Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Analysis
2.2. Analysis of Antioxidant Capacity
2.3. Analysis of Wine Color
2.4. Analysis of Volatile Aroma Compounds
2.5. Analysis of Electronic Tongue and Electronic Nose
3. Materials and Methods
3.1. Winemaking
- CK: control group with no treatment; S: the addition of 70 mg/L SO2;
- D1: the addition of 150 mg/L DMY; D2: the addition of 200 mg/L DMY;
- R1: the addition of 150 mg/L resveratrol; R2: the addition of 200 mg/L resveratrol;
- T1: the addition of 150 mg/L tea polyphenols;
- T2: the addition of 200 mg/L tea polyphenols.
3.2. Standards, Gases, and Chemical Reagents
3.3. Analytical Methods
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative Methods to SO2 for Microbiological Stabilization of Wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walzem, R.L. Wine and health: State of proofs and research needs. Inflammopharmacology 2008, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Meng, Z. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells. Food Chem. Toxicol. 2009, 47, 734–744. [Google Scholar] [CrossRef]
- Reno, A.L.; Brooks, E.G.; Ameredes, B.T. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics. Environ. Health Insights 2015, 9 (Suppl. 1), 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.C.; Nunes, C.; Cappelle, J.; Goncalves, F.J.; Rodrigues, A.; Saraiva, J.A.; Coimbra, M.A. Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chem. 2013, 141, 2558–2566. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, I.N.; du Toit, M.; Krugel, M. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 2011, 28, 510–517. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Marsellés-Fontanet, A.R.; Arias-Gil, M.; Ancín-Azpilicueta, C.; Martín-Belloso, O. Influence of SO2 on the evolution of volatile compounds through alcoholic fermentation of must stabilized by pulsed electric fields. Eur. Food Res. Technol. 2007, 227, 401–408. [Google Scholar] [CrossRef]
- Puertolas, E.; Lopez, N.; Condon, S.; Raso, J.; Alvarez, I. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef]
- Xu, W.; Jong, L.; Zhang, S.H. Study on Synergistic Antioxidant Activity of Carotenoids and V_C. Food Sci. 1999, 2, 22–26. [Google Scholar]
- Yang, F.L.; Zhan, X.Y.; Yang, D.Q.; Liu, D.; Song, X.Y. Study on Browning Prevention and Stability of Instant Chestnut Powder. Food Ferment. Ind. 2004, 4, 141–144. [Google Scholar] [CrossRef]
- Son, S.M.; Moon, K.D.; Lee, C.Y. Inhibitory effects of various antibrowning agents on apple slices. Food Chem. 2001, 73, 23–30. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2018, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, A.; Moreno-Arribas, M.V.; Martin-Alvarez, P.J.; Bartolome, B. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int. J. Food Microbiol. 2011, 145, 426–431. [Google Scholar] [CrossRef]
- Raul Francisco, P.; Magdalena Raquel, G.; Marcelo, M.; Sebastián, P.; Humberto, M.; Carla, A.; Claudia Inés, Q.; Maria-Isabel, C.; Roberto Héctor, I. Enrichment of Resveratrol in Wine through a New Vinification Procedure. J. Life Sci. 2015, 9, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Esparza, I.; Martínez-Inda, B.; Cimminelli, M.J.; Jimeno-Mendoza, M.C.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants. Biomolecules 2020, 10, 1369. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.; Qi, M.; Li, S.; Shi, Y.; Pan, Q.; Cheng, C.; Yang, W.; Duan, C. The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chem. 2022, 377, 131961. [Google Scholar] [CrossRef]
- Anaya, J.A.; Álvarez, I.; García, M.J.; Lizama, V. Application of green tea extract and catechin on the polyphenolic and volatile composition of Monastrell red wines. Int. J. Food Sci. Technol. 2022, 57, 6097–6111. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liang, N.N.; Wang, J.; Pan, Q.H.; Duan, C.Q. Effect of the prefermentative addition of five enological tannins on anthocyanins and color in red wines. J. Food Sci. 2013, 78, C25–C30. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Wei, Z.; Yu, W.; Cui, Y. Effect of tannin addition on chromatic characteristics, sensory qualities and antioxidant activities of red wines. RSC Adv. 2020, 10, 7108–7117. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Chen, T.-M.; Lan, Q.; Zhang, Q.-Y.; Liu, B.; Dai, D.; Zhang, W.-D.; Hu, L.-P.; Zhu, R.-Z. Dihydromyricetin alleviates carbon tetrachloride-induced acute liver injury via JNK-dependent mechanism in mice. World J. Gastroenterol. WJG 2015, 21, 5473. [Google Scholar] [CrossRef] [PubMed]
- Dergacheva, D.I.; Klein, O.I.; Gessler, N.N.; Isakova, E.P.; Deryabina, Y.I.; Nikolaev, A.V. Influence of Natural Polyphenols on Isolated Yeast Dipodascus magnusii Mitochondria. Dokl. Biochem. Biophys. 2020, 490, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pang, W.; Ding, L.; Sun, J. An insight into the inhibitory activity of dihydromyricetin against Vibrio parahaemolyticus. Food Control 2016, 67, 25–30. [Google Scholar] [CrossRef]
- Wu, Y.; Bai, J.; Zhong, K.; Huang, Y.; Gao, H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R, 3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 2017, 218, 463–470. [Google Scholar] [CrossRef]
- Silva, J.; Yu, X.; Moradian, R.; Folk, C.; Spatz, M.H.; Kim, P.; Bhatti, A.A.; Davies, D.L.; Liang, J. Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcohol. Clin. Exp. Res. 2020, 44, 1046–1060. [Google Scholar] [CrossRef] [Green Version]
- Diao, T.W.; Chen, X.T.; Leng, Y.J.; Wei, X.; Lai, X.Q.; Ma, Y. Effects of plant-derived polyphenols on antioxidant capacity and sensory quality of pear wine. Food Ferment. Ind. 2022, 48, 93–101. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, W.; Meng, Y.; Zhang, Y.; Jin, G.; Fang, Z. Wine phenolic profile altered by yeast: Mechanisms and influences. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3579–3619. [Google Scholar] [CrossRef]
- Xiang, L.; Sun, K.; Lu, J.; Weng, Y.; Taoka, A.; Sakagami, Y.; Qi, J. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci. Biotechnol. Biochem. 2011, 75, 854–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaguso, I.; Nardini, M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem. 2015, 179, 336–342. [Google Scholar] [CrossRef]
- Castellari, M.; Spinabelli, U.; Riponi, C.; Amati, A. Influence of some technological practices on the quantity of resveratrol in wine. Z. Für Lebensm. Und-Forsch. A 1998, 206, 151–155. [Google Scholar] [CrossRef]
- Yang, H. Mechanism and Regulation of Oxidative Browning of Dangshan Pear Wine. Ph.D. Thesis, Jiangnan University, Wuxi, China, 2021. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; King, E.S.; Ebeler, S.E.; Heymann, H. Characterizing the chemical and sensory profiles of United States Cabernet Sauvignon wines and blends. Am. J. Enol. Vitic. 2013, 64, 169–179. [Google Scholar] [CrossRef]
- Li, C.; Huo, X.R.; Zheng, X.Z.; Liu, C.H.; Gao, X.C.; Ding, N.Y.; Jin, C.J.; Wang, H.Y. Effects of microwave aging conditions on color and pH of dry red wine. J. Northeast Agric. Univ. 2010, 41, 124–129. [Google Scholar] [CrossRef]
- Noble, A.C. Bitterness in wine. Physiol. Behav. 1994, 56, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.K.; Zhang, W.; Fan, S.Y.; Tao, Y.S. Study on color and anthocyanin characteristics of dry red wine with exogenous polyphenols. J. Agric. Mach. 2023, 54, 339–406. [Google Scholar] [CrossRef]
- Carrascon, V.; Vallverdu-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.; Carrascon, V.; Bueno, M.; Ugliano, M.; Fernandez-Zurbano, P. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO2. J. Agric. Food Chem. 2015, 63, 10928–10937. [Google Scholar] [CrossRef]
- Bradshaw, M.P.; Barril, C.; Clark, A.C.; Prenzler, P.D.; Scollary, G.R. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Crit. Rev. Food Sci. Nutr. 2011, 51, 479–498. [Google Scholar] [CrossRef]
- Ugliano, M.; Kwiatkowski, M.; Vidal, S.; Capone, D.; Siebert, T.; Dieval, J.B.; Aagaard, O.; Waters, E.J. Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. J. Agric. Food Chem. 2011, 59, 2564–2572. [Google Scholar] [CrossRef]
- Obradovic, D.; Schulz, M.; Oatey, M. Addition of natural grape tannins to enhance the quality of red wine. Aust. N. Z. Grapegrow. Winemak. 2005, 493, 52. [Google Scholar] [CrossRef]
- Rasines-Perea, Z.; Jacquet, R.; Jourdes, M.; Quideau, S.; Teissedre, P.L. Ellagitannins and Flavano-Ellagitannins: Red Wines Tendency in Different Areas, Barrel Origin and Ageing Time in Barrel and Bottle. Biomolecules 2019, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Khakimov, B.; Bakhytkyzy, I.; Fauhl-Hassek, C.; Engelsen, S.B. Non-volatile molecular composition and discrimination of single grape white of chardonnay, riesling, sauvignon blanc and silvaner using untargeted GC-MS analysis. Food Chem. 2022, 369, 130878. [Google Scholar] [CrossRef]
- Cheng, G.; Liu, Y.; Yue, T.-X.; Zhang, Z.-W. Comparison between aroma compounds in wines from four Vitis vinifera grape varieties grown in different shoot positions. Food Sci. Technol. (Camp.) 2015, 35, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Sun, Z.-Y. Phenolic compounds, total antioxidant capacity and volatile components of Cabernet Sauvignon red wines from five different wine-producing regions in China. Food Sci. Technol. 2019, 39, 735–746. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.; Pardo, F.; Zalacain, A.; Alonso, G.L.; Rosario Salinas, M. Complementary effect of Cabernet Sauvignon on Monastrell wines. J. Food Compos. Anal. 2008, 21, 54–61. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Saenz-Navajas, M.P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Linderholm, A.L.; Findleton, C.L.; Kumar, G.; Hong, Y.; Bisson, L.F. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 1418–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiegers, J.H.; Pretorius, I.S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 2007, 74, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Saerens, S.; Delvaux, F.; Verstrepen, K.; Van Dijck, P.; Thevelein, J.; Delvaux, F. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordente, A.G.; Swiegers, J.H.; Hegardt, F.G.; Pretorius, I.S. Modulating aroma compounds during wine fermentation by manipulating carnitine acetyltransferases in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2007, 267, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casassa, L.F.; Huff, R.; Steele, N.B. Chemical consequences of extended maceration and post-fermentation additions of grape pomace in Pinot noir and Zinfandel wines from the Central Coast of California (USA). Food Chem. 2019, 300, 125147. [Google Scholar] [CrossRef] [PubMed]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41 (Suppl. 1), S95–S128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.-T.; Zhang, B.-Q.; Duan, C.-Q.; Yan, G.-L. Pre-fermentative supplementation of unsaturated fatty acids alters the effect of overexpressing ATF1 and EEB1 on esters biosynthesis in red wine. LWT 2020, 120, 108925. [Google Scholar] [CrossRef]
- Gribkova, I.N.; Kharlamova, L.N.; Lazareva, I.V.; Zakharov, M.A.; Zakharova, V.A.; Kozlov, V.I. The Influence of Hop Phenolic Compounds on Dry Hopping Beer Quality. Molecules 2022, 27, 740. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, K.J.; Xiao, X.J.; Xie, L.M.; Wei, Z.Y.; Xiong, R.; Huang, H.L. Effects of dihydromyricetin on antioxidant activity and flavor substances of pear wine. Food Ind. Sci. Technol. 2023, 44, 107–115. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.F. Verification of the Adaptability of the Determination Method of Copper in GB/T15038-2006 General Analytical Method for Wine and Fruit Wine. Brewing 2020, 47, 104–107. [Google Scholar]
- Tian, J.H.; Xu, S.Y.; Zhang, W. Effects of blanching treatment on nutritional components and polyphenol oxidase activity of blackberry juice. Food Ferment. Ind. 2006, 4, 133–137. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.B.; He, Y.J.; Su, J.; Liu, J.J.; Deng, J.; Guo, Y.F. Comparative Study on the Content of Total Flavonoids in Lancy Qi, Guaiguchi and Guaiguchi Health Wine. Guangzhou Chem. Ind. 2020, 48, 143–145+167. [Google Scholar] [CrossRef]
- You, L.; Zhao, Y.X.; Siu, X.X.; Liu, S.W.; Li, F.Y.; Chang, X.D. Effect of Pretreatment on the Quality and Antioxidant Activity of Prunus humilis. Food Res. Dev. 2019, 40, 13–19. [Google Scholar] [CrossRef]
- Del Pino-García, R.; González-SanJosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chem. 2017, 221, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Strati, I.F.; Tataridis, P.; Shehadeh, A.; Chatzilazarou, A.; Bartzis, V.; Batrinou, A.; Sinanoglou, V.J. Impact of tannin addition on the antioxidant activity and sensory character of Malagousia white wine. Curr. Res. Food Sci. 2021, 4, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Canuti, V.; Conversano, M.; Calzi, M.L.; Heymann, H.; Matthews, M.A.; Ebeler, S.E. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J. Chromatogr. A 2009, 1216, 3012–3022. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, Z.; Weng, P. Comparison of bayberry fermented wine aroma from different cultivars by GC-MS combined with electronic nose analysis. Food Sci. Nutr. 2020, 8, 830–840. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Xie, J.; Ai, L.; Chen, C.; Tian, H. Evaluation of taste characteristics of chinese rice wine by quantitative description analysis, dynamic description sensory and electronic tongue. J. Food Meas. Charact. 2022, 17, 824–835. [Google Scholar] [CrossRef]
Group | pH | Soluble Solids | Total Acidity (g/L) 1 | Volatile Acidity (g/L) 2 | Alcohol Content (%, v/v) | Sugar Content (g/L) |
---|---|---|---|---|---|---|
CK | 3.49 ± 0.031 a | 7.53 ± 0.058 b | 9.19 ± 0.035 b | 0.56 ± 0.010 d | 10.43 ± 0.042 ab | 1.04 ± 0.010 a |
S | 3.13 ± 0.015 b | 7.63 ± 0.15 a | 9.66 ± 0.034 a | 0.61 ± 0.026 bc | 10.41 ± 0.010 b | 1.03 ± 0.031 a |
D1 | 3.18 ± 0.010 b | 7.83 ± 0.21 a | 9.96 ± 0.514 a | 0.63 ± 0.012 bc | 10.45 ± 0.030 ab | 1.05 ± 0.030 a |
D2 | 3.17 ± 0.021 b | 7.87 ± 0.25 a | 9.72 ± 0.69 a | 0.64 ± 0.040 ab | 10.42 ± 0.015 ab | 1.03 ± 0.010 a |
R1 | 3.16 ± 0.068 b | 7.90 ± 0.20 a | 9.73 ± 0.22 a | 0.68 ± 0.040 a | 10.41 ± 0.011 ab | 1.04 ± 0.015 a |
R2 | 3.12 ± 0.025 b | 7.90 ± 0.26 a | 9.83 ± 0.32 a | 0.61 ± 0.012 bc | 10.45 ± 0.030 ab | 1.05 ± 0.0058 a |
T1 | 3.13 ± 0.026 b | 7.91 ± 0.12 a | 9.63 ± 0.16 a | 0.58 ± 0.020 cd | 10.46 ± 0.017 a | 1.09 ± 0.020 a |
T2 | 3.16 ± 0.026 b | 7.92 ± 0.11 a | 9.47 ± 0.35 a | 0.62 ± 0.010 bc | 10.45 ± 0.025 ab | 1.04 ± 0.046 a |
Group | L* | a* | b* | de* 1 |
---|---|---|---|---|
S | 43.12 ± 2.56 a | 60.54 ± 1.28 c | 11.33 ± 1.28 d | -- |
CK | 9.86 ± 1.28 f | 69.12 ± 2.56 a | 26.15 ± 1.11 a | 37.41 |
D1 | 33.91 ± 2.11 b | 65.32 ± 1.63 b | 15.11 ± 1.01 c | 11.04 |
D2 | 40.15 ± 1.21 a | 68.24 ± 1.45 ab | 18.23 ± 0.42 b | 10.76 |
R1 | 20.56 ± 2.56 e | 40.12 ± 0.21 e | 16.73 ± 1.42 bc | 30.9 |
R2 | 22.88 ± 2.45 e | 51.12 ± 2.12 d | 15.12 ± 1.65 c | 22.64 |
T1 | 25.12 ± 3.15 d | 53.45 ± 3.10 d | 12.15 ± 1.23 d | 19.36 |
T2 | 27.15 ± 1.21 d | 58.45 ± 2.10 c | 12.03 ± 1.25 d | 16.12 |
No. | CAS | Compound | RI 1 | Odor Description 2 | Basis of Identification 3 | FD Factor 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
CK | S | D2 | R2 | T2 | ||||||
1 | 78-83-1 | Isobutanol | 1095 | Solvent, Alcohol | RI, MS, O | 128 | 128 | 128 | 128 | 128 |
2 | 1960/12/8 | Phenethyl alcohol | 1913 | Honey, Lilac, Rose | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
3 | 123-51-3 | Isoamylol | 1204 | Cocoa, Floral, Malt | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
4 | 67-63-0 | Isopropanol | 920 | Floral | RI, MS, O | 32 | 32 | 2 | 16 | 8 |
5 | 24347-58-8 | (R,R)-2,3-Butanediol | 1544 | -- | RI, MS | -- | -- | -- | -- | -- |
6 | 71-36-3 | 1-Butanol | 1140 | Fruity | RI, MS, O | 64 | 16 | 32 | 128 | 128 |
7 | 111-27-3 | Hexyl alcohol | 1352 | Banana, Flower, | RI, MS, O | 64 | 64 | 64 | 128 | 64 |
8 | 505-10-2 | 3-Methylthiopropanol | 1715 | Smelly onion | RI, MS, O | 128 | 128 | 128 | 128 | 64 |
9 | 71-23-8 | Propyl alcohol | 1061 | Balsamic, Candy | RI, MS, O | 128 | 128 | 128 | 128 | 128 |
10 | 123-25-1 | Diethyl succinate | 1673 | Cotton, Fabric | RI, MS, O | 4 | 4 | 4 | 4 | 4 |
11 | 627-90-7 | Ethyl undecanoate | 173 | -- | RI, MS | -- | -- | -- | -- | -- |
12 | 105-54-4 | Ethyl butyrate | 1056 | Apple, Butter | RI, MS, O | 512 | 512 | 512 | 512 | 512 |
13 | 106-33-2 | Ethyl laurate | 1842 | Floral, Fruit, Leaf | RI, MS, O | 1 | -- | 2 | -- | 1 |
14 | 628-97-7 | Ethyl palmitate | 2262 | Wax | RI, MS, O | 16 | 16 | 16 | 16 | 16 |
15 | 110-38-3 | Ethyl caprate | 1392 | Apricot, Brandy | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
16 | 123-29-5 | Ethyl nonanoate | 1545 | Floral | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
17 | 123-92-2 | Isoamyl acetate | 1065 | Glue, Pear | RI, MS, O | 256 | 256 | 256 | 256 | 256 |
18 | 2306-91-4 | Isoamyl decanoate | 1863 | -- | RI, MS | -- | -- | -- | -- | -- |
19 | 141-78-6 | Ethyl acetate | 892 | Aromatic, Grape | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
20 | 123-66-0 | Ethyl caproate | 1241 | Fruity | RI, MS, O | 512 | 512 | 512 | 512> | 512 |
21 | 2035-99-6 | Octanoic acid | 1670 | -- | RI, MS | -- | -- | -- | -- | -- |
22 | 2198-61-0 | Isopentyl hexanoate | 1464 | Anise, Fruit, Spice | RI, MS, O | 8 | 8 | 8 | 8 | 8 |
23 | 106-32-1 | Ethyl caprylate | 1425 | Fruity | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
24 | 110-45-2 | Isopentyl formate | 1070 | Apple | RI, MS, O | 512 | 512 | 256 | 256 | 256 |
25 | 103-45-7 | Phenethyl acetate | 1275 | Rose, Honey | RI, MS, O | 512> | 512> | 512> | 512> | 512> |
26 | 122-70-3 | Propanoic acid, 2-phenylethyl ester | 1351 | -- | RI, MS | -- | -- | -- | -- | -- |
27 | 112-05-0 | Nonanoic acid | 2170 | Cheese, Sour | RI, MS, O | 4 | -- | 2 | -- | -- |
28 | 64-19-7 | Acetic acid glacial | 1434 | Vinegar | RI, MS, O | 64 | 128 | 64 | 64 | 64 |
29 | 124-07-2 | Octanoic acid | 2070 | Cheese, Sour | RI, MS, O | 8 | 16 | 4 | 4 | -- |
30 | 105-57-7 | Acetal | 894 | Creamy, Fruit | RI, MS, O | 1 | 1 | 2 | 1 | -- |
31 | 75-07-0 | Acetaldehyde | 744 | Floral, Apple | RI, MS, O | 32 | 32 | 32 | 32 | 32 |
32 | 100-52-7 | Benzaldehyde | 1508 | Floral | RI, MS, O | 4 | 2 | 4 | 2 | -- |
33 | 111-13-7 | 2-Octanone | 121 | -- | RI, MS | -- | -- | -- | -- | -- |
Compound | Quantitative Ion (m/z) | Content (µg/L) | Slope | Intercept | R2 | ||||
---|---|---|---|---|---|---|---|---|---|
CK | S | D2 | R2 | T2 | |||||
Isobutanol | 43 | 225.68 ± 6.05d | 244.80 ± 2.44c | 270.23 ± 1.67b | 292.47 ± 3.065a | 228.056 ± 13.025d | 18.429 | −0.0267 | 0.9914 |
Phenethyl alcohol | 91 | 2959.47 ± 38.013b | 2400.81 ± 10.80c | 2898.84 ± 51.74b | 3136.40 ± 109.25a | 2510.82 ± 101.74c | 123.060 | 12.375 | 0.9844 |
Isoamylol | 55 | 3854.48 ± 187.74b | 4100.02 ± 101.01b | 3943.321 ± 40.39b | 4561.73 ± 366.52a | 3476.42 ± 67.77c | 28.998 | −0.222 | 0.9915 |
1-Butanol | 56 | 1.30 ± 0.26d | 1.64 ± 0.31cd | 2.27 ± 0.16c | 5.49 ± 0.31b | 7.053 ± 0.63a | 18.146 | 0.288 | 0.9927 |
Hexyl alcohol | 56 | 35.54 ± 0.96b | 32.44 ± 0.98c | 28.12 ± 0.48d | 40.17 ± 1.54a | 24.29 ± 1.77e | 25.092 | 2.105 | 0.9914 |
3-Methylthiopropanol | 106 | 34.56 ± 2.14b | 41.45 ± 1.0020a | 31.85 ± 1.22b | 34.44 ± 0.97b | 24.87 ± 3.58c | 43.616 | 1.887 | 0.9971 |
Propyl alcohol | 31 | 32.50 ± 2.17c | 42.54 ± 1.13b | 48.021 ± 2.23a | 41.87 ± 1.010b | 34.93 ± 1.84c | 21.463 | −1.976 | 0.9996 |
Ethyl butyrate | 71 | 54.80 ± 2.47ab | 55.78 ± 2.08ab | 52.77 ± 2.52b | 58.098 ± 0.61a | 55.33 ± 0.48ab | 69.456 | 13.700 | 0.9817 |
Ethyl laurate | 88 | 64.75 ± 3.23bc | 63.81 ± 1.48bc | 60.56 ± 1.72c | 80.13 ± 2.51b | 135.039 ± 49.58a | 32.348 | 0.974 | 0.9987 |
Ethyl caprate | 88 | 374.02 ± 21.03c | 278.97 ± 10.46d | 478.21 ± 16.46a | 412.66 ± 13.45b | 451.53 ± 33.72a | 526.260 | 23.624 | 0.9938 |
Ethyl nonanoate | 88 | 106.92 ± 2.54a | 106.12 ± 2.08a | 98.45 ± 4.35b | 106.12 ± 4.04a | 112.063 ± 5.80a | 435.160 | 56.432 | 0.9985 |
Isoamyl acetate | 43 | 210.05 ± 4.41c | 184.12 ± 4.72c | 257.19 ± 40.84b | 312.49 ± 8.25a | 210.5577 ± 10.20c | 95.243 | 13.743 | 0.9915 |
Ethyl acetate | 43 | 268.02 ± 16.48bc | 253.11 ± 16.17c | 285.87 ± 4.38b | 314.50 ± 16.49a | 262.29 ± 7.70bc | 32.459 | 2.532 | 0.9913 |
Ethyl caproate | 88 | 142.67 ± 10.63c | 131.62 ± 3.61cd | 179.49 ± 18.58b | 207.13 ± 7.64a | 118.55 ± 1.73d | 108.560 | 7.926 | 0.9813 |
Ethyl caprylate | 88 | 381.67 ± 3.33c | 385.85 ± 5.048c | 449.99 ± 29.31b | 419.18 ± 5.99b | 508.22 ± 26.59a | 311.780 | 74.783 | 0.9915 |
Isopentyl formate | 55 | 3579.45 ± 68.72b | 3756.59 ± 139.60a | 3026.47 ± 44.87d | 3170.13 ± 60.51cd | 3237.10 ± 55.90c | 90.197 | 17.662 | 0.9934 |
Phenethyl acetate | 104 | 75.62 ± 0.77b | 78.45 ± 0.99b | 81.45 ± 1.10a | 83.25 ± 1.71a | 82.62 ± 2.64a | 246.740 | 41.509 | 0.9943 |
Acetic acid glacial | 43 | 35.47 ± 0.97c | 50.72 ± 0.37a | 32.85 ± 1.62c | 22.78 ± 2.51d | 44.87 ± 2.18b | 8.698 | −2.344 | 0.9935 |
Sensor Number | Sensor Name | Sensor Name |
---|---|---|
1 | S1 | Ammonia, amine |
2 | S2 | H2S, sulfur |
3 | S3 | Hydrogen |
4 | S4 | Organic solvent (alcohol) |
5 | S5 | Food cooking volatile gas |
6 | S6 | Methane, biogas |
7 | S7 | Flammable gas |
8 | S8 | VOS |
9 | S9 | Hydroxide, gasoline |
10 | S10 | Alkane, flammable gas |
11 | S11 | Aromatic compounds |
12 | S12 | Sulfide |
13 | S13 | Sterols, triterpenes |
14 | S14 | Lactone, pyrazine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Yu, K.; Chen, X.; Wu, H.; Xiao, X.; Xie, L.; Wei, Z.; Xiong, R.; Zhou, X. Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine. Molecules 2023, 28, 5255. https://doi.org/10.3390/molecules28135255
Ma Y, Yu K, Chen X, Wu H, Xiao X, Xie L, Wei Z, Xiong R, Zhou X. Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine. Molecules. 2023; 28(13):5255. https://doi.org/10.3390/molecules28135255
Chicago/Turabian StyleMa, Yi, Kangjie Yu, Xiaojiao Chen, Huixiang Wu, Xiongjun Xiao, Liming Xie, Ziyun Wei, Rong Xiong, and Xun Zhou. 2023. "Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine" Molecules 28, no. 13: 5255. https://doi.org/10.3390/molecules28135255
APA StyleMa, Y., Yu, K., Chen, X., Wu, H., Xiao, X., Xie, L., Wei, Z., Xiong, R., & Zhou, X. (2023). Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine. Molecules, 28(13), 5255. https://doi.org/10.3390/molecules28135255