Electrochemical Synthesis of New Isoxazoles and Triazoles Tethered with Thiouracil Base as Inhibitors of Histone Deacetylases in Human Breast Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Thiouracil Tethered Triazole/Isoxazole Analogues
2.2. Cytotoxicity of Thiouracil Tethered Triazole/Isoxazole Analogues on MCF-7 Cells
3. Materials and Methods
3.1. General Procedure for the Synthesis of Intermediates (4a–d)
3.2. General Procedure for the Synthesis of Thiouracil Tethered Triazoles (5a–l)
3.3. General Procedure for the Synthesis of Thiouracil Tethered Isoxazoles (6a–l)
3.4. General Procedure for the Synthesis of Compounds (7a–f)
3.5. General Procedure for the Synthesis of Compounds (8a–f)
3.6. 4-Chloro-2-(prop-2-yn-1-ylthio)pyrimidine (3)
3.7. 4-(4-(2,3-Dichlorophenyl) piperazin-1-yl)-2-(((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidine (5a)
3.8. 2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4-(4-(2,3-dichlorophenyl)piperazin-1-yl) pyrimidine (5b)
3.9. 4-(4-(((4-(4-(2,3-Dichlorophenyl) piperazin-1-yl) pyrimidin-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)phenol (5c)
3.10. Tert-butyl 4-(2-(((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl) piperazine-1-carboxylate (5d)
3.11. Tert-butyl 4-(2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl) piperazine-1-carboxylate (5e)
3.12. Tert-butyl 4-(2-(((1-(4-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl) piperazine-1-carboxylate (5f)
3.13. 4-(2-(((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)morpholine (5g)
3.14. 4-(2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidin-4-yl)morpholine (5h)
3.15. 4-(4-(((4-Morpholinopyrimidin-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl) phenol (5i)
3.16. 1-(2-(((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)piperidin-4-one (5j)
3.17. 1-(2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)piperidin-4-one (5k)
3.18. 1-(2-(((1-(4-Hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)piperidin-4-one (5l)
3.19. 5-(((4-(4-(2,3-Dichlorophenyl) piperazin-1-yl) pyrimidin-2-yl)thio)methyl)-3-(4-methoxyphenyl) isoxazole (6a)
3.20. 5-(((4-(4-(2,3-Dichlorophenyl) piperazin-1-yl) pyrimidin-2-yl)thio)methyl)-3-(3,4-dimethoxy phenyl)isoxazole (6b)
3.21. 5-(((4-(4-(2,3-Dichlorophenyl) piperazin-1-yl) pyrimidin-2-yl)thio)methyl)-3-(p-tolyl) isoxazole (6c)
3.22. Tert-butyl4-(2-(((3-(4-methoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl)piperazine-1-carboxylate (6d)
3.23. Tert-butyl 4-(2-(((3-(3,4-dimethoxyphenyl) isoxazol-5-yl)methyl)thio)pyrimidin-4-yl) pipera zine-1-carboxylate (6e)
3.24. Tert-butyl 4-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl)piperazine-1-carbox-ylate (6f)
3.25. 4-(2-(((3-(4-Methoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl)morpholine (6g)
3.26. 4-(2-(((3-(3,4-Dimethoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl)morpholine (6h)
3.27. 4-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl)morpholine (6i)
3.28. 1-(2-(((3-(4-methoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one (6j)
3.29. 1-(2-(((3-(3,4-dimethoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one (6k)
3.30. 1-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one (6l)
3.31. 2-(((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl) methyl)thio)-4-(piperazin-1-yl) pyrimidine (7a)
3.32. 2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4-(piperazin-1-yl)pyrimidine (7b)
3.33. 4-(4-(((4-(Piperazin-1-yl)pyrimidin-2-yl)thio)methyl)-1H-1,2,3-triazo1-1-yl)phenol (7c)
3.34. 3-(4-Methoxyphenyl)-5-(((4-(piperazin-1-yl)pyrimidin-2-yl)thio)methyl)isoxazole (7d)
3.35. 3-(3,4-Dimethoxyphenyl)-5-(((4-(piperazin-1-yl)pyrimidin-2-yl)thio)methyl)isoxazole (7e)
3.36. 5-(((4-(Piperazin-1-yl)pyrimidin-2-yl)thio)methyl)-3-(p-tolyl)isoxazole (7f)
3.37. 1-(2-(((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)piperidin-4-ol (8a)
3.38. 1-(2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyrimidin-4-yl)piperidin-4-ol (8b)
3.39. 1-(2-(((1-(4-Hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-ol (8c)
3.40. 1-(2-(((3-(4-Methoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-ol (8d)
3.41. 1-(2-(((3-(3,4-Dimethoxyphenyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-ol (8e)
3.42. 1-(2-(((3-(p-tolyl)isoxazol-5-yl)methyl)thio)pyrimidin-4-yl) piperidin-4-ol (8f)
3.43. Cell Viability Assay
3.44. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichner, L.J.; Curtis, S.D.; Brun, S.N.; McGuire, C.K.; Gushterova, I.; Baumgart, J.T.; Trefts, E.; Ross, D.S.; Rymoff, T.J.; Shaw, R.J. HDAC3 Is Critical in Tumor Development and Therapeutic Resistance in Kras -Mutant Non–Small Cell Lung Cancer. Sci. Adv. 2023, 9, eadd3243. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhong, F.; Li, J.; Yue, H.; Li, W.; Lu, X. The Epigenetic Factor CHD4 Contributes to Metastasis by Regulating the EZH2/β-Catenin Axis and Acts as a Therapeutic Target in Ovarian Cancer. J. Transl. Med. 2023, 21, 38. [Google Scholar] [CrossRef] [PubMed]
- Wattanathamsan, O.; Chantaravisoot, N.; Wongkongkathep, P.; Kungsukool, S.; Chetprayoon, P.; Chanvorachote, P.; Vinayanuwattikun, C.; Pongrakhananon, V. Inhibition of Histone Deacetylase 6 Destabilizes ERK Phosphorylation and Suppresses Cancer Proliferation via Modulation of the Tubulin Acetylation-GRP78 Interaction. J. Biomed. Sci. 2023, 30, 4. [Google Scholar] [CrossRef] [PubMed]
- Renoir, J.-M.; Marsaud, V.; Lazennec, G. Estrogen Receptor Signaling as a Target for Novel Breast Cancer Therapeutics. Biochem. Pharmacol. 2013, 85, 449–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556. [Google Scholar] [CrossRef]
- Seto, E.; Yoshida, M. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Kim, J.-S. A Short Guide to Histone Deacetylases Including Recent Progress on Class II Enzymes. Exp. Mol. Med. 2020, 52, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, S.; Geissler, B.; Satchell, K.J. Identification of a His-Asp-Cys Catalytic Triad Essential for Function of the Rho Inactivation Domain (RID) of Vibrio cholerae MARTX Toxin. J. Biol. Chem. 2013, 288, 1397–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daśko, M.; de Pascual-Teresa, B.; Ortín, I.; Ramos, A. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022, 27, 715. [Google Scholar] [CrossRef]
- Kerek, E.; Yoon, K.E.; Luo, S.; Chen, J.Y.; Valencia, R.; Julien, O.; Waskiewicz, A.J.; Hubbard, B.P. A Conserved Acetylation Switch Enables Pharmacological Control of Tubby-like Protein Stability. J. Biol. Chem. 2021, 296, 100073. [Google Scholar] [CrossRef]
- Tang, J.; Yan, H.; Zhuang, S. Histone Deacetylases as Targets for Treatment of Multiple Diseases. Clin. Sci. 2013, 124, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Hadden, M.; Advani, A. Histone Deacetylase Inhibitors and Diabetic Kidney Disease. Int. J. Mol. Sci. 2018, 19, 2630. [Google Scholar] [CrossRef]
- Negmeldin, A.T.; Padige, G.; Bieliauskas, A.V.; Pflum, M.K.H. Structural Requirements of HDAC Inhibitors: SAHA Analogues Modified at the C2 Position Display HDAC6/8 Selectivity. ACS Med. Chem. Lett. 2017, 8, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.S.; Moore, D.W.; Broker, T.R.; Chow, L.T. Vorinostat, a Pan-HDAC Inhibitor, Abrogates Productive HPV-18 DNA Amplification. Proc. Natl. Acad. Sci. USA 2018, 115, E11138–E11147. [Google Scholar] [CrossRef] [Green Version]
- Chifotides, H.T.; Bose, P.; Verstovsek, S. Givinostat: An Emerging Treatment for Polycythemia Vera. Expert Opin. Investig. Drugs 2020, 29, 525–536. [Google Scholar] [CrossRef]
- Sharma, V.; Koul, N.; Joseph, C.; Dixit, D.; Ghosh, S.; Sen, E. HDAC Inhibitor, Scriptaid, Induces Glioma Cell Apoptosis through JNK Activation and Inhibits Telomerase Activity. J. Cell. Mol. Med. 2010, 14, 2151–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, J.; King, P.; Marien, A.; Floren, W.; Beliën, A.; Janssen, L.; Noëlle, I.; Roux, B.; Decrane, L.; Gilissen, R.; et al. JNJ-26481585, a Novel Second-Generation Oral Histone Deacetylase Inhibitor, Shows Broad-Spectrum Preclinical Antitumoral Activity. Clin. Cancer Res. 2009, 15, 6841–6851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, C.L.; Ashton, T.D.; Gaur, V.; McGee, S.L.; Pfeffer, F.M. Improved Synthesis and Structural Reassignment of MC1568: A Class IIa Selective HDAC Inhibitor. J. Med. Chem. 2014, 57, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Ying, H.; Wang, X.; Kong, C.; Zhou, X.; Wang, P.; Zhu, H. Histone Deacetylase Inhibitor MC1293 Induces Latent HIV-1 Reactivation by Histone Modification in Vitro Latency Cell Lines. Curr. HIV Res. 2013, 11, 24–29. [Google Scholar] [PubMed]
- Amengual, J.E.; Lue, J.K.; Ma, H.; Lichtenstein, R.; Shah, B.; Cremers, S.; Jones, S.; Sawas, A. First-In-Class Selective HDAC6 Inhibitor (ACY-1215) Has a Highly Favorable Safety Profile in Patients with Relapsed and Refractory Lymphoma. Oncologist 2021, 26, e184–e366. [Google Scholar] [CrossRef]
- Jo, S.; Kim, J.-H.; Lee, J.; Park, Y.; Jang, J. Azumamides A-E: Isolation, Synthesis, Biological Activity, and Structure–Activity Relationship. Molecules 2022, 27, 8438. [Google Scholar] [CrossRef]
- Zhang, S.; Fujita, Y.; Matsuzaki, R.; Yamashita, T. Class I Histone Deacetylase (HDAC) Inhibitor CI-994 Promotes Functional Recovery Following Spinal Cord Injury. Cell Death Dis. 2018, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Leus, N.G.J.; van der Wouden, P.E.; van den Bosch, T.; Hooghiemstra, W.T.R.; Ourailidou, M.E.; Kistemaker, L.E.M.; Bischoff, R.; Gosens, R.; Haisma, H.J.; Dekker, F.J. HDAC 3-Selective Inhibitor RGFP966 Demonstrates Anti-Inflammatory Properties in RAW 264.7 Macrophages and Mouse Precision-Cut Lung Slices by Attenuating NF-ΚB P65 Transcriptional Activity. Biochem. Pharmacol. 2016, 108, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-P.; Lusvarghi, S.; Wang, J.-C.; Hsiao, S.-H.; Huang, Y.-H.; Hung, T.-H.; Ambudkar, S.V. The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int. J. Mol. Sci. 2019, 21, 238. [Google Scholar] [CrossRef] [Green Version]
- Ashwini, N.; Garg, M.; Mohan, C.D.; Fuchs, J.E.; Rangappa, K.S.; Anusha, S.; Swaroop, T.R.; Rakesh, K.S.; Kanojia, D.; Madan, V.; et al. Synthesis of 1,2-Benzisoxazole Tethered 1,2,3-Triazoles That Exhibit Anticancer Activity in Acute Myeloid Leukemia Cell Lines by Inhibiting Histone Deacetylases, and Inducing P21 and Tubulin Acetylation. Bioorganic Med. Chem. 2015, 23, 6157–6165. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, D.; Wang, Y.; Han, S.; Gao, C.; Tan, C.; Jiang, Y. Discovery of ErbB/HDAC Inhibitors by Combining the Core Pharmacophores of HDAC Inhibitor Vorinostat and Kinase Inhibitors Vandetanib, BMS-690514, Neratinib, and TAK-285. Chin. Chem. Lett. 2017, 28, 1220–1227. [Google Scholar] [CrossRef]
- Mai, A.; Massa, S.; Rotili, D.; Simeoni, S.; Ragno, R.; Botta, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; Brosch, G. Synthesis and Biological Properties of Novel, Uracil-Containing Histone Deacetylase Inhibitors. J. Med. Chem. 2006, 49, 6046–6056. [Google Scholar] [CrossRef]
- Bernards, R.; Epping, M.; Wang, L. Combined Use of Prame Inhibitors and Hdac Inhibitors. U.S. Patent 7,928,081, 19 April 2011. Available online: https://patents.google.com/patent/EP2392677A2/en (accessed on 20 February 2023).
- Shen, S.; Hadley, M.; Ustinova, K.; Pavlicek, J.; Knox, T.; Noonepalle, S.; Moreno, I.B.; Zimprich, C.; Zhang, G.-P.; Robers, M.B.; et al. Discovery of a New Isoxazole-3-Hydroxamate-Based Histone Deacetylase 6 Inhibitor SS-208 with Antitumor Activity in Syngeneic Melanoma Mouse Models. J. Med. Chem. 2019, 62, 8557–8577. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Choi, S.R.; Hwang, S.G.; Cho, K.C.; Bae, S.J.; Koo, T.S. Isoxazole Derivatives and Use Thereof, WO2007078113A1, WIPO (PCT). Available online: https://patents.google.com/patent/WO2007078113A1/en (accessed on 20 February 2023).
- Anusha, S.; Cp, B.; Mohan, C.D.; Mathai, J.; Rangappa, S.; Mohan, S.; Chandra, S.M.; Paricharak, S.; Mervin, L.; Fuchs, J.E.; et al. A Nano-MgO and Ionic Liquid-Catalyzed “Green” Synthesis Protocol for the Development of Adamantyl-Imidazolo-Thiadiazoles as Anti-Tuberculosis Agents Targeting Sterol 14α-Demethylase (CYP51). PLoS ONE 2015, 10, e0139798. [Google Scholar] [CrossRef]
- Basappa; Sugahara, K.; Thimmaiah, K.N.; Bid, H.K.; Houghton, P.J.; Rangappa, K.S. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule. PLoS ONE 2012, 7, e39444. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Huang, P.; Wang, L.-Q.; Chen, S.; Basappa, B.; Zhu, T.; Lobie, P.E.; Pandey, V. Inhibition of BAD-Ser99 Phosphorylation Synergizes with PARP Inhibition to Ablate PTEN-Deficient Endometrial Carcinoma. Cell Death Dis. 2022, 13, 558. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Levenson, A.S.; Jordan, V.C. MCF-7: The first hormone-responsive breast cancer cell line. Cancer Res. 1997, 57, 3071–3078. [Google Scholar]
- Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; et al. Selective Class IIa Histone Deacetylase Inhibition via a Nonchelating Zinc-Binding Group. Nat. Chem. Biol. 2013, 9, 319–325. [Google Scholar] [CrossRef]
- Kim, N.Y.; Vishwanath, D.; Xi, Z.; Nagaraja, O.; Swamynayaka, A.; Kumar Harish, K.; Basappa, S.; Madegowda, M.; Pandey, V.; Sethi, G.; et al. Discovery of Pyrimidine- and Coumarin-Linked Hybrid Molecules as Inducers of JNK Phosphorylation through ROS Generation in Breast Cancer Cells. Molecules 2023, 28, 3450. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.C.S.; Feitosa, L.M.; Gandi, M.O.; Silveira, F.F.; Boechat, N. The Development of Novel Compounds against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules 2019, 24, 4095. [Google Scholar] [CrossRef] [Green Version]
- Khazir, J.; Pilcher, L.A.; Riley, D.L.; Chashoo, G. Design and Synthesis of Sulphonyl Acetamide Analogues of Quinazoline as Anticancer Agents. Med. Chem. Res. 2020, 29, 916–925. [Google Scholar] [CrossRef]
- He, H.; Wang, W.; Zhou, Y.; Xia, Q.; Ren, Y.; Feng, J.; Peng, H.; He, H.; Feng, L. Rational Design, Synthesis and Biological Evaluation of 1,3,4-Oxadiazole Pyrimidine Derivatives as Novel Pyruvate Dehydrogenase Complex E1 Inhibitors. Bioorg. Med. Chem. 2016, 24, 1879–1888. [Google Scholar] [CrossRef]
- Shanmugasundaram, M.; Senthilvelan, A.; Kore, A.R. Highly Regioselective 1,3-Dipolar Cycloaddition of 3′-O-Propargyl Guanosine with Nitrile Oxide: An Efficient Method for the Synthesis of Guanosine Containing Isoxazole Moiety. Tetrahedron Lett. 2020, 61, 152464. [Google Scholar] [CrossRef] [PubMed]
- Chappie, T.A.; Helal, C.J.; Kormos, B.L.; Tuttle, J.B.; Verhoest, P.R. Imidazo-Triazine Derivatives as Pde10 Inhibitors, WO2014177977A1, WIPO (PCT). Available online: https://patents.google.com/patent/WO2014177977A1/en (accessed on 22 February 2023).
- Basappa, B.; Chumadathil Pookunoth, B.; Shinduvalli Kempasiddegowda, M.; Knchugarakoppal Subbegowda, R.; Lobie, P.E.; Pandey, V. Novel Biphenyl Amines Inhibit Oestrogen Receptor (ER)-α in ER-Positive Mammary Carcinoma Cells. Molecules 2021, 26, 783. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A Semiempirical Free Energy Force Field with Charge-Based Desolvation. J. Comput. Chem. 2007, 28, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Basappa; Kavitha, C.V.; Rangappa, K.S. Simple and an efficient method for the synthesis of 1-[2-dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol hydrochloride: (+/-) venlafaxine racemic mixtures. Bioorg. Med. Chem. Lett. 2004, 14, 3279–3281. [Google Scholar] [CrossRef]
- Kanchugarakoppal, S.R.; Basappa. New cholinesterase inhibitors: Synthesis and structure-activity relationship studies of 1,2-benzisoxazole series and novel imidazolyl-d 2-isoxazolines. J. Phys. Organ. Chem. 2005, 18, 773–778. [Google Scholar]
- Fongmoon, D.; Shetty, A.K.; Basappa Yamada, S.; Sugiura, M.; Kongtawelert, P.; Sugahara, K. Chondroitinase-mediated degradation of rare 3-O-sulfated glucuronic acid in functional oversulfated chondroitin sulfate K and E. J. Biol. Chem. 2007, 282, 36895–36904. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, V.; Chevalier, F.; Imberty, A.; Leeflang, B.R.; Basappa Sugahara, K.; Kamerling, J.P. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling. Biochemistry 2007, 46, 1167–1175. [Google Scholar] [CrossRef]
- Anusha, S.; Mohan, C.D.; Ananda, H.; Baburajeev, C.P.; Rangappa, S.; Mathai, J.; Fuchs, J.E.; Li, F.; Shanmugam, M.K.; Bender, A.; et al. Adamantyl-tethered-biphenylic compounds induce apoptosis in cancer cells by targeting Bcl homologs. Bioorg. Med. Chem. Lett. 2016, 26, 1056–1060. [Google Scholar] [CrossRef]
- Sulaiman, N.B.; Mohan, C.D.; Basappa, S.; Pandey, V.; Rangappa, S.; Bharathkumar, H.; Kumar, A.P.; Lobie, P.E.; Rangappa, K.S. An azaspirane derivative suppresses growth and induces apoptosis of ER-positive and ER-negative breast cancer cells through the modulation of JAK2/STAT3 signaling pathway. Int. J. Oncol. 2016, 49, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Nirvanappa, A.C.; Mohan, C.D.; Rangappa, S.; Ananda, H.; Sukhorukov, A.Y.; Shanmugam, M.K.; Sundaram, M.S.; Nayaka, S.C.; Girish, K.S.; Chinnathambi, A.; et al. Novel Synthetic Oxazines Target NF-κB in Colon Cancer In Vitro and Inflammatory Bowel Disease In Vivo. PLoS ONE 2016, 11, e0163209, Erratum in PLoS ONE 2017, 12, e0175659. [Google Scholar] [CrossRef] [Green Version]
- BIOVIA Dassault Systèmes. Discovery Studio Visualizer, 21.1.0.20298; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Schrödinger, L.L.C.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 15 February 2022).
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound Code | X,Y,Z | R | R1/R2 | MCF-7/IC50 (μM) |
---|---|---|---|---|
5a | N,N,N | 2,3-Cl2C6H3 | 4-OCH3 | >100 |
5b | N,N,N | 2,3-Cl2C6H3 | 3,4-Cl2 | >100 |
5c | N,N,N | 2,3-Cl2C6H3 | 4-OH | 11.31 |
5d | N,N,N | COOC(CH3)3 | 4-OCH3 | 26.59 |
5e | N,N,N | COOC(CH3)3 | 3,4-Cl2 | 5.85 |
5f | N,N,N | COOC(CH3)3 | 4-OH | 24.12 |
5g | O,N,N | - | 4-OCH3 | >100 |
5h | O,N,N | - | 3,4-Cl2 | 8.754 |
5i | O,N,N | - | 4-OH | >100 |
5j | C,N,N | O | 4-OCH3 | 16.14 |
5k | C,N,N | O | 3,4-Cl2 | 30.10 |
5l | C,N,N | O | 4-OH | 23.20 |
6a | N,O,C | 2,3-Cl2C6H3 | 4-OCH3 | 66.09 |
6b | N,O,C | 2,3-Cl2C6H3 | 3,4-(OCH3)2 | 28.39 |
6c | N,O,C | 2,3-Cl2C6H3 | 4-CH3 | >100 |
6d | N,O,C | COOC(CH3)3 | 4-OCH3 | 15.96 |
6e | N,O,C | COOC(CH3)3 | 3,4-(OCH3)2 | >100 |
6f | N,O,C | COOC(CH3)3 | 4-CH3 | 19.84 |
6g | O,O,C | - | 4-OCH3 | 10.84 |
6h | O,O,C | - | 3,4-(OCH3)2 | 9.867 |
6i | O,O,C | - | 4-CH3 | 43.27 |
6j | C,O,C | O | 4-OCH3 | 26.90 |
6k | C,O,C | O | 3,4-(OCH3)2 | 33.35 |
6l | C,O,C | O | 4-CH3 | 11.71 |
7a | N,N,N | H | 4-OCH3 | >100 |
7b | N,N,N | H | 3,4-Cl2 | 14.7 |
7c | N,N,N | H | 4-OH | >100 |
7d | N,O,C | H | 4-OCH3 | 14.83 |
7e | N,O,C | H | 3,4-(OCH3)2 | >100 |
7f | N,O,C | H | 4-CH3 | 28.94 |
8a | C,N,N | OH | 4-OCH3 | >100 |
8b | C,N,N | OH | 3,4-Cl2 | 30.26 |
8c | C,N,N | OH | 4-OH | >100 |
8d | C,O,C | OH | 4-OCH3 | 21.87 |
8e | C,O,C | OH | 3,4-(OCH3)2 | 19.38 |
8f | C,O,C | OH | 4-CH3 | 15.33 |
Doxorubicin | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishwanath, D.; Xi, Z.; Ravish, A.; Mohan, A.; Basappa, S.; Krishnamurthy, N.P.; Gaonkar, S.L.; Pandey, V.; Lobie, P.E.; Basappa, B. Electrochemical Synthesis of New Isoxazoles and Triazoles Tethered with Thiouracil Base as Inhibitors of Histone Deacetylases in Human Breast Cancer Cells. Molecules 2023, 28, 5254. https://doi.org/10.3390/molecules28135254
Vishwanath D, Xi Z, Ravish A, Mohan A, Basappa S, Krishnamurthy NP, Gaonkar SL, Pandey V, Lobie PE, Basappa B. Electrochemical Synthesis of New Isoxazoles and Triazoles Tethered with Thiouracil Base as Inhibitors of Histone Deacetylases in Human Breast Cancer Cells. Molecules. 2023; 28(13):5254. https://doi.org/10.3390/molecules28135254
Chicago/Turabian StyleVishwanath, Divakar, Zhang Xi, Akshay Ravish, Arunkumar Mohan, Shreeja Basappa, Niranjan Pattehalli Krishnamurthy, Santosh L. Gaonkar, Vijay Pandey, Peter E. Lobie, and Basappa Basappa. 2023. "Electrochemical Synthesis of New Isoxazoles and Triazoles Tethered with Thiouracil Base as Inhibitors of Histone Deacetylases in Human Breast Cancer Cells" Molecules 28, no. 13: 5254. https://doi.org/10.3390/molecules28135254
APA StyleVishwanath, D., Xi, Z., Ravish, A., Mohan, A., Basappa, S., Krishnamurthy, N. P., Gaonkar, S. L., Pandey, V., Lobie, P. E., & Basappa, B. (2023). Electrochemical Synthesis of New Isoxazoles and Triazoles Tethered with Thiouracil Base as Inhibitors of Histone Deacetylases in Human Breast Cancer Cells. Molecules, 28(13), 5254. https://doi.org/10.3390/molecules28135254