cell viability = 100 − Percent cell death

4.6. Scratch Assay

The migration rate of RPE cells after M. oleifera treatment was assessed using the
scratch assay. Cells were cultured in DMEM containing penicillin/streptomycin (1%) and
fetal bovine serum (10%) at a density of 2 × 105 cells/well. The plate was incubated at
favorable conditions, i.e., 5% CO2 and 37 ◦C, in a CO2 incubator. After 24 h of incubation, a
monolayer of cells was scrapped using a sterilized 200 µL pipette tip to produce a linear
wound. To remove the debris, the cells were rinsed with PBS. Fresh culture media with M.
oleifera extracts was added and incubated for 24 h. Pictures were taken at 0, 4, 8, 16, and
24 h after the scratch creation using a Meiji Techno TC5200 inverted microscope at 40×
magnification. Image analysis was performed with Image J 1.440 software for Windows at
1712 × 1368 pixels. The percent coverage of scratch was estimated as follows:

Percent wound healing = (Scratch width at nh − Scratch width at 0h)/Scratch width at nh × 100

where nh is the specific time interval at which calculations are performed.

4.7. HPLC Analysis

A Chromera HPLC system (PerkinElmer, Shelton, CT, USA) was used to analyze the
polyphenol content in ethanol-based M. oleifera extracts. The system contained the Flexer
Binary Liquid chromatography pump and a detector (UV/Vis), controlled by V.4.2.6410
software. The C-18 column containing an internal diameter of 250 × 4.6 mm and a particle
size of 5 m was used to isolate polyphenols at 30 ◦C. The compounds were separated at a
flow rate of 0.8 mL/min. The mixture of solvent A (30% methanol and 70% acetonitrile)
and solvent B (0.5% glacial acetic acid and ddH2O) was used as the mobile phase. Peaks
were identified by the comparison of retention time and the spike rate of the standards
and samples. The external standard quantification method was used to quantify the
compounds at 275 nm. The separation efficacy of HPLC was estimated by separation factor
and resolution.

4.8. Calibration

For the purpose of calibration, standard solutions of pure compounds were prepared
in the mobile phase at 100, 200, 400, 600, 800, and 1000 µg/mL. Graphs were created by
drawing the peak area of each compound against the concentration.

4.9. Statistical Analysis

The experiments were conducted in triplicate, and the data were presented as mean ±
standard deviation. Significant comparisons (p < 0.05) among different groups were created
by two-way ANOVA and Tukey’s post hoc test using GraphPad prism.

5. Conclusions

The effects of variable drying temperatures and extraction solvents on the polyphenolic
composition and diabetic wound-healing activity of Moringa oleifera were observed in the
present research. The outcomes suggested that extraction solvent and drying temperature
significantly affected (p < 0.05) the cell migration, α-glucosidase inhibition, and antioxidant
activities of M. oleifera extracts. Further, the plant extract showed no signs of toxicity on
retinal pigment epithelial cells, and the same extracts were cytotoxic for hepatocellular
carcinoma cells. Phenolic compounds identified in the tested extracts indicate significant
differences among the extracts, with the highest amounts being found at 10 ◦C and the
lowest amounts at 100 ◦C. These results confirmed a direct relationship between the
concentration of identified polyphenols and the biological activities of M. oleifera extracts.
Based on the findings of this study, M. oleifera leaf extracts may have the potential for
diabetic wound healing when extracted at optimum conditions. However, future research
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is needed to determine the specified compounds involved in the wound-healing efficacy of
M. oleifera.
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