Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization of C-3 Substituted Indole Derivatives
2.2. X-Ray Analysis
2.3. Antioxidant Properties
2.3.1. Hemolytic Activity
2.3.2. Cytoprotective Activity against Oxidative Stress
2.3.3. Chelating Activity
2.4. Antibacterial Study
2.5. Fungicidal Activity
2.6. In Silico Study
3. Materials and Methods
3.1. Instrumentation and Chemicals
3.2. Synthesis of Gramine Derivatives
- 3-((2-methyl-1H-imidazol-1-yl)methyl)-1H-indole (3)
- 3-((2-ethyl-1H-imidazol-1-yl)methyl)-1H-indole (4)
- 3-((2-isopropyl-1H-imidazol-1-yl)methyl)-1H-indole (5)
- 3-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-indole (6)
- 3-((4,5-dichloro-1H-imidazol-1-yl)methyl)-1H-indole (7)
- 3-((2-phenyl-2,5-dihydro-1H-imidazol-1-yl)methyl)-1H-indole (8)
- 1-((1H-indol-3-yl)methyl)-1H-benzo[d]imidazole (9)
- 3-((1H-indol-3-yl)methyl)benzo[d]thiazole-2(3H)-thione (10)
- 3-((1H-indol-3-yl)methyl)benzo[d]oxazole-2(3H)-thione (11)
3.3. X-Ray Analysis
3.4. Antioxidant Study
3.4.1. Ferrous Ions (Fe2+) Chelating Activity
3.4.2. Human Erythrocyte Preparation
3.4.3. Hemolysis Assay under the Compounds Tested
3.4.4. Inhibition of the Free-Radical-Induced Hemolysis
3.4.5. Statistical Analysis
3.5. Antibacterial Activity Measurements
3.6. Antifungal Activity Measurements
3.7. In Silico Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Al-Mulla, A. A Review: Biological Importance of Heterocyclic Compounds. Der Pharma Chem. 2017, 9, 141–147. [Google Scholar]
- Dorababu, A. Indole—A Promising Pharmacophore in Recent Antiviral Drug Discovery. RSC Med. Chem. 2020, 11, 1335–1353. [Google Scholar] [CrossRef]
- Dadashpour, S.; Emami, S. Indole in the Target-Based Design of Anticancer Agents: A Versatile Scaffold with Diverse Mechanisms. Eur. J. Med. Chem. 2018, 150, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, Z.; Bian, Y.; Huo, X.; Fang, J.; Shao, L.; Zhou, M. Indole/Isatin-Containing Hybrids as Potential Antibacterial Agents. Arch. Pharm. 2020, 353, 2000143. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, H.; Liu, J.; Zhong, R.; Li, H.; Fang, S.; Liu, S.; Lin, S. Synthesis and Biological Evaluation of Indole-Based Peptidomimetics as Antibacterial Agents against Gram-Positive Bacteria. Eur. J. Med. Chem. 2021, 226, 113813. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Singh, R.K. Medicinal Chemistry of Indole Derivatives: Current to Future Therapeutic Prospectives. Bioorg. Chem. 2019, 89, 103021. [Google Scholar] [CrossRef]
- Singh, A.A.; Patil, M.P.; Kang, M.-J.; Niyonizigiye, I.; Kim, G.-D. Biomedical Application of Indole-3-Carbinol: A Mini-Review. Phytochem. Lett. 2021, 41, 49–54. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L-Tryptophan to Serotonin and Melatonin in Human Melanoma Cells. FEBS Lett. 2002, 511, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Strawbridge, R.; Javed, R.R.; Cave, J.; Jauhar, S.; Young, A.H. The Effects of Reserpine on Depression: A Systematic Review. J. Psychopharmacol. 2022, 02698811221115762. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Li, D.; Zhang, Y.; Guo, H.; Li, Y.; Chen, F.; Xu, J. Vincristine-Induced Peripheral Neuropathy: A Mini-Review. NeuroToxicology 2020, 81, 161–171. [Google Scholar] [CrossRef]
- Moran-Santa Maria, M.M.; Baker, N.L.; McRae-Clark, A.L.; Prisciandaro, J.J.; Brady, K.T. Effects of yohimbine and drug cues on impulsivity and attention in cocaine-dependent men and women and sex-matched controls. Drug Alcohol Depend. 2016, 162, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Guo, Q.; Wang, H.-Y.; Li, Y.-H.; Khamis, M.Y.; Ma, L.-Y.; Wang, B.; Liu, H.-M. Gramine-Based Structure Optimization to Enhance Anti-Gastric Cancer Activity. Bioorg. Chem. 2021, 107, 104549. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shi, L.; Wang, K.; Liu, M.; Yang, Q.; Yang, Z.; Ke, S. Discovery of Gramine Derivatives That Inhibit the Early Stage of EV71 Replication in Vitro. Molecules 2014, 19, 8949–8964. [Google Scholar] [CrossRef] [Green Version]
- Süzen, S. Antioxidant Activities of Synthetic Indole Derivatives and Possible Activity Mechanisms. In Bioactive Heterocycles V; Khan, M.T.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 145–178. ISBN 978-3-540-73406-2. [Google Scholar]
- Kumar, J.; Kumar, N.; Sati, N.; Hota, P.K. Antioxidant Properties of Ethenyl Indole: DPPH Assay and TDDFT Studies. New J. Chem. 2020, 44, 8960–8970. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Soares, J.R.; Victoria, F.N.; Martinez, D.M.; Savegnago, L. Synthesis and Antioxidant Activity of New C-3 Sulfenyl Indoles. Tetrahedron Lett. 2013, 54, 4926–4929. [Google Scholar] [CrossRef] [Green Version]
- Kanwal; Khan, K.M.; Chigurupati, S.; Ali, F.; Younus, M.; Aldubayan, M.; Wadood, A.; Khan, H.; Taha, M.; Perveen, S. Indole-3-Acetamides: As Potential Antihyperglycemic and Antioxidant Agents; Synthesis, In Vitro α-Amylase Inhibitory Activity, Structure–Activity Relationship, and In Silico Studies. ACS Omega 2021, 6, 2264–2275. [Google Scholar] [CrossRef] [PubMed]
- Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, Antioxidant and Cytoprotective Activity Evaluation of C-3 Substituted Indole Derivatives. Sci. Rep. 2021, 11, 15425. [Google Scholar] [CrossRef]
- Kozanecka-Okupnik, W.; Jasiewicz, B.; Pospieszny, T.; Jastrząb, R.; Skrobańska, M.; Mrówczyńska, L. Spectroscopy, Molecular Modeling and Anti-Oxidant Activity Studies on Novel Conjugates Containing Indole and Uracil Moiety. J. Mol. Struct. 2018, 1169, 130–137. [Google Scholar] [CrossRef]
- Kozanecka-Okupnik, W.; Sierakowska, A.; Berdzik, N.; Kowalczyk, I.; Mrówczyńska, L.; Jasiewicz, B. New Triazole-Bearing Gramine Derivatives—Synthesis, Structural Analysis and Protective Effect against Oxidative Haemolysis. Nat. Prod. Res. 2022, 36, 3413–3419. [Google Scholar] [CrossRef]
- Rosemeyer, H. The Chemodiversity of Purine as a Constituent of Natural Products. Chem. Biodivers. 2004, 1, 361–401. [Google Scholar] [CrossRef]
- Verma, A.; Joshi, S.; Singh, D. Imidazole: Having Versatile Biological Activities. J. Chem. 2013, 2013, 329412. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des. Devel. Ther. 2021, 15, 3289–3312. [Google Scholar] [CrossRef] [PubMed]
- Bozdag, M.; Supuran, C.T.; Esposito, D.; Angeli, A.; Carta, F.; Monti, S.M.; De Simone, G.; Alterio, V. 2-Mercaptobenzoxazoles: A Class of Carbonic Anhydrase Inhibitors with a Novel Binding Mode to the Enzyme Active Site. Chem. Commun. Camb. Engl. 2020, 56, 8297–8300. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Suresh, B. Biological Activities of 2-Mercaptobenzothiazole Derivatives: A Review. Sci. Pharm. 2012, 80, 789–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safak, C.; Simsek, R.; Erol, K.; Vural, K. Analgesic and Antiinflammatory Effects of Some 2-Mercaptobenzoxazole Derivatives. Die Pharm. 1996, 51, 180–182. [Google Scholar]
- Staniszewska, M.; Kuryk, Ł.; Gryciuk, A.; Kawalec, J.; Rogalska, M.; Baran, J.; Łukowska-Chojnacka, E.; Kowalkowska, A. In Vitro Anti-Candida Activity and Action Mode of Benzoxazole Derivatives. Molecules 2021, 26, 5008. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur Rich 2-Mercaptobenzothiazole and 1,2,3-Triazole Conjugates as Novel Antitubercular Agents. Eur. J. Med. Chem. 2014, 76, 274–283. [Google Scholar] [CrossRef]
- Karaca, Ş.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Ilgın, S.; Özkay, Y.; Karaburun, A.Ç.; Kaplancıklı, Z.A.; Gundogdu-Karaburun, N. Synthesis of Novel Benzothiazole Derivatives and Investigation of Their Enzyme Inhibitory Effects against Alzheimer’s Disease. RSC Adv. 2022, 12, 23626–23636. [Google Scholar] [CrossRef]
- Decker, M. Introduction. In Design of Hybrid Molecules for Drug Development; Decker, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–3. ISBN 978-0-08-101011-2. [Google Scholar]
- Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, Synthesis and Biological Evaluation of Novel Indole-Benzimidazole Hybrids Targeting Estrogen Receptor Alpha (ER-α). Eur. J. Med. Chem. 2018, 146, 206–219. [Google Scholar] [CrossRef]
- Wang, R.; Shi, H.-F.; Zhao, J.-F.; He, Y.-P.; Zhang, H.-B.; Liu, J.-P. Design, Synthesis and Aromatase Inhibitory Activities of Novel Indole-Imidazole Derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 1760–1762. [Google Scholar] [CrossRef]
- Naureen, S.; Ijaz, F.; Nazeer, A.; Chaudhry, F.; Munawar, M.A.; Khan, M.A. Facile, Eco-Friendly, One-Pot Protocol for the Synthesis of Indole-Imidazole Derivatives Catalyzed by Amino Acids. Synth. Commun. 2017, 47, 1478–1484. [Google Scholar] [CrossRef]
- Hogendorf, A.S.; Hogendorf, A.; Popiołek-Barczyk, K.; Ciechanowska, A.; Mika, J.; Satała, G.; Walczak, M.; Latacz, G.; Handzlik, J.; Kieć-Kononowicz, K.; et al. Fluorinated Indole-Imidazole Conjugates: Selective Orally Bioavailable 5-HT7 Receptor Low-Basicity Agonists, Potential Neuropathic Painkillers. Eur. J. Med. Chem. 2019, 170, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Naureen, S.; Chaudhry, F.; Munawar, M.A.; Ashraf, M.; Hamid, S.; Khan, M.A. Biological Evaluation of New Imidazole Derivatives Tethered with Indole Moiety as Potent α-Glucosidase Inhibitors. Bioorg. Chem. 2018, 76, 365–369. [Google Scholar] [CrossRef] [PubMed]
- James, D.A.; Koya, K.; Li, H.; Chen, S.; Xia, Z.; Ying, W.; Wu, Y.; Sun, L. Conjugated Indole-Imidazole Derivatives Displaying Cytotoxicity against Multidrug Resistant Cancer Cell Lines. Bioorg. Med. Chem. Lett. 2006, 16, 5164–5168. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Tangadanchu, V.K.R.; Battini, N.; Bheemanaboina, R.R.Y.; Zang, Z.-L.; Zhang, S.-L.; Zhou, C.-H. Indole-Nitroimidazole Conjugates as Efficient Manipulators to Decrease the Genes Expression of Methicillin-Resistant Staphylococcus Aureus. Eur. J. Med. Chem. 2019, 179, 723–735. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Uzair, M.; Ullah, S.; Schnakenburg, G.; Müller, C.E. Decarboxylative Coupling Reaction of 2-(1H-Indol-3-Yl)Acetic Acids with Indole, Azaindole, Benzimidazole and Indazole Derivatives. Adv. Synth. Catal. 2019, 361, 4286–4293. [Google Scholar] [CrossRef] [Green Version]
- Decods, G.; Wakselman, M. Condensations thermiques de la gramine avec les polyphénols, l’imidazole et ses derives. Comptes Rendus Hebd. Séances Académie Sci. 1968, 266, 1168–1170. [Google Scholar]
- Podsiedlik, M.; Markowicz-Piasecka, M.; Sikora, J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem. Biol. Interact. 2020, 332, 109305. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018, 26, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical Characteristics of Patients with Micrococcus luteus Bloodstream Infection in a Chinese Tertiary-Care Hospital. Pol. J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Necel, A.; Bloch, S.; Topka-Bielecka, G.; Janiszewska, A.; Łukasiak, A.; Nejman-Faleńczyk, B.; Węgrzyn, G. Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics 2022, 25, 712. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Wydro, U.; Jabłońska-Trypuć, A.; Butarewicz, A.; Łoboda, T. Pseudomonas fluoresces occurrence in soil after fertilization with sewage sludge. Ekon. I Sr. —Econ. Environ. 2018, 65, 195–204. [Google Scholar]
- Kozicki, M.; Wiejak, A.; Piasecki, M.; Abram, A. Identification of MVOCs Produced by Coniophora puteana and Poria placenta Growing on WPC Boards by Using Subtraction Mass Spectra. Int. J. Environ. Res. Public Health 2019, 16, 2499. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Roleira, F.M.F.; Siquet, C.; Orrù, E.; Garrido, E.M.; Garrido, J.; Milhazes, N.; Podda, G.; Paiva-Martins, F.; Reis, S.; Carvalho, R.A.; et al. Lipophilic phenolic antioxidants: Correlation between antioxidant profile, partition coefficients and redox properties. Bioorg. Med. Chem. 2010, 18, 5816–5825. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V.A. BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem. Med. Chem. 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 195727. [Google Scholar] [CrossRef] [Green Version]
- CrysAlisPro. Agilent Technologies, Version 1.171.37.33; Agilent Technologies, Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Mrówczyńska, L.; Hagerstrand, H. Platelet-activating factor interaction with the human erythrocyte membrane. J. Biochem. Mol. Toxicol. 2009, 23, 345–348. [Google Scholar] [CrossRef]
- Ważny, J.; Thornton, J.D. Comparative Laboratory Testing of Strains of the Dry Rot Fungus Serpula lacrymans (Schum. ex Fr.) S.F. Gray. II. The Action of Some Wood Preservatives in Agar Media. Holzforschung 1986, 40, 383–388. [Google Scholar] [CrossRef]
φ1 | φ2 | |
4a | 66.4 (3) | 10.4 (3) |
4b | −66.3 (3) | −15.1 (3) |
5 | −65.39 (17) | −34.86 (18) |
8 | −62.47 (19) | −31.3 (2) |
10 | 14.8 (4) | 76.1 (3) |
11 | −88.96 (16) | −80.65 (16) |
D–H···A | D–H (Å) | H···A (Å) | D···A (Å) | D–H···A (°) |
---|---|---|---|---|
4 | ||||
N1–H1···N3i | 0.86 | 2.07 | 2.905 (2) | 163 |
N21–H21···N23ii | 0.86 | 2.10 | 2.915 (2) | 157 |
5 | ||||
N1–H1···N3iii | 0.86 | 2.13 | 2.953 (1) | 159 |
8 | ||||
N1–H1···N3iv | 0.86 | 2.10 | 2.957 (1) | 173 |
10 | ||||
N1–H1···Cg(C7-C8)v | 0.86 | 2.41 | 3.227 | 158 |
11 | ||||
N1–H1···S1vi | 0.86 | 2.78 | 3.485 (2) | 140 |
Compound | Zone of Growth Inhibition [mm] | |||
---|---|---|---|---|
Micrococus luteus | Bacillus subtilis | Escherichia coli | Pseudomonas fluorescens | |
1 | 0 | 0 | 0 | 13 |
2 | 21 | 3.3 | 4 | 14.7 |
3 | 3 | 1 | 1 | 16 |
4 | 8.8 | 4.3 | 3.8 | 3 |
5 | 3 | 1.8 | 3 | 0 |
6 | 6 | 2.4 | 3.5 | 2.3 |
7 | 5 | 8.7 | 4.3 | 0 |
8 | 8.6 | 3.7 | 5 | 0 |
9 | 4.3 | 2.7 | 3 | 0 |
10 | 2.6 | 0 | 1 | 0 |
11 | 4 | 0 | 2.7 | 0 |
Tested Fungi | Concentration | Compound | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[%] | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
Conipora puteana (Cp) | 0.1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
0.01 | 51 | 41 | 48 | 37 | 26 | 49 | 74 | 48 | 40 | 57 | 44 | |
0.001 | 40 | 0 | 0 | 15 | 14 | 37 | 46 | 0 | 0 | 40 | 43 | |
0.0001 | 41 | 0 | 0 | 13 | 13 | 40 | 0 | 0 | 0 | 0 | 0 | |
Gleophyllum trabeum (Gt) | 0.1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
0.01 | 17 | 40 | 44 | 30 | 17 | 27 | 91 | 53 | 48 | 59 | 47 | |
0.001 | 12 | 20 | 19 | 11 | 16 | 9 | 51 | 18 | 28 | 38 | 39 | |
0.0001 | 12 | 20 | 15 | 8 | 12 | 13 | 28 | 13 | 17 | 0 | 17 | |
Poria placenta (Pp) | 0.1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
0.01 | 40 | 47 | 48 | 32 | 21 | 41 | 78 | 45 | 37 | 71 | 64 | |
0.001 | 25 | 20 | 0 | 18 | 6 | 0 | 35 | 17 | 23 | 54 | 56 | |
0.0001 | 14 | 0 | 0 | 16 | 1 | 4 | 0 | 0 | 0 | 34 | 0 | |
Coriolus versicolor (Cv) | 0.1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
0.01 | 35 | 33 | 35 | 43 | 43 | 44 | 96 | 41 | 44 | 49 | 26 | |
0.001 | 22 | 19 | 1 | 13 | 12 | 19 | 23 | 13 | 6 | 20 | 2 | |
0.0001 | 18 | 0 | 0 | 6 | 13 | 19 | 0 | 7 | 0 | 0 | 0 |
Compound | MW [g/mol] | logP | HBD | HBA | RTB | TPSA [Å2] | GI Absorption | BBB Permeation |
---|---|---|---|---|---|---|---|---|
1 | 174.24 | 1.94 | 1 | 1 | 2 | 19.03 | high | yes |
2 | 197.24 | 1.82 | 1 | 2 | 2 | 33.61 | high | yes |
3 | 211.26 | 2.21 | 1 | 1 | 2 | 33.61 | high | yes |
4 | 225.29 | 2.49 | 1 | 1 | 3 | 33.61 | high | yes |
5 | 239.32 | 2.82 | 1 | 1 | 3 | 33.61 | high | yes |
6 | 239.32 | 2.84 | 1 | 1 | 3 | 33.61 | high | yes |
7 | 266.13 | 3.07 | 1 | 1 | 2 | 33.61 | high | yes |
8 | 273.33 | 3.26 | 1 | 1 | 3 | 33.61 | high | yes |
9 | 247.29 | 2.92 | 1 | 1 | 2 | 33.61 | high | yes |
10 | 296.41 | 4.13 | 1 | 0 | 2 | 81.05 | high | no |
11 | 280.34 | 3.57 | 1 | 1 | 2 | 65.95 | high | yes |
Compound | logS | Solubility [mg/mL] | Solubility Class * |
---|---|---|---|
1 | −2.94 | 1.18∙10−2–2.22 | Soluble/very soluble |
2 | −3.36 | 5.17∙10−3–7.20∙10−1 | Soluble/moderately soluble |
3 | −3.74 | 2.17∙10−3–2.68∙10−1 | Soluble/moderately soluble |
4 | −3.95 | 2.15∙10−3–1.30∙10−1 | Soluble/moderately soluble |
5 | −4.10 | 9.44∙10−4–1.10∙10−1 | Soluble/moderately soluble |
6 | −4.59 | 9.42∙10−4–2.34∙10−2 | Moderately soluble |
7 | −4.29 | 3.06∙10−4–1.70∙10−1 | Soluble/moderately soluble |
8 | −4.46 | 2.62∙10−4–7.20∙10−2 | Soluble/moderately soluble |
9 | −5.44 | 2.62∙10−4–4.89∙10−3 | Moderately/poorly soluble |
10 | −4.89 | 2.78∙10−4–1.27∙10−2 | Moderately/poorly soluble |
11 | −2.94 | 1.18∙10−2–2.22 | Soluble/very soluble |
4 | 5 | 8 | 10 | 11 | |
---|---|---|---|---|---|
Chemical formula | C14H15N3 | C15H17N3 | C18H15N3 | C16H12N2S2 | C16H12N2OS |
Mr | 225.29 | 239.31 | 273.33 | 296.40 | 280.34 |
Crystal system, space group | Monoclinic, P21/c | Orthorhombic, Pbca | Monoclinic, P21/n | Orthorhombic, P212121 | Monoclinic, P21/c |
a, b, c (Å) | 9.5627(2), 17.1298(3), 15.3143(4) | 10.4215(1), 13.5948(2), 18.8911(2) | 14.0170(1), 7.0099(1), 15.0277(1) | 5.4548(2), 13.9861(3), 18.2075(4) | 13.9368(1), 7.2337(1), 13.7132(1) |
α, β, γ (°) | 90, 105.097(2), 90 | 90, 90, 90 | 90, 100.994(1), 90 | 90, 90, 90 | 90, 100.242(1), 90 |
V (Å3) | 2422.01(9) | 2676.46(5) | 1449.49(3) | 1389.08(7) | 1360.46(2) |
Z | 8 | 8 | 4 | 4 | 4 |
Dx (Mg m−3) | 1.236 | 1.188 | 1.253 | 1.417 | 1.369 |
Radiation type | Cu Kα | Cu Kα | Cu Kα | Mo Kα | Cu Kα |
μ (mm−1) | 0.59 | 0.56 | 0.59 | 0.37 | 2.08 |
Crystal size (mm) | 0.60 × 0.08 × 0.07 | 0.60 × 0.25 × 0.15 | 0.30 × 0.20 × 0.05 | 0.60 × 0.10 × 0.08 | 0.60 × 0.20 × 0.08 |
Data collection | |||||
Tmin, Tmax | 0.727, 1.000 | 0.553, 1.000 | 0.792, 1.000 | 0.926, 1.000 | 0.424, 1.000 |
No. of measured, independent and observed [I > 2 s(I)] reflections | 39,931, 5059, 4028 | 25,903, 2798, 2439 | 24,636, 3027, 2682 | 36,290, 3350, 2871 | 33,085, 2857, 2628 |
Rint | 0.054 | 0.033 | 0.026 | 0.039 | 0.044 |
(sin θ/λ)max (Å−1) | 0.632 | 0.631 | 0.630 | 0.671 | 0.630 |
Refinement | |||||
R[F2 > 2 s(F2)], wR(F2), S | 0.071, 0.239, 1.08 | 0.042, 0.128, 1.06 | 0.038, 0.108, 1.06 | 0.044, 0.083, 1.15 | 0.042, 0.131, 1.10 |
No. of reflections | 5059 | 2798 | 3027 | 3350 | 2857 |
No. of parameters | 318 | 165 | 191 | 181 | 182 |
No. of restraints | 26 | 0 | 0 | 0 | 12 |
Δρmax, Δρmin (e Å−3) | 0.51, −0.51 | 0.11, −0.18 | 0.13, −0.16 | 0.19, −0.18 | 0.20, −0.32 |
Absolute structure parameter | – | – | – | 0.00 (2) | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiewicz, B.; Babijczuk, K.; Warżajtis, B.; Rychlewska, U.; Starzyk, J.; Cofta, G.; Mrówczyńska, L. Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities. Molecules 2023, 28, 708. https://doi.org/10.3390/molecules28020708
Jasiewicz B, Babijczuk K, Warżajtis B, Rychlewska U, Starzyk J, Cofta G, Mrówczyńska L. Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities. Molecules. 2023; 28(2):708. https://doi.org/10.3390/molecules28020708
Chicago/Turabian StyleJasiewicz, Beata, Karolina Babijczuk, Beata Warżajtis, Urszula Rychlewska, Justyna Starzyk, Grzegorz Cofta, and Lucyna Mrówczyńska. 2023. "Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities" Molecules 28, no. 2: 708. https://doi.org/10.3390/molecules28020708
APA StyleJasiewicz, B., Babijczuk, K., Warżajtis, B., Rychlewska, U., Starzyk, J., Cofta, G., & Mrówczyńska, L. (2023). Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities. Molecules, 28(2), 708. https://doi.org/10.3390/molecules28020708