
 
 

 
 

 
Molecules 2022, 27, 705. https://doi.org/10.3390/molecules27030705 www.mdpi.com/journal/molecules 

Review 

Melatonin: Regulation of Prion Protein Phase Separation in 
Cancer Multidrug Resistance 
Doris Loh 1,* and Russel J. Reiter 2,* 

1 Independent Researcher, Marble Falls, TX 78654, USA 
2 UT Health San Antonio, Department of Cellular and Structural Biology, San Antonio, TX 78229, USA 
* Correspondence: lohdoris23@gmail.com (D.L.); reiter@uthscsa.edu (R.J.R.) 

Abstract: The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments 
(TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel 
pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated 
glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved 
prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellu-
lar stress to increase cancer metastatic potential and stemness, balance proliferation and differenti-
ation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated 
by important, putative physiological functions of ligand-binding and signal transduction. Melato-
nin is capable of both enhancing physiological functions and inhibiting oncogenic properties of 
prion proteins. Through regulation of phase separation of the prion N-terminal domain which tar-
gets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in 
aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, 
melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, 
reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-
Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, 
stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may 
balance physiological and pathological effects of prions and prion-like proteins achieved through 
the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment. 

Keywords: melatonin; prions; cancer multidrug resistance; tumor microenvironment; liquid–liquid 
phase separation; hypoxia; pH; heme iron; band 3; copper 
 

1. Introduction 
The symptom of prion protein infection was first described in 1732 when Merino 

sheep scraped pathologically against fences [1], but the term prion (PRoteinaceous Infec-
tive ONly particle) was not coined until 1982 by Prusiner who defined prions in 1998 as 
heritable, infectious, proteinaceous particles that are converted from the normal, cellular 
form (PrPC) into the pathogenic form (PrPSc) that associates with amyloid plaques [2,3]. 
The full-length prion protein (PrP) [4] exists as a native, soluble cellular PrPC isoform with 
important physiological functions [5] including cellular differentiation [6–8], proliferation 
[9], and adhesion [10]; myelin maintenance [11]; circadian rhythm regulation [12,13]; sig-
nal transduction [14]; glucose homeostasis [15,16]; immune regulation [17,18]; as well as 
copper homeostasis, utilization [19,20]; iron uptake, transport, and metabolism [21–23]; 
and even facilitating the persistence and storage of memory [24,25]. In humans, quantita-
tive transcriptomics analysis (RNA-Seq) of 27 different tissues obtained from 95 human 
individuals [26] found the prion gene PRNP to be ubiquitously expressed in all 27 human 
tissues examined in addition to mitochondria, with the highest expressions found in the 
brain, followed by the ovary, prostate, heart, gallbladder, endometrium, adrenal, urinary 
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bladder, thyroid, testis, skin, esophagus, and lung [27]. Cellular PrPC has since been iden-
tified in brain mitochondria of wild-type and transgenic mice in the absence of disease 
[28]. After Masison and Wickner discovered the prion protein in Saccharomyces cerevisiae 
[29], increased understanding of prion physiological and pathological functions began to 
converge on the “prion hypothesis”, where non-Mendelian, protein-based, epigenetic in-
heritance in prions is proposed to be the essential driving force behind prion propagation 
[30–39]. 

Prion-based inheritance of conformationally-encoded phenotype information may 
allow genetically identical cells to express diverse, adaptive phenotypes with distinct evo-
lutionary advantages [39–42]. The study of prions in yeast reveals a unique “bet-hedging” 
feature [43,44] where cells form reversible prion colonies that can readily adapt to chang-
ing stress conditions in the environment. Cells with phenotypes created by prions may 
survive with a fitness advantage that is lost in cells without prions. Prion proteins allow 
yeast cells to adapt instantaneously to changing environments where frequency of phe-
notype gain/loss is dictated by the level of stress in the environment [45]. The fact that 
prions are often overexpressed in invasive, drug-resistant cancers highlights the im-
portant connection between the “prion hypothesis” and cancer MDR [46]. 

Tumor cells adapt to stressful environmental pressure including anti-cancer thera-
pies by remodeling signaling pathways involving transcription, translation, and post-
translational modifications [47]. Tumor heterogeneity and plasticity are formidable chal-
lenges to overcome in drug resistance [48]. Reversibility of phenotypes in both cancer cells 
and prions allows the speedy addition or removal of genetic traits as adaptations to envi-
ronmental stress [49]. It is perhaps not a coincidence that the spontaneous phenotype 
shifts in a highly metastatic murine fibrosarcoma cell line (KHT), observed to be approxi-
mately 10−5 per cell per generation [50], matches the 10−5 per cell per generation frequency 
of phenotype alterations from de novo prion formation reported in haploid S. cerevisiae 
strains [51]. Even though phenotype alterations may be reversible in both metastatic mel-
anoma cells [52] and yeast prions [44,53], the reversible “curability” of [URE3]—the prion 
form of Ure2 protein in haploid yeast first observed by Wickner in 1994—was actually a 
reflection of the temporary inactivation by guanidinium (a curing agent) of the conversion 
of Ure2 into the altered [URE3] prion form, which then promptly repopulated itself under 
selective conditions [30]. Mutations or overexpression of Ure2 can increase the conversion 
into prion [URE3] by 1000-fold [30,51]. 

Prions are often overexpressed in many forms of cancer [54–56], and the prion protein 
gene (PRNP) was detected by means of in silico analysis to be mutated in some cancer 
patients [57]. The ability of prions to enhance cancer proliferation, invasion, metastasis, 
increase stemness, and promote resistance to cytotoxic therapeutics has been extensively 
reviewed [55,58–71]. Since prion expression and conversion from the normal, soluble state 
to the pathogenic, aggregate form can be induced by stress [72], it is not surprising that 
prions are associated with MDR in many types of cancer [73–75] including gastric cancer 
[76], breast cancer [77], glioblastoma multiforme [78], and colorectal cancer [79], whereas 
silencing prion protein expression re-sensitizes breast cancer cells to adriamycin [80] and 
colorectal cancer cells to fucoidan [81]. Results from two randomized trials that evaluated 
the expression of PrPC protein in normal breast and breast cancer tissues from 756 ER-
negative breast cancer patients revealed a significant correlation with resistance to adju-
vant chemotherapy in ER-negative disease [82]. The overexpression of PrPC in cancer may 
be an innate, adaptive response conferring survival advantage reflecting evolutionary se-
lection pressure [46,83]. 

Many anticancer drugs including cisplatin [84,85], doxorubicin [86], and te-
mozolomide [87] exert their oncostatic efficacy by elevating production of reactive oxygen 
species (ROS) to enhance oxidative damage. The fact that PrPC enhances clinical resistance 
to cisplatin in colorectal cancer cell [88] and increases invasiveness and resistance to dox-
orubicin-induced apoptosis in LS 174T colon cancer cells [89] supports the theory that PrPC 
serves important physiological functions [5] including antioxidant protection [90]. PrPC 
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was observed to defend against ROS-induced DNA damage in human neuroblastoma SH-
SY5Y cells [91] while 1C11 cells from PrPnull C57BL/6J mice displayed a 50% increase in 
ROS combined with a reduction in major antioxidant systems, including reduced gluta-
thione (GSH) [92]. Some of the antioxidant effects associated with PrPC depend on its abil-
ity to bind metal ions such as copper. The octarepeat peptide region in the unstructured 
N-terminal domain of PrPC contains histidine residues that possess high binding affinity 
to copper and can form complexes with doxorubicin to significantly lower drug efficacy 
[93,94]. PrPC interaction with temozolomide in glioma resulting in drug resistance may 
also be related to copper-binding effects [95,96]. 

The study of melatonin as an anti-cancer adjuvant [97–99] and oncostatic agent capa-
ble of inhibiting cancer metastasis while enhancing drug efficacy has been extensively 
documented and reviewed [100–112]. However, the interactions between melatonin and 
prions in cancer are not straightforward. For example, melatonin upregulates PrPC expres-
sion to protect mesenchymal stem cells (MSCs) against ischaemic injury [113] but inhibits 
PrPC expression to cause apoptosis in colorectal cancer cells [114]. When used in combina-
tion with anti-cancer drugs such as oxaliplatin and 5-fluorouracil (5-FU), melatonin be-
comes even more effective in inducing apoptosis and senescence in 5-FU-resistant colon 
stem cells and oxaliplatin-resistant colorectal cancer cells by suppressing PrPC expression 
[115,116]. Yet melatonin was also reported to protect MSCs harvested from chronic kidney 
disease (CKD) mouse models against H2O2-induced senescence by upregulating PrPC ex-
pression [113]. 

The seemingly contradictory, pleiotropic interactions between melatonin and prions 
actually reflect a delicate balance pivoted upon their intrinsic, natural response to stress. 
PrPC has recently been demonstrated to protect animals from acute, inflammatory lipo-
polysaccharide (LPS, Escherichia coli O26:B6) challenge by modulating the expression of 
immune response genes [117]. Similarly, in MSCs treated with LPS-stimulated macro-
phages, the addition of 1 μM (but not 0.1, 10, or 100 μM) melatonin upregulated PrPC 
expression and produced a maximal effect in conferring resistance against oxidative stress 
by enhancing MSC proliferation [118]. Conversely, using 2 mM melatonin (2000-fold in-
crease) in LPS-stimulated prostate cancer cells inhibited migration and invasion [119]; the 
addition of 1 mM melatonin also inhibited cellular prion protein expression to promote 
apoptosis via superoxide-mediated oxidative stress in colorectal cancer cells [114]. It is 
plausible that at appropriately high concentrations, melatonin modulates the inhospita-
ble, highly stressful tumor microenvironment (TME) to attenuate elevated PrPC stress re-
sponses that may activate the conversion into pathological, self-templating aggregates, 
whereas lower levels support the natural, physiological protective reactions of prions un-
der duress. The conversion of PrPC into self-templating aggregates is now believed to be 
associated with liquid–liquid phase separation (LLPS), which is an energy-efficient ther-
modynamic process that results in the rapid formation and dissolution of biomolecular 
condensates used by living organisms as adaptation to changing environments [120–124]. 
Living organisms may have always relied upon melatonin to effectively modulate prion 
propagation using unique features including the regulation of liquid–liquid phase sepa-
ration [125]. 

2. Liquid–Liquid Phase Separation May Regulate Prion Conversion and Propagation 
Melatonin (N-acetyl-5-methoxytryptamine) is extensively studied for its potent anti-

oxidant cascading reactions which continue to generate effective free radical scavenging 
metabolites while interacting with different ROS [126–135]. Since its discovery in the bo-
vine pineal gland in 1958 [136], melatonin is now understood to be mainly produced in 
mitochondria in all present-day vertebrates [137–139]. The early, successful distribution 
of melatonin via horizontal gene transfers may accentuate the preponderant reliance on 
this ancient molecule for protection against endogenous and exogenous stress in all eu-
karyotes and bacteria tested [140–144]. Similar to the induction of prions in yeast as a re-
sponse to stress, unfavorable exogenous or endogenous conditions such as oxidative 
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stress, nutrient deprivation, and fluctuations in temperature and pH also induce increased 
production of melatonin in plants [145–148] and animals [149–153]. It has been proposed 
that a high reserve/maximum capacity of melatonin synthesis in humans provides a 
higher level of survival fitness as effective adaptation to unpredicted internal and external 
environmental stressors while enhancing recovery rates from injury and external patho-
genic attacks [154,155]. Since S. cerevisiae can produce varying levels of melatonin under 
different nutritional and environmental conditions [156–158] and absorb exogenous mel-
atonin in an oxidative stress-dependent manner [159,160], it is possible that living organ-
isms may have evolved the ability to adjust appropriate levels of melatonin during stress 
exposure to support PrPC physiological functions while restraining pathological confor-
mational changes as part of stress adaptation including exposure to lethal doses of ultra-
violet (UV) irradiation. 

2.1. Melatonin May Modulate Stress-Induced Prion Conversion 
The pathological prion PrPSc isoform is extremely resistant to inactivation by UV ra-

diation at 254 nm with doses up to 120,000 J/m2 [161,162]. Cellular PrPC expression is often 
increased in neuroblastoma, breast, and colorectal cancer cell lines after ionizing radiation 
treatment, and suppressing PrPC can reduce radioresistance in tumor cells [163]. S. cere-
visiae pretreated with melatonin were enriched in a dose-dependent manner and were 
protected from H2O2-induced oxidative stress as well as exposure to 254 nm UV irradia-
tion with increased cell viability via dynamic modulation of antioxidant genes [160]. Even 
though melatonin is radio-protective [164], it can also increase radiosensitivity when used 
as adjuvant with radiotherapy to substantially improved tumor remission, 1-year sur-
vival, and alleviation of radiochemotherapy-related cytotoxic effects [61,165,166] such as 
the increased expression of heat shock protein 70 (Hsp70) [167,168]. Exposure to UV irra-
diation has been reported to elevate Hsp70 in yeast, human skin cells, murine fibroblasts 
and keratinocytes, as well as transgenic mouse models. Increased expression of Hsp70 is 
generally considered as protective [169–172], but the induction of Hsp70 also leads to in-
creased expression of PrPC as part of the adaptive antioxidant responses. 

Melatonin is a potent antioxidant that is produced in human skin, and UVB irradia-
tion of human keratinocytes resulted in intensely elevated local melatonin metabolism 
that was dependent and directly proportional to UVR dose applied [173]. The use of 1 mM 
melatonin prevented DNA damage and suppression of antioxidant enzymes and proteins 
in UVR-treated ex vivo human skin [174]. More importantly, melatonin suppressed the 
upregulation of Hsp70 in human full-thickness skin and human epidermal keratinocytes 
exposed to UV radiation but complemented the suppression of Hsp70 by reversing all 
effects induced by Hsp70 inhibition such as enhanced gene expression of proinflamma-
tory cytokines and proapoptotic proteins [175]. The suppression of Hsp70 by melatonin 
provides a glimpse into the complex interplay between melatonin and prions where living 
organisms may use melatonin as a “broad-based metabolic buffer” to tune prion propa-
gation in response to stress. 

Experimental studies on S. cerevisiae showed that excess Ssa1 of the Hsp70 family was 
responsible for the de novo formation of [PSI+] which is the pathological prion isoform of 
yeast release factor Sup35 [169]. Even though contradictory results were reported in a 
study where the use of 0.5 and 1.5 µM 17-(dimethylaminoethylamino)-17-demethoxygel-
danamycin (17-DMAG) [176]—a semi-synthetic derivative of the antibiotic geldanamy-
cin—strongly induced Hsp70 expression in a rabbit kidney epithelial (RK13) cell line but 
significantly decreased PrPSc accumulation, the authors also acknowledged the com-
pletely unanticipated in vivo results that showed an increase in PrPSc from interactions 
with normal brain homogenates (NBH) obtained from WT Hsp70+/+ control mice, whereas 
NBH substrates from Hsp-null (Hsp-/-) mice did not support the generation of any PrPSc 
[177]. The confounding observation may be explained by the fact that 17-DMAG is unable 
to induce Hsp70 at concentrations below 20 nM, but the half-maximal inhibitory concen-
tration (IC50) at only 8 nM 17-DMAG could inhibit the formation of misfolded proteins 
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and toxic aggregates in polyglutamine disorders such as Huntington’s disease [178]. 
Therefore, a 62.5 or 187.5-fold increase in the use of 17-DMAG may have suppressed PrPSc 
accumulation regardless of Hsp70 activation status. However, it is also possible that in 
vitro and in vivo results for 17-DMAG are totally different as 17-DMAG administered to 
sepsis-LPS animal models at 5 mg/kg increased expression of Hsp70, conferring antioxi-
dant protection to increase survival rates [179] which may imply activation of PrPC by 
Hsp70. 

The exposure of human NT-2 cells to heat (42 °C) simultaneously increased mRNA 
levels for both Hsp70 and PrP protein [180]. Most importantly, irradiation of human prion 
proteins at 302 nm caused complete structural unfolding with rapid precipitation and spe-
cific structural conversion into soluble β-sheeted oligomers with characteristics similar to 
structurally destabilized species that often precede pathological isoform aggregation 
[181]. However, the precipitation formed during UV irradiation entirely blocked UV 
transmission, implying that the original intention of aggregate formation is instinctively 
protective in nature [181]. It is now widely accepted that all living organisms depend upon 
the formation of dynamic, membraneless compartments in response to environmental 
changes. The balance between reversible and irreversible aggregation of these conden-
sates during the process of liquid–liquid phase separation (LLPS) may be the linchpin that 
defines the fine line that separates health from disease [182]. 

2.2. The Intrinsically Disordered Region in Prions Is Requisite for Liquid–Liquid Phase Separa-
tion, Cytoplasmic Inheritance, and Modulation of Pathological Conversion 

Biomolecular condensates are intracellular membraneless organelles (MLOs) that 
compartmentalize and organize proteins, ribonucleic acids (RNAs), and other nucleic ac-
ids [183]. In response to continuously changing endogenous or exogenous conditions, all 
living organisms including eukaryotes [184,185], prokaryotes [186,187], and archaea 
[188,189] depend on LLPS as the primary driver to fuel the condensation or dissolution of 
MLOs in rapid, energy-efficient reactions such as stress response [190], signal transduc-
tion [191,192], redox balance [193], as well as genome expression, organization and repair 
[194]. The canonical yeast translation termination factor Sup35, responsible for catalyzing 
translation termination during growth, contains an evolutionarily conserved, intrinsically 
disordered prion N-terminal domain that can phase separate under stress to form protec-
tive, reversible biomolecular condensates [124,195,196] which can restore cell growth 
functions upon termination of stress. However, the intrinsically disordered N-terminal 
region of Sup35 can also phase separate to form irreversible heritable aggregates that are 
the prion isoforms [PSI+] responsible for generating heritable phenotypic variations as 
part of stress adaptation [124,197,198]. 

Proteins with intrinsically-disordered prion or prion-like domains, which are often 
highly enriched in nucleic acid binding proteins but may be prone to the formation of 
fibrillar assemblies, are widely conserved across evolution and are accepted to be the 
source for protein-based cytoplasmic inheritance essential in the formation of new, oppor-
tunistic, adaptive traits that ensure survival in hostile environments [39,196,199,200]. 
Within the Saccharomyces proteome, intrinsically disordered proteins capable of LLPS are 
often located in the nucleus and are involved in the regulation of transcription and cell 
signaling [201]. Thus, the formation of reversible condensates rather than irreversible ag-
gregates in response to stress may have been a primary function of prions and prion-like 
domains that serve as stress sensors and adaptors. Sup35 in many yeast species actually 
do not have the ability to form [PSI+] prions [202,203]. By contrast, intrinsically disordered 
regions (IDRs) in prion-like domains, which easily phase separate and form dynamic con-
densates, are highly conserved across all three domains of life—eukaryotes, prokaryotes, 
and archaea—as well as viruses [204–209]. LLPS of IDRs in proteins enables the rapid 
formation of membraneless organelles without mechanical barriers but are distinctly seg-
regated by chemical boundaries. [210,211]. However, phase separation at its core is an 
entropically unfavorable thermodynamic process requiring a reduction or a negative 
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change in global free energy enabled by energetically favorable multivalent protein–pro-
tein interactions that can offset energetic costs [183,212,213]. 

2.2.1. The Role of ATP and RNA in Prion Phase Separation 
Thermodynamic nonequilibrium processes, such as posttranslational modification 

(PTM) involving the hydrolysis of adenosine triphosphate, which can induce free energy 
changes of −7.3 kcal/mol, can facilitate the exchange of substrates and information be-
tween condensates in their native and droplet states during LLPS [214–217]. Adenosine 
triphosphate (ATP) at micromolar concentration provides free energy to fuel phase sepa-
ration by generating supersaturation gradients inducing droplet segregation 
[212,218,219]. However, ATP can also function as a biological hydrotrope at physiological 
concentrations from ~2 to 8 mM, solubilizing abnormal, pathological aggregates often as-
sociated with neurodegenerative disorders [220–224]. ATP is a universal and specific bi-
phasic modulator of LLPS in IDRs, altering physicochemical properties, conformation dy-
namics, assembly, and aggregation [225]. More recently, ATP has been proposed to be a 
kosmotropic anion behaving like a “biological aggregation inhibitor” that can increase 
protein stability and reduce thermal aggregation [223,226,227]. 

Experimental studies revealed that LLPS can promote the spontaneous conversion of 
human and mouse recombinant prion protein (rPrP) into the pathological PK-resistant 
PrPres isoform without involving kinetic energy or seeding from PrPSc. However, the con-
version process was dependent upon interactions between the intrinsically disordered N-
terminal domain and kosmotropic anions [121]. Incubating kosmotropic anions with re-
combinant PrP elevates protein stability, inducing misfolding into PrPSc amyloid-like ag-
gregates [228]. Yet the efficiency of droplet formation via LLPS did not exactly match with 
the Hofmeister series [121,229]. It is possible that interactions between ATP, which has 
recently been proposed to be a kosmotropic anion [226], and RNA can vitally influence 
the outcome of LLPS of prions and prion-like domains. Recent experimental results re-
ported the ratio between the negatively-charged ATP and RNA can affect aggregation and 
dissolution where ATP competitively binds to condensate-forming proteins in IDRs to 
inhibit RNA-driven phase separation of the proteins [230]. 

Ribonucleic acid (RNA)—a single-stranded molecule with alternating ribose and 
phosphate groups attached to adenine, uracil, cytosine or guanine bases—is an essential 
architectural component that can influence the composition and morphological outcome 
of condensate phases in LLPS [231], as well as regulate spatiotemporal distribution of 
MLOs by fine-tuning biophysical properties such as viscosity and internal molecular dy-
namics [232]. RNA modulates condensate formation during LLPS due to the high negative 
charge densities buried in the phosphate backbones. As a result, phase separation can be 
promoted by a low level of negatively charged RNA molecules interacting with positively 
charged proteins, whereas high levels of RNA may repel the same proteins to dissolve 
condensates [233,234]. In essence, the IDRs of prions and prion-like domains drive phase 
separation and the assembly of condensates while RNA can regulate the dynamics of 
those condensates [235], potentially stimulating conversion of PrPC into PrPSc [236–238]. 
ATP is one of the four nucleotide monomers required for RNA synthesis [239,240]. The 
intricate relationship between ATP and RNA may extend as far back as the highly-debated 
“RNA world” [241–243] when ATP was an integral energy-providing component of a 
metabolic system composed of nucleic acid enzymes, which is believed to precede the 
evolution of ribosomal protein synthesis [244,245]. 

Prions and prion-like molecules have likely assumed central roles in early chemical 
evolutionary processes preceding the Last Universal Common Ancestor (LUCA), which 
eventually resulted in present-day living systems [246,247]. The ability of prions to effi-
ciently replace their non-aggregate native state by assembling short peptides into β-sheet 
amyloid aggregates with high structural stability and resistance to hostile, extreme envi-
ronments may have facilitated self-replication, catalytic activities, and analogical infor-
mation transfer in protein-based, self-propagating, information-processing biomolecules 
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in early life forms ~3.9 billion years ago [248–250]. The phase behavior of the prion-form-
ing protein Sup35 PrD in yeast is critically modulated by stress. Exposing Sup35 PrD to 
10 mM arsenite promoted droplet formation in 93% of treated cells, whereas only 30% of 
untreated cells formed droplets [251]. Although the formation of non-infectious, self-as-
sembled macromolecular complexes represents a vital physiological function, these as-
semblies are highly susceptible to the formation of pathological aggregates that are now 
associated with cancer [252–254] and neurodegenerative disorders. Cancer is now recog-
nized as a disease that may result from aberrant LLPS and aggregation of MLOs [252,255–
262]. Wild-type human tumor suppressor protein p53 expressed in yeast undergoes LLPS 
induced by multivalent interactions between its intrinsically disordered N- and C-termini 
to form unstable droplets that dissolve quickly when stress is removed. However, when 
overexpressed, the p53 protein lost tumor-suppressing transcription ability, forming ag-
gregates that behaved in a comparable manner to stable, heritable prions [263–265]. 

2.2.2. RNA- and Copper-Binding Modulate the Conversion of PrPC to PrPSc 
The regulation of prion functionality and conversion into toxic aggregates may be 

fundamentally propelled by LLPS [120–123], and the intrinsically disordered N-terminal 
region of the physiological PrPC has been shown to be necessary and sufficient for LLPS 
of PrP [266,267]. Large nucleation barriers enable deep supersaturation that favors the 
formation of toxic aggregates in Sup PrD while kinetic barriers for the formation of dy-
namic intracellular condensates are easily breached by PTMs and changes in salt, pH, and 
temperature during LLPS [251,268,269]. Nevertheless, fluctuations in RNA concentrations 
can modulate prion aggregation in a bimodal, concentration-dependent manner where 
high protein to RNA ratios stimulate aggregation and low ratios suppress condensate for-
mation. RNAs of different sources and lengths were reported to markedly alter rPrP ag-
gregation in a concentration-dependent manner [270]. Even though prions are understood 
to reside in lipid rafts on plasma membranes [271,272], prions found in cytosol of neuronal 
and non-neuronal cells form ribonucleoprotein (RNP) complexes similar to membraneless 
RNA granules or chromatoid bodies containing mRNAs, and RNA proteins including the 
DEAD-box RNA helicase DDX6 and other non-coding RNA, small nuclear RNA, and mi-
croRNAs. The domain located between residues 30 and 49 in the intrinsically disordered 
N-terminal is necessary for the assembly of these PrP-RNP granules, which is believed to 
have important functions in RNA processing and posttranscriptional gene regulation, and 
are different from other cytosolic prion-containing aggresomes previously observed [273–
276]. However, when overexpressed, cytosolic PrP in neurons can exhibit toxicity in cer-
tain cell populations [277]. 

PrPC replication environment depleted of RNA gave rise to a completely new strain 
of PrPSc without changing PrP primary structure [278]. Mutations in residues can increase 
binding of RNA to specific sites in PrPC, facilitating the formation of a pincer motif that 
leads to the decay of the N-terminal α-helix, which is a requisite step in the hastened con-
version of PrPC to the toxic, infectious PrPSc isoform [279,280]. Experimental studies 
showed that mutant peptides may exhibit greater resistance to cancer drugs such as cis-
platin as a result of weakened adduct binding affinity. Although increasing the cisplatin 
ratio to 2:1 facilitated adduct binding, it was still ineffective in preventing aggregation 
[281], whereas truncated variants of rPrP lacking octarepeat peptides in the N-terminal 
domain were less susceptible to aggregation [270]. In fact, neutralizing mutations can con-
siderably reduce cytotoxicity from amyloid fibril formation in the prion-prone peptide 
PrP 106–126 belonging to the intrinsically disordered N-terminal domain [282]. Perhaps 
not coincidentally, MDR in gastric cancer is associated with four of the five copper-bind-
ing octarepeat peptides located within the N-terminal domain. Mutant gastric cancer cells 
constructed from gene splicing lacking octarepeat peptides (residues ~51–91) exhibited 
highly decreased anti-apoptotic capacity and lowered antioxidant responses to stress 
[283,284]. 
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Prion protein antioxidant defense is specifically mediated by ROS cleavage and cop-
per-binding in the octarepeat peptide region in the N-terminal domain [285–287]. Copper 
is an essential trace element used in all domains of life as a structural component for pro-
teins and as cofactor in catalytic oxidation-reduction (redox) reactions that can result in 
the production of ROS [288]. Binding of copper (Cu(II), Cu2+) to PrPC facilitates redox bal-
ance and copper homeostasis [289] both of which are often disturbed in the TME where 
cancer drug resistance is associated with higher serum copper levels in patients compared 
to healthy controls or patients who responded to chemotherapy [290,291]. Copper also 
changes the conformation of the N-terminal domain [292–295], which may impede LLPS 
[121,296] or even prevent the formation of straight β-strands backbone structures in the 
infectious PrPSc form when bound to the non-octarepeat peptides (residues 92–96) 
[297,298]. However, the Cu2+ inhibition of amyloid formation is dependent upon binding 
capacity that becomes less effective at a lower pH [93,299], which is characteristic of most 
TMEs. In addition, under physiological conditions, Cu2+ bound to full-length, uncleaved 
PrP can induce misfolding that increases seeding, which serves as templates for aggrega-
tion [300,301]. Melatonin is not only a potent antioxidant capable of chelating copper and 
modulating ROS-dependent prion cleavage, but is also proposed to be an important reg-
ulator of phase separation [125]. 

2.3. The Role of Melatonin in the Regulation of Liquid–Liquid Phase Separation and  
ROS-Induced Cleavage in Prions 

Phase separation is an evolutionarily conserved response used by living organisms 
to assemble biomolecular condensates as efficient adaptation to rapidly changing endog-
enous or exogenous stressors [190,196]. The formation of condensates during LLPS is a 
process of nucleation and growth constrained by an energy barrier that can usually be 
breached by thermodynamic nonequilibrium PTMs [269,302]. Many well-known targets 
of melatonin including NLRP3 inflammasome [303–305] and tumor suppressor protein 
p53 [306–308] contain prion-like IDRs that facilitate LLPS [265,309–311] and are regulated 
by ATP-dependent PTMs such as phosphorylation, ubiquitination, and SUMOylation 
[312–317], while DEAD-box RNA helicases such as DDX3X, which are tuned by RNA and 
ATP [318], can critically determine the outcome of prionoid LLPS in NLRP3 [310]. Post-
translational modification of PrPC initiates and/or propagates PrPSc aggregates [319,320], 
profoundly altering prion assembly pathways [321] to produce new strains with different 
protein conformations in vivo [322]. The addition of a single, fully-charge phosphate 
group at pH 7.5 to various locations in human peptide sequence corresponding to resi-
dues 59–71 from the intrinsically disordered N-terminal domain inhibited fibril formation, 
whereas phosphorylation of the same peptides at pH 1.1, when the phosphate is fully 
protonated, caused rapid fibril formation [323]. 

Melatonin may efficiently mediate important PTMs that regulate proteins which can 
form physiological condensates or pathological prion-like aggregates due to its ability to 
protect mitochondrial and cytoplasmic ATP levels and maintain requisite RNA concen-
tration, which not only ensure proper formation and dissolution of condensates [125] but 
possibly also modulate reentrant phase transitions that are important biochemical time-
keeping RNA-dependent transformations where increased RNA dissolves condensates to 
return to an identical or macroscopically similar state before the phase transition [324]. 
Since prion targeting of lipid rafts [272,325,326] can affect membrane signaling [327,328] 
and lipid composition [329], the role of melatonin in the prevention of lipid peroxidation, 
modification of lipid hydrocarbon chain to promote phase separation in ternary mem-
brane models [330,331], stabilizing lipid liquid ordered (Lo) to liquid disordered (Ld) phase 
separation over a range of temperatures [332], and displacing cholesterol in competitive 
binding to lipid molecules [330] provides additional insight into the complex relationship 
between melatonin and prion physiological and potential pathological conversion medi-
ated by phase separation and associated processes. 
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2.3.1. The Role of Melatonin in PrPC LLPS and Amyloid Beta Binding 
Cellular PrP contains 253 residues and is often bound to lipid rafts on membranes 

via glycosylphosphatidylinositol (GPI) anchors [272,333]. Residues 1 to 23 comprise the 
N-terminal signal peptide that is cleaved upon maturation; residues 23 to 120 comprise 
the positively charged, unstructured N-terminal domain; residues 121 to 230 comprise the 
structured C-terminal domain; and residues 231 to 253 comprise the GPI anchor signal 
[272,333–335] (Figure 1). PrPC is rich in α-helical content and can be converted into insol-
uble, non-infections proteinase K (PK)-resistant (PrPres) isoforms [121,336,337] or infec-
tious, stable, PK-resistant PrPSc isoforms, rich in aggregation-prone β-sheet structures that 
are associated with detrimental, cytotoxic effects [2,335,337–340]. Early workers postu-
lated that the misfolding of PrPC is the central mechanism governing the conversion to the 
toxic PrPSc isoform, and that the earliest event in prion misfolding involves metastable 
intermediates with aggregation-prone, β-sheet enriched structures [341–344]. 

 
Figure 1. Schematic representation of the prion protein structure. Residues 1–23 comprise the N-terminal signal peptide 
that is cleaved upon maturation; residues 23–120 comprise the unstructured N-terminal domain; residues 121–230 com-
prise the structured C-terminal domain; and residues 231–253 comprise the GPI anchor signal tethered to lipid rafts on 
plasma membranes. α-cleavage of residues 110/111 yields N1 (residues 23–110) and C1 (residues 111–230) fragments while 
ROS-induced β-cleavage at residues 89/90 produces N2 (residues 23–89) and C2 (residues 90–230) fragments. Four histi-
dine residues in the octarepeat domain and two histidine residues in the fifth nonoctarepeat binding site exhibit high-
affinity to copper ions. Shedding by proteolysis of the GPI anchor at residues 230–231 releases a full-length, soluble PrPC 
(23–230). 

Experimental studies in 2018 reported that PrPC undergoes LLPS at physiological pH 
and salinity, and can exist in multiple phases with extensive secondary structure rear-
rangement. LLPS of PrPC and N-terminal residues 23–110 (N1) could be triggered by ex-
cess amyloid-β oligomers (Aβo), resulting in the formation of reversible hydrogels with 
up to 300-fold Aβo enrichment. These Aβo/PrP hydrogels engaged signal-transducing 
metabotropic glutamate receptor mGluR5 and altered its cell surface mobility [345]. It was 
proposed that Aβo binding by soluble (anchor-free) prion protein and N-terminal frag-
ments is a protective response [346] due to reports showing N1 strongly suppressed Aβo 
toxicity in vitro and attenuated Aβ-induced memory function in a mouse model in vivo, 
in addition to inhibiting the aggregation and assembly of Aβ(1–42) into amyloid fibrils, 
reducing neurotoxicity [347]. 

Aβo is a pathological ligand [348] often found to cluster at excitatory synapses with 
mGluR5 and PrPC, acting as a scaffold for mGluR5 to disrupt synaptic function and glu-
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tamate signaling [349–351]. The interactions between Aβo–PrPC and mGluR5 at the neu-
ronal surface also activate the cytoplasmic Fyn tyrosine kinase to undermine neuronal 
functions and plasticity via increased intracellular calcium [352–355]. Fyn is associated 
with cancer pathogenesis and drug resistance and is often found to be upregulated in 
prostate cancer [356] and tamoxifen-resistant breast cancer cell lines [357]. In gastric can-
cer, Fyn is frequently overexpressed and is positively correlated with metastasis [358]. Not 
surprisingly, PrPC accelerates colon cancer metastasis via the Fyn-SP1-SATB1 axis [62]. 
The fact that melatonin can downregulate mGluR5 expression by diminishing Tet1 ex-
pression, which uncouples Tet1 from the mGluR5 promoter [359], modulating the 
PrPC/mGlur5/Fyn/Pyk2 pathway to alleviate Aβo neurotoxicity [360], casts a more favor-
able light upon PrPC LLPS-induced Aβo binding and cascading signaling effects, further 
highlighting the important role of melatonin in supporting PrPC physiological activities 
while ameliorating pathological consequences. In 2021, König et al. reported solid-state 
MAS NMR spectroscopy investigations of Aβ(1–42) oligomers complexed with huPrP 
represented a heterogeneous mixture of β-strand-rich assemblies where binding with 
PrPC effectively trapped Aβ oligomers and prevented further development into various 
fibril types, prompting the authors to speculate whether this feature was coincidental or 
is the original intended physiological function of PrPC [361]. Additional discoveries from 
recent experimental studies continue to deepen understanding of the complex relation-
ship between prion LLPS, copper, the TME, and melatonin. 

2.3.2. Is the N-1 Fragment from the Intrinsically Disordered N-1 Domain Necessary and 
Sufficient for LLPS? 

The mature PrPC comprise two well-differentiated domains—a structured C-terminal 
(residues 121–231) and the unstructured N-terminal domain (residues 23–120) 
[333,362,363]. Within the N-terminal domain at residues 51–90, there are four octarepeats 
[364,365], which contain copper-binding histidines and a “pseudorepeat” lacking a histi-
dine [333,363]. A fifth consensus copper-binding site can be found between residues 91 
and 111 [363], which is an area known for amyloidogenic β-sheet formation coordinated 
by copper binding to His96 and His111 which results in structural plasticity changes involv-
ing “closed” or “open” conformations that are prion-resistant or prion-susceptible, respec-
tively [366,367] (Figure 1). In addition to binding copper and other divalent metals such 
as nickel(II), zinc(II), and manganese(II), albeit with much lowered affinity [368], histi-
dines in PrP and especially within the octarepeat peptides bind hemin where affinity in-
creased with the number of histidines and length of the peptide [369]. The binding of cop-
per to the four octarepeat peptides induces conformational changes that rapidly dissociate 
PrPC from lipid-rafts, laterally translocating the protein from detergent-resistant lipid rafts 
into detergent-soluble regions of plasma membranes before endocytosis through clathrin-
coated pits or caveolae [326,370–374]. The region containing octarepeat peptides can also 
be dissociated from the membrane-bound prion protein via proteolytic or ROS-induced 
cleavage [375,376]. 

The constitutive, irreversible, posttranslational proteolytic α-cleavage of residues 
110/111 in PrPC yields N1 (residues 23–110) and C1 (residues 111–230) fragments while 
ROS-induced β-cleavage at residues 89/90 produces N2 (residues 23–89) and C2 (residues 
90–230) fragments [120,377–380] (Figure 1). The soluble N-terminal cleavage fragments 
become untethered while the C-terminal cleavage fragments remain bound to lipid rafts 
on membranes via GPI anchors [272,380,381]. Shedding by proteolysis releases a full-
length, soluble PrPC (23–230) that is cleaved from the membrane GPI anchor around reside 
230–231 and reduces the cytotoxicity of amyloid-β oligomers [379,382,383] (Figure 1). The 
nature and function of proteolytic cleavage of PrPC and perhaps even PrPSc [384,385] are 
yet to be fully elucidated, although it is postulated that proteolytic processing generates 
bioactive soluble prion protein fragments and induces conformational and functional 
changes to cell-bound prions [375,379,386]. 
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Substantial evidence from experimental studies have shown that β-cleavage can also 
be induced by exposure to ROS (H2O2) but is dependent upon pH and Cu2+. Binding to 
copper facilitated β-cleavage by H2O2 in the octapeptide repeat region but the rate of 
cleavage was reduced when pH was lowered [376,387]. A higher level of α-cleavage in 
full-length PrPC producing more C1 fragments was correlated with better resistance to the 
propagation of PrPres [388], whereas deleting α-cleavage sites while retaining residues 23–
31 produced toxic, lethal phenotypes [389]. However, biologically active N2 fragments 
(residues 23–89) from β-cleavage modulates cellular stress response [285], and deleting 
the octarepeat regions not only abolished ROS-mediated β-cleavage but also greatly re-
duced cell viability and increased intracellular free radicals from impaired glutathione 
peroxidase activity [390]. Both N1 and N2 cleavage fragments can also maintain neuronal 
stem cell quiescence by modulating ROS levels [391]. Cancer cell stemness contributes to 
MDR, and the ability to maintain stem cell pools in a quiescent, slow-growing state facil-
itates protection from antiproliferative drugs and evasion from immune surveillance to 
promote tumor development [392–394]. 

In February 2021, Tange et al. reported that at neutral pH 7.0, interactions between 
kosmotropic anions and N2 residues 23–89 in the N-terminal region of rPrP were most 
optimal in driving rPrP LLPS, forming gels that acquired conformational conversion into 
PK-resistant β-sheet–rich, non-seeding structures without the use of kinetic energy or 
PrPSc [121]. These findings support results from early experimental studies where kosmo-
tropic anions promoted the conversion of rPrP into PrPSc-like aggregates [228]. However, 
Kamps et al. published their report later in 2021 showing that at physiological pH 7.4, N1, 
but not N2, underwent LLPS driven primarily by the polybasic motif in the postoctarepeat 
region containing an amyloid β-binding domain [266]. Interestingly, during their experi-
ments, Tange et al. found the presence of copper inhibited LLPS [121], whereas Kamps et 
al. did not test the effect of copper on LLPS [266]. Even though copper binding to histi-
dines in PrPC can induce conformational changes that could reduce potential toxicity ef-
fected by N-terminal with octarepeat sequences [294,300,377,395] but also impede LLPS, 
it is not inconceivable that the difference in pH of mediums used in the two studies in 
addition to the absence of copper and kosmotropic anions may offer a plausible explana-
tion for LLPS observed in N2 [121,266]. 

2.3.3. Changing pH and/or Crossing Isoelectric Points Can Drive Phase Separation of 
Prion N2 Fragments 

Under normal physiological conditions, the pH of the human body is maintained in 
a tight range between 7.35 and 7.45, with 7.40 accepted as the average physiological pH 
[396]. Changes in pH in an organism is a critical stress factor that can induce the formation 
of MLOs through LLPS [124,397,398]. Results from in vitro experimental studies demon-
strate that changes in pH can trigger phase separation of stress sensing poly(A)-binding 
proteins in yeast to form hydrogels [190]. Under nutrient depletion, yeast cells are unable 
to regulate pH using proton pumps; the ensuing acidification triggers phase separation, 
reversibly transitioning the yeast cytoplasm from a fluid- to a solid-like, dormant state 
with reduced mobility [399]. Prions can undergo huge conformational changes below pH 
7.2 when interacting with nucleic acids, forming large RNA–protein complexes in a pH-
dependent manner [400,401], whereas increasing concentrations of chaotropic salts such 
as sodium chloride (NaCl) at pH 7.5 prevented the formation of RNA prion complexes 
[400,402]. Reducing pH can cause thermodynamic instability propelling the conversion of 
PrPC into PK-resistant isoforms by destabilization of salt bridges in nucleic acids and pro-
tonation of histidine residues in PrPC [403,404]. Conversely, increasing pH can cause his-
tidine residues that serve as molecular switches in histidine-rich squid beak proteins 
(HBPs) to deprotonate and trigger phase separation [405]. pH jumps from pH 11.0 to pH 
7.5 caused proteins kept in solution to quickly undergo LLPS to form droplets upon pro-
tonation at native pH. Decreasing pH is often used as an effective technique to induce 
LLPS in proteins without having to cross the isoelectric point of the proteins [406]. 
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Phase separation can often be triggered as the pH moves close to a protein’s isoelec-
tric point (pI), which is the pH value at which a molecule carries no net electrical charge 
where the negative and positive charges are equal or cancelled. Therefore, proteins will 
carry a net positive charge if the pH of the surrounding liquid medium is below their pI 
and a net negative charge if the surrounding pH is above their pI [407]. Experimental 
results indicate that phase separation frequently occurs at pH values corresponding to the 
protein’s isoelectric point at thermodynamic equilibrium, whereas cells are almost always 
under nonequilibrium conditions that may also affect phase separation [408]. Nonethe-
less, proteins were shown to be the least soluble near their pIs where solubility is affected 
by the increase in net charge, which may be proportional to increases or reductions in the 
surrounding pH [409], with the implication that a net charge of zero may induce protein 
aggregation. Testing of several disease-associated transmissible spongiform encephalopa-
thies (TSEs) human prion proteins (PrPTSE) found their isoelectric points to be more acidic 
than pH 7 [410], which may explain why Tange et al. observed LLPS of N2 fragments at 
neutral pH in the presence of kosmotropic anions, and Kamps et al. were unable to induce 
LLPS of N2, which lacked the postoctarepeat region with the amyloid β-binding domain, 
at physiological pH 7.4 [121,266]. Copper-binding, which can interfere with LLPS, is also 
pH dependent. 

2.3.4. Copper Chelation by Melatonin in Prion Phase Separation May Ameliorate  
Prion-Induced Multidrug Resistance 

At neutral or physiological pH copper (Cu2+) is fully bound to histidine residues in 
the octarepeat and other regions of PrPC at a 1:1 ratio [411,412]. Reducing pH to 6.7 results 
in loss of binding by 50%, and further reductions to pH 6.0 completely inhibited binding 
[93], or led to dissociation of the Cu(II)-amide− bonds [411]. Although normally found 
bound to proteins, Cu(II) may be released and become free to catalyze the formation of 
highly reactive hydroxyl radicals inducing cellular toxicity [413,414]. Exchangeable cop-
per (CuEXC) represents the labile fraction of copper complexed to albumin and other pep-
tides but not within ceruloplasmin [415,416]. In the healthy individuals tested, CuEXC 
was found to be 0.57 to 1.12 μM, or 3.24% to 8.58% of total copper concentration in plasma 
[417], which is normally ~16.7 μM on average [418], whereas human and murine prions 
are almost fully saturated at 5 μM copper [419]. Copper is increasingly associated with 
the growth and proliferation of cancer cells and the promotion of breast cancer metastasis 
[420,421]. Thus, in environments below neutral pH—the hallmark of cancer TME—prions 
may not bind to copper completely, which then becomes a challenging situation in the 
context of cancer MDR. 

Prions are copper-sensitive stress sensors that are activated upon copper-binding to 
initiate signal transduction processes that increase antioxidant enzyme activities and glu-
tathione levels [19,422]. Exposure to Cu(II) was shown to increase the expression of PrPC 
in primary hippocampal and cortical neurons [423], and increased oxidative stress in-
duced by intracellular Cu(II) quickly upregulated PrPC transcription mediated by ataxia-
telangiectasia mutated (ATM) in murine neuro-2a and human HeLa cells [424]. In addi-
tion, ROS-mediated β-cleavage at residues 89/90, which produces N2 (residues 23–89) 
[379,425], is also copper- and pH-dependent, with the rate of cleavage at neutral pH di-
minishing with decreasing pH [376]. PrP mutants lacking the copper-binding octarepeat 
peptides could not undergo β-cleavage by ROS and displayed increased sensitivity to ox-
idative stress [390]. Hence, in an acidic extracellular environment favored by cancer cells, 
prion expression may be elevated due to increased oxidative stress from incomplete Cu(II) 
binding, which also results in suppressed antioxidant protection from copper-dependent 
ROS-mediated β-cleavage [390]. Increased oxidative stress and a lower pH will also trig-
ger PrPC phase separation, which may lead to the aggregation of the pathological PK-re-
sistant isoforms. Oxidative stress causes prion protein misfolding and a 900-fold increase 
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in binding affinity, resulting in oligomerization that seeds aggregation [300]. In the aggre-
gated, PK-resistant pathological state, the prion isoform can potentially facilitate non-
Mendelian, epigenetic inheritance, which confers stress and drug-resistant survival fea-
tures to cancer cells [40,426]. 

Melatonin is not only a highly efficient antioxidant that continues to generate effec-
tive free radical scavenging metabolites while interacting with different ROS [126–135], 
but also binds with copper in situ [427] and may exert protective effects against copper-
induced toxicity in animals and plants potentially via chelation [428,429]. Under physio-
logical conditions, in vitro and in vivo animal experiments found melatonin treatment at 
1 mM and 50 mg/kg (intraperitoneal injection), respectively, decreased hydroxyl radical 
formation by high concentration of copper and pro-oxidant polyphenols, preventing 
DNA damage via copper chelation [430]. A theoretical study employing physicochemical 
analysis in 2015 proposed that under physiological pH 7.4, melatonin can chelate Cu(II) 
via the coupled-deprotonation-chelation mechanism (CDCM), with 3-hydroxymelatonin 
(3OHM) being the most effective metabolite for such purpose [431]. In 2019, computa-
tional studies simulating physiological mediums reported results that supported these 
findings. However, when comparing Gibbs free energies between melatonin complexes 
formed with various metals examined using the well-known metal-chelating agent eth-
ylenediaminetetraacetic acid (EDTA) [432] as control, copper complexed with melatonin 
and principal metabolites showed the lowest Gibbs free energy values in the order of 
EDTA, AMK, 3OHM, melatonin, and AFMK, where EDTA- and AMK-Cu complexes ex-
hibited the highest stabilities with the lowest Gibbs free energy at approximately −161 and 
−149, respectively [433]. 

Considering the fact that deprotonation increases the chelation viability for Cu(II), 
reduced pH can, therefore, negatively impact melatonin’s ability to chelate copper [431]. 
However, it is perhaps not a coincidence that melatonin increases pH, restoring pH ho-
meostasis to regulate prion phase separation, facilitate copper-binding, and modulate 
ROS-mediated cleavage via a reduction in oxidative stress through its potent antioxidant 
cascades [434]. Treating irradiated healthy and tumor-control Balb/c mice with melatonin 
(20 mg/kg) ameliorated oxidative stress in heart and lung tissues. However, melatonin 
administration increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) 
antioxidant responses only in normal but not tumor cells [435]. It is plausible that by re-
ducing ROS levels in oxidative TMEs, melatonin decreased PrPC expression, which in turn 
lowered antioxidant activities. Results from an in silico analysis demonstrated that the 
overexpression of PrPC under optimal culture conditions did not alter proliferation, re-
sistance to cell death, and metabolism in colorectal cancer cell lines [436], and conse-
quently, supported the hypothesis that the correlation between overexpression of PrPC, 
cancer malignancy, and MDR are actually results of a highly-stressed TME rather than 
outcomes being driven by PrPC overexpression. The ability of melatonin to act as a “broad-
based metabolic buffer” which can tune prion propagation in response to stress signals 
becomes particularly significant in the context of TME and drug resistance (Figure 2). 
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Figure 2. Schematic illustrating the regulation of prion protein phase separation by melatonin, attenuating conversions 
into infections, pathological PrPSc and non-infectious, insoluble PrPres isoforms, which may promote cancer multidrug 
resistance (MDR) via different mechanisms, including non-Mendelian epigenetic inheritance, stemness, metastasis, and 
resistance to apoptosis. By acting as a “broad-based metabolic buffer,” melatonin modulates the tumor microenvironment 
to control hypoxia and oxidative stress, ameliorating the effects of accelerated glycolysis and low extracellular pH (pHe) 
that can trigger the liquid–liquid phase separation (LLPS) of physiological prion (PrPC). Melatonin employs antioxidant-
dependent and -independent features to protect heme redox and NADH levels; band 3, lipid raft, and CYB5R3 function-
ality; and, provides an optimal environment for prions to assume essential physiological functions including reduction in 
oxidative stress, maintenance of cellular energy homeostasis, and ensuring proper iron/copper redox/homeostasis and 
utilization, which may further enhance cancer drug sensitivity. 

3. Melatonin May Promote PrP Physiological Functions and Inhibit Pathological  
Effects via Global Modulation of the Tumor Microenvironment to Enhance Cancer 
Drug Efficacy 

One of the major metabolic adaptations employed by cancer cells is the “Warburg 
effect” where mitochondrial oxidative phosphorylation (OXPHOS) is suppressed in favor 
of accelerated aerobic glycolysis [437], producing a toxic tumor microenvironment (TME) 
characterized by high alkalinity in the cytosol and high acidity in the extracellular envi-
ronment resulting in an elevated alkaline intracellular pH (pHi) but an acidic, reduced 
extracellular pH (pHe) that can promote oncogenic properties [438,439]. This reversed pH 
gradient is widely accepted as the hallmark of cancers [440,441]. Cancer cells have been 
associated with higher values of pHi between 7.12 and 7.65 and a lower pHe of ~6.2–6.9, 
whereas pHi in normal cells is stringently maintained at a narrow range between 7.0 and 
7.2, and pHe at ~7.4 [442–449]. In normal cells, metabolic and developmental transitions 
are highly dependent upon changes in pHi [450–452] and in silico studies showed that 
alkaline pHi, which is coupled to accelerated glycolysis and adaptation to hypoxia, max-
imized cancer cell proliferation, whereas reversing the pHi to normal acidic values pre-
vented adaptations, halting tumor cell growth [453]. An acidic pHe in the TME is directly 
correlated to deficient oxygen supply from rapid cancer cell division and growth. 

Tumor hypoxia causes the metabolic shift towards acidity where proton (H+) accu-
mulation is proportional to O2 levels [454]. Excess intracellular protons are often extruded 
into extracellular space via different mechanisms [455] including membrane transporters 
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[456], carbonic anhydrase enzymes [457], and lysosomes [458], or sequestered in proton 
sinks [459]. The ensuing acidic pHe may directly interfere with the efficacy of weakly basic 
chemotherapeutic drugs by impeding their intracellular distribution through “ion trap-
ping” [460]. While the combination of proton disequilibrium and reversed pH gradient 
act as positive feedback promoting metastasis that exacerbate cancer MDR [441,447,461–
463], it is the fall in intracellular proton that is mainly responsible for accelerated glycoly-
sis in cancer cells [464]. Since mitochondria ATP synthases are rapidly translocated to cell 
surface lipid rafts under tumor-like hypoxic and acidic environments [465–467], cancer 
cells can also rely on the internalization of extracellular ATP (eATP) to significantly ele-
vate intracellular ATP (iATP) to enhance drug resistance by maintaining the energy re-
quirement of drug efflux by ATP-binding cassette (ABC) transporters [468–470]. eATP has 
been associated with cancer cell migration and invasion [471,472], induction of epithelial-
mesenchymal transition (EMT) to promote metastasis in lung cancer [473], and activation 
of cancer stem cell-like changes to promote metastasis in non-small-cell lung cancer [474]. 

3.1. Melatonin May Attenuate Prion Propagation and Cancer Multidrug Resistance by  
Increasing Extracellular pH 

Extracellular acidification and hypoxia in melanoma cells can reprogram metabolism 
to enhance survival, invasiveness, and promote immunosuppressive environments that 
exacerbate drug resistance [475]. Hypoxia induces increased expression of cellular prion 
protein to enhance the viability of mesenchymal stem cells [476], and PrPC mRNA and 
protein levels were significantly upregulated (4.3-fold increase in luciferase activity) in 
gastric cancer cell lines exposed to hypoxia [59]. In fact, increased expression of PrPC in 
multicellular prostate tumor spheroids is regulated by redox to counterbalance increased 
oxidative stress through upregulated antioxidant defense [477]. Prion phase separation 
can be activated by cellular stress such as changes in pH and fluctuations in levels of kos-
motropic anions including ATP [121,226,406,455] (see Section 2.2.1.). Biopsies from meta-
static melanoma revealed elevated levels of amyloid-like aggregations [478], and amyloi-
dogenic peptides were shown to incorporate ATP when aggregating into amyloid fibrils 
[479]. Increased eATP in addition to increased oxidative stress and reduced pHe in TME 
may exacerbate prion β-sheet conversions upon triggering of phase separation. Even 
though LLPS converted rPrP into the PK-resistant PrPres isoform, it is still unclear whether 
phase separation of PrPC is the primary cause for the conversion of PrPC into PrPSc. How-
ever, oxidative stress is increasingly associated with the conformational change in the α-
helix structure of PrPC to the β-sheet structure of PrPSc [480–483]. It is not surprising that 
the migration of metastatic melanoma, which is dependent on acidic pHe, is promoted by 
the prion protein [67,484,485]. Experimental studies on skin reconstructed with melanoma 
cell lines found treatment with 1 mM melatonin controlled growth and impaired invasion 
and metastasis by disrupting cytoskeleton formation [486] while high-dose melatonin (5 
mg/m2/day to 700 mg/m2/day) showed stable, favorable responses in human subjects di-
agnosed with advanced malignant melanoma [487]. Melatonin also prevented the aggres-
sive phenotype shifts in breast cancer cell lines maintained under acidosis conditions by 
modulating proliferation and apoptosis [488]. Melatonin can exert inhibitory oncostatic 
effects due to its ability to regulate acid-base balance fluctuations, which are consequences 
of a hypoxic TME [454]. 

In vitro experimental studies showed that exposure of two human pancreatic cancer 
cell lines (MIA PaCa-2 and PANC-1) to 1 μM melatonin with continuous presence (includ-
ing measurement) for 24 h stimulated the secretion of bicarbonate, rebalancing ion 
transport via modulating mRNA expression of pancreatic solute transporters SLC26A6, 
SLC4A4b, SLC9A1, and other non-genomic effects on acid-base transport that were not 
identified [489]. Expressed in all cells, carbonic anhydrases (CAs) are catalytic enzymes 
responsible for the reversible conversion of carbon dioxide (CO2) and water (H2O) into 
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bicarbonate (HCO3−) and protons (H+) [490,491]. The CA isoforms CA-IX and CA-XII con-
tribute to extracellular acidification and intracellular alkalinization in response to in-
creased CO2 load under hypoxic conditions. The reversed pH gradient of increased pHi 
and reduced pHe is a major pro-survival mechanism used by cancer cells [492,493]. In vivo 
experiments showed that silencing of CA-IX led to a 40% reduction in xenograft tumor 
volume with up-regulation of CA-XII levels, whereas invalidation of both isoforms pro-
duced an impressive 85% reduction [494]. 

Melatonin treatment of triple negative human breast cancer cell line (MDA-MB-231) 
and female Balb/c xenograft mice at 1 mM and 40 mg/kg, respectively, showed slightly 
different results between gene expression and protein levels of CAs. Tumor samples from 
xenograft mice treated with high-dose melatonin exhibited significant downregulation of 
mRNA gene expression of CA-XII and markedly reduced protein levels of both CA-IX 
and CA-XII when compared to untreated controls, whereas in vitro results from cultured 
MDA-MB-231 cancer cells treated with 1 mM melatonin only showed a significant reduc-
tion in CA-XII gene expression, with an insignificant difference in protein levels of CA-IX 
and CA-XII between the melatonin-treated and control groups [495]. Since CA-IX and CA-
XII are inducible by hypoxia, in the same study, melatonin also reduced gene expression 
and protein levels of hypoxia-inducible factor 1α (HIF-1α) in vitro and in vivo [495,496]. 
Reversed pH gradients with dysregulated acid-base balance in TME may be consequences 
of hypoxia where arterial hemoglobin desaturation and reduced O2 saturation can lower 
pHe to below 6.8 [497,498]. Low partial pressure of oxygen (pO2) can directly affect re-
sistance to radiotherapy by limiting the ability of O2 to general free radicals to exert oxi-
dative damage to macromolecules and membranes [447,499]. Reducing the affinity of he-
moglobin for oxygen represented by a right-shift in the hemoglobin-oxygen dissociation 
curve [500,501] can drastically increase tumor radiosensitivity [502], whereas tumor hy-
poxia, by lowering pO2 which shifts the dissociation curve to the left, thereby increasing 
hemoglobin affinity to O2, is often associated with less effective radiation-mediated apop-
tosis and increased metastatic potential with poorer prognosis [503,504]. The fact that mel-
atonin exerted higher efficacy in modulating pH in vivo may reflect the powerful, dy-
namic relationship with prions in the regulation of iron homeostasis and hemoglobin O2 
saturation, which control hypoxia and the resulting pH imbalances that exacerbate cancer 
proliferation and MDR. 

3.2. PrPC Protective Physiological Responses and Ligand-Binding May Become Pathological  
Liabilities in the Tumor Microenvironment 

The tumor environment is uniquely adapted to promote cancer cell survival and pro-
liferation. Elevated hypoxia from low oxygen tension produces low pH with increasing 
accumulation of protons (H+) resulting in the formation of excess ROS [454,505] and defi-
cient energy supply are all high-stress conditions that may trigger phase separation sur-
vival responses [258,261,506] with potential to activate PrPC conversion to pathological 
templates that may promote cytoplasmic inheritance to increase survival rates 
[39,196,199,200]. PrPC was identified in the nucleus of NB4 human promyelocytic leuke-
mia cell line [507], and also in the form of ‘granules’ in nuclei of uninfected bovine neu-
ronal cells [508]. The fact that PrPC is abundantly localized in the nuclear lamina and in-
teracts with structural chromatin components [509] supports the hypothesis of PrP epige-
netic regulation where prions can facilitate inheritance of activated chromatin states to 
provide adaptive advantages [40,41]. PrPC identified in the nucleus of actively dividing 
normal epithelial cells was associated with the proliferation, differentiation, and subcel-
lular distribution of architectural proteins [510]. In S. cerevisiae, prion-forming protein 
Sup35 PrD phase behavior is modulated by stress and energy depletion where droplet 
formation under arsenite stress and energy depletion was observed in 93% of cells exam-
ined [251]. The identification of LLPS in the nucleus further emphasizes the important role 
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of PrPC conversion from stress-induced phase separation resulting in tumor cell genomic 
instability [511] and dysregulation of gene expressions [259]. 

Most of the physiological functions of PrP are dependent on complex interactions 
with its binding partners. The unstructured N-terminal domain between residues 23 and 
120 contains an octapeptide repeat region (residues 51–90) and an amyloidogenic region 
between residues 90 and 120 involving histidines 96 and 111, which bind metals with a 
special high affinity for copper [272,294,367,412,512], while residues 23–90 of the unstruc-
tured N-terminal constitute a region that specifically targets to lipid rafts, and PrP with 
deleted N-terminal is unable to bind to lipid rafts [325]. The constitutive, tight association 
between PrPC and lipid rafts [326,513] and its wide expression in stem cells [8,514–517] 
offer additional insight as to how prions interact with membrane supramolecular com-
plexes [518] to participate in an extensive range of physiological functions including tran-
scription, scaffolding, and signaling [267], and modulate cancer stemness, differentiation, 
self-renewal, and proliferation to augment cancer MDR [65,71,77,516,519,520]. Although 
PrPC does not bind iron directly, the binding of Cu2+ in the N-terminal domain modulates 
iron metabolism through copper homeostasis [289]. Wild-type (WT) PrPC over-expression 
or deletion in specific mouse brain regions is associated with striking variations in levels 
of copper, iron, and even zinc [521]. PrPnull mice showed reduced iron mobilization, di-
minished serum iron content, and excess accumulation in liver and spleen as a result of 
impaired copper-dependent ceruloplasmin (ferroxidase) activity, which is responsible for 
the regulation of iron mobilization [522,523]. 

3.3. Interactions between PrPC, Iron, and Heme May Enhance Aggressive Drug Resistance in 
Tumors 

Iron is required in essential metabolic processes [524], and PrP may perform im-
portant roles in iron uptake and transport [22]. Absence of PrP induces systemic iron de-
ficiency in PrPKO mice caused by less efficient uptake by red blood cells (RBCs), liver, and 
brain as the result of impaired transport of iron from the duodenal enterocytes—a condi-
tion that can be easily reversed by expressing WT PrP [23]. Similarly, over-expression of 
PrPC increased intracellular iron, cellular labile iron pool, and iron content of ferritin lead-
ing to a decrease in total cellular content of transferrin (Tf) and transferrin receptor (TfR) 
proteins responsible for iron uptake, but an increase in ferritin responsible for iron storage 
[525]. Iron dyshomeostasis in brain neurons may be caused by sequestration of iron by the 
insoluble, aggregation-prone, infectious PrPSc isoform, which can form complexes with 
ferritin to induce bio-insufficiency [526]. Dysregulated iron homeostasis in cancer energy 
metabolism may be an important contributing factor in cancer drug resistance. 

Aerobic glycolysis, commonly referred to as the “Warburg effect” [527], is undoubt-
edly the hallmark of cancer cells [437,528]. Enhanced, accelerated aerobic glycolysis has 
been shown to be responsible for resistance against various cancer drugs including soraf-
enib [529], palbociclib [530], oxaliplatin [531], doxorubicin [532], lapatinib [533] paclitaxel 
[534], bevacizumab [535], and cetuximab [536]. However, recent studies also revealed that 
many cancers such as myeloid leukemia [537], non-Hodgkin’s lymphoma [538], pancre-
atic ductal adenocarcinoma [539], melanoma [540], and high-grade prostate cancers [541] 
do not have impaired mitochondrial OXPHOS [542] while aggressive and drug-resistant 
cancers may actually upregulate mitochondrial oxidative phosphorylation (OXPHOS) as 
part of their defense mechanisms [543–545] to enhance autophagy [546], increase stemness 
[547], or remodel OXPHOS metabolism to promote survival [541,548]. 

Under physiological conditions, ATP hydrolysis is tightly regulated and the standard 
energy (ΔG′ATP) is maintained between 53 and 60 kJ/mol, where 56 kJ/mole, in principle, 
is regarded as the endpoint of both genetic and metabolic processes required for sustain-
ing life [549,550]. Chemical energy of ATP is primarily used to power ionic membrane 
pumps that support cell and organ viability [551]. Uncontrolled proliferation, heightened 
dedifferentiation, and resistance to apoptosis in cancer cells may be the result of survival 
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mechanisms activated in response to chemical energy deficiencies [549,552]. The exploita-
tion of iron-containing heme is a preferred and highly effective counter-strategy em-
ployed by cancer cells to modulate energy metabolism and reprogram their environment 
[553–555]. Iron metabolism is vital for normal and cancerous cells [524,556]. The regula-
tion of iron homeostasis in carcinogenic mechanisms has been extensively discussed and 
reviewed [554,556,557], where targeting iron metabolism via iron depletion or iron over-
load is considered a formidable anti-cancer strategy [558,559]. In addition, large cohort 
studies have also discovered a positive correlation between dietary heme iron intake and 
colon carcinogenesis [560,561]. 

3.3.1. Iron and Heme Facilitate Increased Energy Production in Cancer Cells 
Iron is a transition metal with essential physiological functions including oxygen 

transport and production of cellular energy [524]. However, the two primary biological 
redox states of Fe2+ and Fe3+ can also catalyze the generation of hydroxyl radicals (•OH) 
through the Fenton reaction [562]. The pleiotropic relationship between iron and oxygen 
began ~3.5 billion years ago when cyanobacteria first introduced oxygen (O2) to earth’s 
water and atmosphere via water oxidation in the production of ATP [563–566]. During 
mitochondrial OXPHOS, oxygen consumption by cytochrome c oxidase (COX or complex 
IV) may reach 90% of total cellular oxygen [567] as part of the O2 reduction process that 
maintains the proton-motive gradient via proton pumping across the inner mitochondrial 
membrane. Proton pumping is mainly powered by the creation of a net positive charge 
via the oxidation of low-spin heme iron in COX [568,569]. In the human body, most of the 
iron is contained in heme proteins such as hemoglobin, myoglobin, and cytochromes 
[570,571]. The important, terminal step that completes the biosynthesis of heme occurs on 
the inner surface of the inner mitochondrial membrane (IMM) where ferrous iron (Fe2+) is 
inserted into the tetrapyrrole macrocycle of protoporphyrin IX (PPIX) by ferrochelatase 
[571–573]. 

Mitochondrial respiration is dependent upon homeostasis of the heme synthesis-ex-
port system, which regulates the tricarboxylic acid cycle (TCA) and controls the rate of 
OXPHOS where reduced heme synthesis or hypoxia induces heme export to shut down 
OXPHOS and activates glycolysis. However, the feedback effect of heme-export in turn 
increases heme synthesis, which can fuel increased TCA-cycle flux and OXPHOS rates 
[574]. Breast and lung cancer cells exhibit abnormal upregulation of the feline leukemia 
virus subgroup C receptor 1 (FLVCR1) heme-exporter [575]. Inhibition of FLVCR1 in 
breast and lung cancer cells resulted in dramatic reductions in proliferation, migration, 
invasion but acceleration in apoptosis [576–578]. Vascular disrupting agents (VDAs) such 
as combretastatin A-4 phosphate (CA4P) that are used to treat solid tumors often result in 
increased tumor recurrence and post-VDA treatment resistance because even though 
VDAs reduce tumor oxygenation, they also trigger upregulated heme flux, biosynthesis, 
uptake, and degradation [579] as defense mechanisms. Enhanced heme function leading 
to increased mitochondrial energy production fueling proliferation and progression is a 
classic feature of aggressive, high-mortality non-small-cell lung cancers (NSCLCs) [580] 
and other chemoresistant cancers [581]. PrP binds to both heme and hemin in human 
RBCs. 

3.3.2. PrPC Regulates Heme Synthesis and Export to Modulate Glucose and Antioxidant 
Homeostasis in Cancer 

PrPC is widely expressed in human blood where the number of prion molecules 
bound per blood cell was detected to be 290 ± 140 on red blood cells [582], 619 ± 167 on 
platelets, and 11,363 ± 2320 on lymphocytes [583]. Since the normal number of RBCs in 
man is ~5 × 109/mL, it is reasonable to assume that RBCs may be the main source of cell-
associated PrPC in human blood [582]. Each of the four iron PPIX–heme complexes within 
hemoglobin of RBC contains an iron ion existing in either the reduced ferrous (Fe2+) state 
in heme, or the oxidized ferric (Fe3+) state in hemin [584–587]. PrP is a physiological ligand 
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of both heme and hemin, and may be responsible for regulating heme homeostasis and 
heme redox activities. The in vitro direct interaction between heme (Fe2+) and PrPC not 
only enhanced peroxidase activity, but also inhibited the conversion of PrPC to PrPSc while 
preventing fibril formation in the heme-amyloid-β complexes [588]. By contrast, hemin is 
the PPIX–heme complex with iron in the oxidized ferric (Fe3+) state and can generate ROS 
through the Fenton reaction [562]. The prion protein exhibits great affinity for hemin, and 
binding to hemin causes PrP to form insoluble aggregates in vitro; yet hemin (Fe3+) bound 
to PrPC also exhibited enhanced peroxidase activities with the implication that PrPC pos-
sesses inherent protective, antioxidant functions [369,589]. In fact, brain lysates from PrP 
knockout mice had higher levels of oxidative damage to proteins and lipids compared to 
WT mice of the same genetic background [590]. In addition, cultures of primary cerebellar 
granule neurons derived from PrP knockout mice were highly susceptible to H2O2-in-
duced toxicity as a result of significantly decreased glutathione reductase activities meas-
ured in vitro and in vivo [591]. 

Drug resistant cancers often display increased antioxidant defense via upregulation 
of reduced glutathione (GSH) production through metabolic modulation favoring a gly-
colytic shift that activates the pentose phosphate pathway (PPP) [592]. Recent evidence 
showed that both the glucose-6-phosphate dehydrogenase (G6PD) pathway and a less 
characterized hexose-6-phosphate dehydrogenase (H6PD) pathway contribute to acceler-
ated cancer cell growth [593]. In breast cancer, hyperglycemia is an important factor that 
can reduce chemotherapy efficacy by promoting proliferation, invasion, migration, and 
anti-apoptotic defenses via accelerated glucose metabolism [594]. Breast cancer MCF-7 cell 
lines resistant to adriamycin showed increased glucose metabolism with heightened ex-
pression of glucose transporter GLUT1 [595,596]. An important physiological function of 
PrPC is the maintenance of glucose homeostasis through regulation of intracellular iron 
levels that control glucose metabolism through heme synthesis [597]. Pancreatic iron 
stores in PrP knockout mice were significantly lower than WT controls and silencing ex-
pression of PrPC in human pancreatic β-cells (1.1B4) significantly lowered intracellular 
iron and dramatically upregulated GLUT1 and GLUT2. By contrast, iron overloading 
downregulated glucose transporters GLUT1 and GLUT2 in a PrPC-dependent manner 
[15]. Experimental results showed that PrPC may act as an ancillary protein that is required 
for the function and expression of GLUT1 where PrPC depletion inhibited glucose utiliza-
tion in human colorectal carcinoma cell lines and a human colorectal xenograft model in 
nude mice, with significant reductions in proliferation and survival of cancer cells both in 
vitro and in vivo [598]. In addition, prion-like aggregates of the islet amyloid polypeptide 
(IAPP) in the islets of Langerhans were proposed to play important roles in causing β-cell 
dysfunction and loss resulting in insulin resistance and hyperglycemia [599]. IAPP binds 
to heme-forming complexes, which facilitates the production of partially reduced oxygen 
species (PROS) that can damage β-cells [600–603]. 

Heme controls glucose regulation via direct interactions with insulin at two high-
affinity insulin heme-binding sites, and heme-insulin complexes exhibit enhanced perox-
idase activity and increased insulin cross-linking that lead to permanent loss of insulin 
functionality [604]. Increased heme levels and export from elevated FLVCR1 mRNA ex-
pression in adipose tissues of T2D patients were positively correlated with fasting glucose, 
triglycerides, and serum ferritin; but negatively correlated with insulin sensitivity [605]. 
The binding of hemin to prion may be a protective, physiological response that defends 
heme homeostasis since hemin with oxidized, ferric iron is unable to bind oxygen [606]. 
Hemin is potentially cytotoxic [607–609] due to its ability to inhibit glutathione S-transfer-
ase activity through competitive binding in human erythrocytes [610] and cause degrada-
tion and covalent cross-linking of glutathione reductase in yeast models [611]. Hemin 
bound to PrPC exhibits increased peroxidase activity compared to free hemin as a result 
of the coordination of PrPC octarepeat peptide region residues 34–94 to ferric iron in hemin 
[284,589]. However, this initial increase in peroxidase activity over a longer time frame 
may eventually elevate oxidative stress causing aggregation of insoluble PrPC isoforms 
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[369,483] which can potentially change the conformation and physiological functions of 
PrPC. In cancer cells, heme serves important functions in the regulation of cell cycle and 
cell growth. Inhibition of heme synthesis caused cell cycle arrest, senescence, and apopto-
sis [612]. Therefore, increased oxidative stress in the TME [613] may elevate prion-hemin 
binding, resulting in increased tumor MDR. 

3.3.3. Upregulation of Hemoglobin Synthesis by Hemin-Bound PrPC May Increase  
Cancer Multidrug Resistance 

The binding of hemin to PrPC in diverse cell lines results in aggregation or degrada-
tion of PrPC in a cell-type specific manner. However, the binding interaction also signifi-
cantly upregulates hemoglobin synthesis in hematopoietic cells, where brain organotype 
cultures exposed to hemin showed increased α-globin in PrP WT compared to PrP knock-
out samples. Additionally, RBCs from PrP knockout mice had markedly lower α-globin 
levels compared to PrP WT controls [614]. Since heme regulates gene expression transcrip-
tionally and post-transcriptionally [615,616], heme can initiate changes in key factors that 
control extensive processes from cell cycle and Ras signaling to chromatin structure, splic-
ing, and protein folding [617,618]. Heme controls chromatin and genome function previ-
ously not associated with heme regulation [619]. Thus, the upregulation of heme synthesis 
as a result of PrPC binding to hemin may be a significant factor contributing to cancer drug 
resistance [553]. Even though PrPC bound to hemin (ferric PPIX) showed rapid precipita-
tion with increased aggregation and decreased solubility [369,589], in vitro heme (ferrous 
PPIX) interaction with PrPC inhibited the seeded conversion of PrPC to PrPSc in protein 
misfolding cycling amplification assays where conversion could be inhibited at heme con-
centrations from 10 to 1000 μM but not at 1 μM [588]. Porphyrin tetrapyrroles (IC50 ~0.5–
1 mM) inhibited the formation of PK-resistant PrP without affecting the biosynthesis of 
normal PK-sensitive PrP in scrapie-infected mouse neuroblastoma (ScNB) cell cultures 
[620]. If the redox cycling between heme and hemin is intended as a natural feedback 
control for prion conversions, then the elevated ROS in TME together with increased oxi-
dative stress from prolonged peroxidase activity from PrPC-hemin complexes [369,588] 
may terminate the feedback cycle to favor increased hemin-PrPC binding that heightens 
cancer drug resistance as a result of elevated hemoglobin synthesis. Using melatonin to 
restore heme–hemin redox balance may prevent conversion of PrPC to PrPSc and preserve 
PrPC physiological functions while enhancing cancer drug efficacy. 

3.4. Melatonin Maintains Hemoglobin Redox Balance by Protecting CYB5R3 and Band 3  
Protein in an Antioxidant-Independent Manner 

Due to the natural redox state of ferrous and ferric iron in heme, hemoglobin can 
become “biologic Fenton reagents” which readily promote hydroxyl radical formation 
[621]. Therefore, erythrocytes (red blood cells) must depend on robust antioxidant sys-
tems to maintain heme redox balance [622–624]. The physiological autoxidation of hemo-
globin (0.5–3%/day) creates the reversible hemin (ferric PPIX) derivative, commonly 
known as methemoglobin (MetHb) [625,626], where the sixth coordination position of the 
heme iron is occupied by either hydroxide (OH−) or water (H2O) [627]. The water molecule 
coordinated to the iron atom in ferric MetHb results in increased instability compared to 
ferrous heme, and can also cause significant loss of heme at rates substantially higher than 
even ferrylHb (Fe4+) [628]. In addition, MetHb cannot bind oxygen and must be effectively 
reduced back to the ferrous state by NADH-cytochrome b5 reductase 3 (CYB5R3). 
CYB5R3, also known as NADH–cytochrome b5–metHb reductase, is a flavoprotein re-
sponsible for the transfer of electrons from NADH via cytochrome b5 (CYB5) to reduce 
MetHb, producing NAD+ [629,630]. CYB5R3 exists in two isoforms, where the soluble iso-
form is found exclusively in RBCs [631,632], and the membrane-bound isoform is ubiqui-
tously expressed in mammalian cells including erythrocytes, mitochondria, and lipid rafts 
[630,633–636]. 



Molecules 2022, 27, 705 21 of 66 
 

 

Elevated oxidative stress in the TME [613,637] may challenge antioxidant systems in 
RBCs leading to increased formation of MetHb and the release of free heme that can be 
complexed with PrPC. Rapid depletion of NADH in erythrocytes exposed to oxidants such 
as T-butylhydroperoxide resulted in elevated MetHb due to increased consumption to 
support recovery of reduced glutathione [638]. However, in 1999 when Tesoriere et al. 
exposed human erythrocytes to cumene hydroperoxide (cumOOH) to induce the oxida-
tion of a 1% suspension of RBCs, which led to 100% hemolysis of samples in 180 min, the 
addition of 50 µM melatonin effectively delayed denaturing of hemoglobin and release of 
hemin in an antioxidant-independent manner. Melatonin treatment inhibited hemin pre-
cipitation in oxidized RBCs compared to controls where increased hemin swiftly parti-
tioned into RBC membranes. Even though MetHb may be responsible for the generation 
of additional •OH, and melatonin is a potent scavenger of hydroxyl radical [126] with its 
relatively low oxidation potential of approximately +570 mV [639] compared to •OH [640], 
the protective effects observed by Tesoriere et al. were not related to antioxidant functions. 
Nevertheless, 35% of melatonin was consumed by RBCs under cumOOH challenge, while 
no melatonin was consumed by reactions with •OH in the experiment [641]. Six years 
later, Tan et al. demonstrated that melatonin may have been utilized to recycle NADH to 
regenerate CYB5R3 in the reduction of MetHb [642]. 

Tan and colleagues reported for the first time in 2005 that melatonin is able to recycle 
NAD+ to NADH, forming the N1-acetyl-N2-formyl-5-methoxykynuramin (AFMK) me-
tabolite in the process through the cleavage of the pyrrole ring [642,643]. Melatonin is an 
ideal electron donor due to its electron-rich aromatic indole ring [644]. The use of 1 milli-
molar (mM) melatonin prevented the loss of NADH in PC12 cells subjected to 150 µM 
paraquat incubation while 2000 µM MEL provided greatest protection to NADH loss from 
500 µM orthovanadate (Va5+) incubation [642] (Table 1). In the absence of NADH, melato-
nin reduced autoxidation of human oxyhemoglobin (HbO2). Autoxidation was increased 
when HbO2 was incubated with NADH and the effect was profoundly augmented by the 
addition of melatonin (each at 500 µM). However, addition of melatonin did not change 
the level of NADH consumption even though HbO2 autoxidation was markedly elevated. 
Since NADH levels remained constant, it was concluded that the presence of melatonin 
recycled NADH through electron donation to form AFMK as metabolite [642]. Melatonin 
can also protect band-3 protein at the membrane level in an antioxidant-independent 
manner. Addition of 300 μM H2O2 to erythrocytes decreased expression of band 3 and 
altered cell shapes without causing lipid peroxidation or formation of MetHb. In the ab-
sence of catalase, the addition of 100 μM melatonin reversed RBC cell-shape changes and 
restored band 3 protein conformation and expression levels. Interestingly, treatment with 
1 μM melatonin was ineffective and even caused cell-shape changes and increased lipid 
peroxidation in RBCs challenged with H2O2 [645,646]. The fact that melatonin at pharma-
cological doses exerted opposite effects on RBCs is reminiscent of various observations 
where low and high doses achieved opposite effects in stimulating or inhibiting prion 
activities, respectively [114,118] (Table 1). Regardless, the protection of band 3 by melato-
nin may be a significant contributing factor in the attenuation of TME-associated hypoxia 
and accelerated glycolysis, which directly modulate PrPC phase separation and related 
functions. 
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Table 1. Pleiotropic effects of low and high melatonin doses on in vitro and in vivo models involving 
prion propagation and/or associated processes. 

Model/Description Melatonin Doses Melatonin’s Effects Reference 
MSCs/Model of ER stress–induced 

ischaemic injury. 
1 μM MEL pretreatment 

30 min at 37 °C. 
Increased expression of PrPC and antioxi-
dant enzymes to reduce oxidative stress. 

[113] 

MSCs/Model of indoxyl 
sulfate-induced senescence. 

1 µM MEL + 5 µM 
pioglitazone. 

Treatment promoted highest MSC 
growth rates and inhibited senescence 

via enhanced PrPC expression. 
[647] 

TH1/Model of high glucose-medi-
ated fibrosis. 

1 µM MEL as pretreat-
ment. 

Prevented high glucose-induced 
fibrosis by recovering PrPC expression to 

 augment antioxidant protection. 
[648] 

SNU-C5/WT cells/Model of 
colorectal cancer cell apoptosis. 

1 mM MEL treatment 24 
h. 

Reduced PrPC and PINK1 expression to 
increase mitochondrial superoxide. [114] 

Human colon CSCs (S707)/Model 
 of PRNP overexpression. 

500 μM MEL + 1 μM  
5-FU treatment for 72 h. 

Treatment suppressed proliferation and  
increased apoptosis by inhibiting 

PrPC-OCT4 axis. 
[115] 

Murine/Model of human CSCs 
(S707) xenograft tumorigenesis. 

500 μM MEL + 1 μM  
5-FU treatment for 72 h. 

Treatment decreased PrPC expression to  
reduce tumor volume and suppress cell  

proliferation. 
[115] 

SNU-C5/Oxal-R/Model of PrPC 
expression in oxaliplatin-resistant 

colon cancer cells. 

500 μM MEL + 1 μM  
oxaliplatin for 24 h. 

MEL induced oxaliplatin-mediated 
apoptosis via blockade of PrPC-mediated  

antioxidant activities. 
[116] 

PC12/Model of paraquat-induced  
NADH depletion. 

1 mM MEL incubation  
at 35 °C for 1 h. 

Prevented the loss of NADH/NAD+ 
caused by paraquat treatment. [642] 

Oxyhemoglobin/Model of 
vanadate-induced NADH oxidation. 

2 mM MEL. 
Treatment conferred the highest level of  

protection against NADH oxidation 
compared to lower doses. 

[642] 

Murine/Model of B16-F10 
melanoma cell proliferation. 

1 mM MEL 24 h  
I incubation. 

Significantly reduced growth rate and 
migration. [649] 

C57BL/6J mice/Model of lung 
metastasis via B16-F10 cell injection. 

20 mg/kg in drinking 
water or IP injection for 

15 days. 

Melatonin did not alter cell migration or 
 proliferation. 

[649] 

Kunming mice/Model of copper-in-
duced liver injury. 

50 mg/kg IP injection 
once daily, 3 times. 

Inhibited copper-induced hepatotoxicity 
and DNA damage via copper chelation, 

preventing formation of hydroxyl radical. 
[430] 

MSC: mesenchymal stem cell; ER: endoplasmic reticulum; TH1: human renal proximal tubule epi-
thelial cell line; SNU-C5/WT: wild-type colon cancer cell line; PINK1: PTEN-induced kinase 1; CSCs: 
cancer stem cells; 5-FU: 5-fluorouracil; OCT-4: octamer-binding transcription factor 4; SNU-
C5/Oxal-R: oxaliplatin-resistant colon cancer cell line; PC12: adrenal phaeochromocytoma cell line; 
C57BL/6J mice: inbred strain with complete melatonin “knockdown”; IP: intraperitoneal; Kunming 
mice: outbred stock with no known report of melatonin “knockdown” (see Abbreviations for addi-
tional acronyms). 

3.5. Melatonin Increases O2 Saturation to Reduce TME Hypoxic Stress by Protecting Band 3 
Protein 

Hypoxia is an environmental selection pressure that can significantly exacerbate can-
cer drug resistance. As adaptation to hypoxia, changes in gene expression affecting cellu-
lar and physiological functions often result in increased cancer aggressiveness and treat-
ment resistance [650–652]. A recent study using in silico modeling and the simulation of 
in vivo cancer cell growth found that increasing oxygen concentration and pH value in 
the TME could result in significant shrinkage of tumor growth size [653]. Melatonin is an 
effective oncostatic agent capable of modulating important elements in TME that drive 
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immunosuppression, cell proliferation, metastasis, and resistance to apoptosis [654]. Us-
ing melatonin to maintain RBC heme redox balance and band 3 functionality directly tar-
geting the hypoxia feedback cycle in TME could be an important linchpin in dismantling 
the TME to enhance drug sensitivity [655–659]. 

Hypoxic stress promotes phase separation of glycolytic enzymes into cytoplasmic G-
bodies that increased glycolytic output in S. cerevisiae and human hepatocarcinoma cells 
[660,661]. Hypoxia can induce increased expression of PrPC [476] to facilitate persistence 
and storage of memory in animals and plants [24,25,662]. In vivo and ex vivo models 
showed post-hypoxic cells reoxygenated in the bloodstream retained a hypoxia-induced 
cancer stem cell-like phenotype where exposure to intratumoral hypoxia promoted chem-
otherapy resistance, increased recurrence, and capacity to metastasize in post-hypoxic 
cells compared to cells never exposed to hypoxia [663]. The fact that pathological prion 
isoforms can remain dormant for an extended period of time may be another significant 
consideration in targeting dormancy in cancer. Cancer cells become dormant when they 
switch from an active to a quiescent state and cancer dormancy remains a major challenge 
in clinical oncology where tumor recurrence can resurface years after initial diagnosis 
[664]. Not surprisingly, stress has been identified as one of the triggers that can awaken 
cancer cells from dormancy [47,665], and hypoxic stress that reduces pH is able to activate 
prion aggregation [666] and phase separation (Section 2.3.3). 

3.5.1. Hypoxia in TME Is Modulated by Fluctuations in Red Blood Cell Flux 
Band 3, or anion exchanger 1 (AE1), is probably the world’s quickest bicar-

bonate/chloride transporter with a turnover of ~105 chloride ions per second per molecule 
[667–669]. The C-terminal domain of this large polytopic membrane protein is embedded 
in the lipid bilayer, tethered to the cytoskeleton comprising the RBC membrane [670–672]. 
Band 3 is not only a critical anion transporter supporting oxygen delivery by RBCs [673], 
but also a primary scaffolding structure for large macromolecular complexes that modu-
late RBC membrane flexibility and integrity [670,674]. Disruption of band 3 and its asso-
ciation with proteins such as ankyrin-1 and spectrin tetramers in the RBC skeletal network 
[670] can induce a four-fold reduction in membrane stiffness that negatively impacts RBC 
membrane deformability and elasticity [675,676]. RBCs must maintain a high degree of 
deformability and elasticity in order to travel through capillaries and small vessels with 
diameters under 5 µM to fulfill their primary objective of oxygen delivery [677–679]. The 
loss of band 3 functionality can directly impact hypoxia in cancer TME, activating a posi-
tive feedback cycle where hypoxia increases band 3 disruptions to reduce RBC deforma-
bility, which in turn augments the reduction in red cell flux and O2 delivery. 

The deformability of RBCs, which is regulated by membrane flexibility, supports the 
normal transit of RBCs through capillaries with lumens narrower than the cell diameter 
of RBCs [680,681]. Capillary RBC flux is possibly the most important determining factor 
for oxygen delivery to cells [682] where changes in red cell flux (RCF) can lead to changes 
in vascular pO2 resulting in transient hypoxia. Experimental studies revealed that even in 
well-vascularized regions of tumors, a two-fold variation in RCF can produce intermittent 
hypoxia (IH) in 30% of the tissues, whereas in poorly vascularized regions, the same de-
gree of fluctuation produced significantly higher levels of transient hypoxia [683]. In ad-
dition, oxygen delivery by RBCs can be decreased by excess oxidative stress [684]. High 
O2 tension in arterial blood and hemoglobin’s natural inclination to become “biologic Fen-
ton reagents” result in the continuous production of ROS within RBCs [621,685]. Oxida-
tive stress, often elevated in patients with sickle cell disease (SCD), was found to be asso-
ciated with increased hemoglobin degradation, which correlated negatively with de-
creased RBC deformability [686,687]. SCD is caused by a substitution of valine for glu-
tamic acid at the β-6 position in the hemoglobin β-chain [688,689]. This polymorphism 
constrains band 3 mobility impacting RBC membrane properties [690] which not only de-
creases RBC deformability but also affects the ability of RBC to lower oxidative stress. 
Since erythrocytes lack the TCA cycle, the only source for the reducing equivalent 
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NADPH that recycles oxidized glutathione (GSSG) to GSH is the pentose phosphate path-
way (PPP) [691,692]. In erythrocytes, PPP facilitates the continuous reduction of NADP+ 
to NADPH via the conversion of glucose 6-phosphate (G6P) to 6-phosphogluconolactone 
catalyzed by glucose-6-phosphate-dehydrogenase (G6PD) [693]. Under steady-state con-
ditions, the main G6P flux is maintained via glycolysis. However, the flux to PPP under 
oxidative stress can be enhanced more than 20 times [694], and band 3 plays a critical role 
in the maintenance of glycolytic flux to PPP in RBCs. 

3.5.2. Hypoxia Prolongs Deoxygenation and Elevates Hemin Release to Damage RBC 
Membrane Integrity and Band 3 Proteins 

Glycolysis in RBC is responsible for the production of NADH [695], which is used by 
CYB5R3 to reduce MetHb [629], and the deoxygenation of erythrocytes (deoxyHb) can 
increase glycolysis by 26% in RBCs [696]. During deoxygenation, the temporary dissocia-
tion of ankyrin from band 3 that releases the spectrin/actin cytoskeleton from RBC mem-
branes can improve blood flow by enhancing RBC deformability without a loss in elastic-
ity [677,697]. However, hypoxia can increase deoxyHb [698] to prolong deoxygenation, 
rupturing band 3-ankyrin bridges to decrease membrane mechanical stability, deforma-
bility, increase abnormal morphology, and induce spontaneous vesiculation of RBCs 
[697,699]. Under normal oxygenation and deoxygenation conditions, band 3 suppresses 
glycolytic flux to maintain pentose phosphate pathway activities by forming complexes 
with glycolytic enzymes (GEs), inhibiting glycolysis. However, when oxygenated RBCs 
were treated with pervanadate, a reagent that inhibits band 3 protein binding by inducing 
phosphorylation of tyrosines [700], glycolytic fluxes were increased by 45% while PPP 
shunt fluxes became 66% lower than controls as a result of GE-band 3 complex inhibition 
[701]. Regardless of oxygenation status, GEs in band 3 knockout mice are unable to bind 
to RBC membranes but are distributed throughout the cytoplasm [702]. Interestingly band 
3 regulates its own phosphorylation according to stress sensed in the environment. 

Band 3 has been proposed to be a “redox stress sensor” that regulates its own phos-
phorylation as an adaptation to stress via dissociation from ankyrin and the spectrin-actin 
skeleton, which alters membrane structures [703,704]. Even though band 3 can selectively 
phosphorylate and remove oxidized regions from RBC membranes [705], increased hemin 
release as a result of oxidative stress [706] may still impact RBC deformability, decreasing 
O2 delivery [693]. Hemin has been shown to cause rapid destruction of RBC membrane 
integrity by destabilizing spectrin–protein 4.1–actin interactions [706]. Protein 4.1, a prin-
cipal constituent of RBC membranes, can be mobilized in a dose-dependent manner to 
cause complete loss of ankyrin-band 3 binding at high hemin levels [707,708]. In addition, 
hemin aggregates bound to RBC membranes can reorganize membrane lipid composition 
to induce membrane disorder and permeabilization [709]. 

3.5.3. Oxygen Saturation and Transport Are Directly Modulated by Heme Redox Balance 
The oxidative state of MetHb (Fe3+) also shifts the oxygen dissociation curve to the 

left, where the conversion of a ferrous atom to the ferric state results in increased affinity 
of the remaining ferrous atoms for O2, thus negatively impacting O2 transport and release 
[501,710,711]. On the other hand, band 3 may act as a “molecular switch” that mediates 
O2 transport by modulating O2 saturation and erythrocyte properties [712,713]. The pref-
erential binding of band 3 to deoxyHb shifts the O2 dissociation curve to the right in a 
concentration-dependent manner [714]. Kidney band 3 proteins lacking residues that bind 
deoxyHb were unable to alter Hb-O2 affinity [715]. Therefore, maintaining heme–hemin 
redox homeostasis is a critical consideration in controlling hypoxia in TME. Early experi-
mental results showed the PPP shunt only accounted for a small part of the reduction of 
total MetHb [716] and excess hemin reduction may require NADH-dependent CYB5R3 
ferrous-ferric iron recycling. Melatonin has been demonstrated to enhance NADH recy-
cling to regenerate CYB5R3 in the reduction of MetHb [641,642], protect RBC morphology, 
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and maintain expression of band 3 [645] all in an antioxidant-independent manner. In 
addition, melatonin was able to shift the O2 dissociation curve to the right, increasing O2 
release, in rats exposed to hypothermia [717]. Melatonin may also protect band 3 through 
modulation of lipid composition. It is perhaps not a coincidence that one of the important 
physiological functions of PrPC is heme/hemin-binding, and that both band 3 and PrPC 
reside in lipid rafts. 

3.5.4. The Role of Membrane Lipids and Lipid Rafts in Prion Physiological Function and 
Pathological Propagation 

Membrane surfaces offer distinct advantages in the formation of MLOs [718–720]. 
Lipid rafts, which are phase-separated regions in membrane lipid bilayers, enable ther-
modynamic interactions between membrane-anchored proteins and condensate compo-
nents, facilitating phase separation [721]. The unstructured N-terminal domain of PrPC is 
intrinsically disordered and is prone to phase separation under hypoxia or other stressful 
conditions such as changes in pH in TMEs. The PrPC GPI anchor signal comprising resi-
dues 231–253 is usually found tethered to lipid rafts [272,333,722] (Figure 1). Upon cleav-
age, the soluble N-terminal cleavage fragments (N1, N2) are released while the C-terminal 
cleavage fragments remain bound to lipid rafts on membranes via GPI anchors 
[272,380,381]. The shedding of PrPC by proteolysis cleaves residues 23–230 from the mem-
brane GPI anchor around residue 231, releasing a full-length, soluble PrPC, which was 
shown to reduce the cytotoxicity of amyloid-β oligomers [382]. The N-terminal domain of 
PrPC also contains a lipid raft-targeting region that allows interactions with membrane 
lipids in a GPI-independent manner [272,325,326,722]. However, tethering of the N-termi-
nal domain to lipid rafts can compromise prion protein cellular response to oxidative 
stress from increased aggregation of PK-resistant N-terminal fragments [723,724]. The 
composition of lipids in membranes and lipid rafts can influence lipid–protein interac-
tions, which induce either the formation of α-helix structures or β-sheet-rich amyloids 
[383,725]. In vitro studies reported that under physiological conditions, interactions be-
tween anionic lipids and rPrP can overcome energy barriers to increase β-sheet aggrega-
tion, converting a significant portion of α-helix in soluble, full-length rPrP to a PK-re-
sistant conformation similar to PrPSc [726]. Nevertheless, it is possible that the structured 
C-terminal domain contained in full-length WT PrP may be protective against formation 
of β-rich amyloid-like aggregates. 

3.6. Melatonin May Prevent PrPC Pathological Conversion from Phase Separation Caused by 
Mutations 

The C-terminal domain (residues 121–230) of human prion (huPrP) was shown to 
undergo large conformational changes induced by reductions in pH and increases in tem-
perature [727]. Copper bound to the fifth, nonoctarepeat binding site in the segment contain-
ing histidine residues 96 and 111 changes the structural plasticity of the N-terminal to a more 
compacted conformation that may facilitate prion conversion [366,728,729] (Figure 1). Simu-
lation of the conformational transition from PrPC to PrPSc using ratchet-and-pawl molecular 
dynamics (rMD)-based methodology revealed that the C-terminal domain acts as a pri-
mary conversion surface for the unstructured N-terminal domain, initiating a cascade of 
conformational transitions that provide further templating leading to the complete con-
version into the pathological PrPSc isoform [730]. Even though copper-binding can affect 
conformational changes in the C-terminal domains to alter aggregation behavior, muta-
tions in C-terminal domains in both yeast and human PrP can greatly influence prion 
propagation also [120,731]. 

The pathological mutation at residue 145 (Y145Stop), located within the highly struc-
tured globular C-terminal domain (121–230), produces a highly disordered region that 
spontaneously phase separates under physiological conditions resulting in a truncated N-
terminal that lacks C-terminal fragments [120,732]. Even though mutant Prp145 is normally 
degraded rapidly by the ubiquitin-protease system (UPS), PrP145 is prone to aggregation 
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and intracellular accumulation under stress or aging-related reduced proteasomal func-
tions [120,732]. Transgenic (Tg) mice with PrP but lack C1 fragments showed accelerated 
accumulation of pathogenic PrPSc after scrapie inoculation, whereas Tg(C1) mice express-
ing N-terminally deleted forms (PrP(Δ23–111)) in the absence of endogenous PrP re-
mained completely healthy and did not accumulate PK-resistant PrP after scrapie inocu-
lation [733]. Even though prion proteins are believed to be the cause for neurodegenera-
tive diseases, under physiological conditions, PrPC often act as important stress-induced 
signaling molecules to activate neuroprotective features to counter hypoxic brain damage 
(rodent in vivo, human brain tissue in vitro) [734] and ischemic injury (rat model) [735], 
whereas the deletion of PrPC in brains of transgenic PrPC-knockout mice increased infarct 
size by 200% [736] and aggravated neuronal cerebral ischemia through reduced post-is-
chemic phospho-Akt expression that impaired the antiapoptotic PI3K/Akt signaling path-
way [737]. Since melatonin regulates the UPS and promotes ubiquitination [308,738–740], 
the presence of adequate melatonin may ensure the proper, timely degradation of mu-
tated PrP145 by ubiquitin [732] to prevent phase-separated condensate formation of self-
templating amyloid-like aggregates and pathological truncation of PrPC. Without ade-
quate melatonin, even in the absence of mutations, the physiological association of the N-
terminal lipid raft-targeting region may cause lipid and membrane disruptions that alter 
membrane functions, signaling, and band 3 protein functionality, which can all exacerbate 
the detrimental effects of TMEs to enhance MDR. 

4. The Effects of Melatonin on Lipid Phase Transition, Lipid Composition, and Prion 
Propagation in Cancer Multidrug Resistance 

Lipid rafts are dynamic, transient, mobile, nanoscopic (10–200 nm) liquid-ordered 
(Lo) domains that are rich in sphingolipids and cholesterol formed as a result of thermo-
dynamic LLPS [741,742]. The location of lipid rafts on plasma membranes, intracellular 
membranes, and extracellular vesicles enable relevant biological functions, effectively 
serving as hotspots for signal transduction [743], trafficking, and sorting of proteins and 
lipids [744,745]. However, lipid rafts are increasingly associated with cancer MDR as quite 
a few cancer-related proteins involved in migration, invasion, and metastasis are found 
in lipid rafts, which serve as signaling hubs for these proteins [328,746–748]. Multidrug 
resistance protein 1 (MDR1), one of the ATP-binding cassette transporters responsible for 
drug efflux, resides in lipid rafts in prostate cancer cell lines [749], and the inhibition of 
flotillins—scaffolding proteins that are key components in lipid rafts—was shown to re-
verse MDR in colon cancer cell lines [750]. 

Lipid rafts have been extensively studied for the localization, trafficking, cellular sig-
naling, cell-to-cell transmission, and conversion of PrPC to PrPSc [272,326,751]. Lipid rafts 
are also involved in the metal/copper-mediated endocytosis of prions via clathrin-coated 
pits or caveolae [370–372]. In proliferating neuronal CAD 5 cell lines, PrPC is predomi-
nantly associated with lipid rafts on cytoplasmic membranes [752] while in human dental 
pulp mesenchymal stem cells, the integrity of lipid rafts is essential for the preservation 
of recombinant prion protein (23–231) physiological activities affecting neuronal differen-
tiation and signaling. The critical localization of PrP in lipid raft microdomains allows 
prions to recruit and interact with important biochemical signaling partners [753,754]. 
Even though lipid rafts may influence the conversion of PrPC into PK-resistant isoforms 
[723,724], interactions between PrP N-terminal residues and membranes can also lead to 
membrane dysfunctions [755]. 

The amyloidogenic prion residues 106–126 [756,757] in the N-terminal domain are 
characterized by hydrophilic and hydrophobic regions that can increase lipid density and 
membrane viscosity upon embedding into lipid bilayers [758]. The prion peptide frag-
ment 106–126 can form heterogenous single cation channels with different conductance 
and kinetic properties in lipid bilayers, modifying electrolyte homeostasis and affecting 
cellular functions [759–761] while the conversion of PrPC to PrPSc is often associated with 
membrane abnormalities including decreased membrane fluidity [762]. The conversion 
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process of PrPC to PrPSc involves the conformational change of α-helical structures to PK-
resistant β-sheets rather than chemical modifications. These conformational changes 
dysregulated membrane receptors causing a 5-to 13-fold reduction in bradykinin (Bk) 
binding affinity despite a 3-to 4-fold increase in Bk receptors on neuro N2a cells resulting 
in decreased Ca2+ and Bk second-messenger IP3 responses [763]. Due to the amphipathic 
nature of the prion fragment 106–126, it has been proposed that the toxic effects resem-
bling many membrane-active antimicrobial peptides (AMPs) are initiated by the direct 
association of monomeric peptides with membrane matrix. Experimental studies employ-
ing atomic force microscopy, Raman and electron paramagnetic resonance spectroscopy, 
revealed that PrP 106–126 membrane interactions can impair bilayer mechanical integrity 
via the modulation of both line tension, which can produce porous defects, and lipid vi-
brational dynamics. PrP 106–126 membrane interactions can enhance intra-chain confor-
mational disorder without altering inter-chain interactions in cylindrical-shaped phos-
phatidylcholine lipid molecules but increase inter-chain interactions without changing the 
intra-chain conformational order in cone-shaped phosphatidylethanolamine lipid mole-
cules [764]. 

The physiological relationship between prions and lipid membranes may be depend-
ent upon the presence of a sufficient level of melatonin in order to prevent or ameliorate 
potential pathological outcomes. Infecting transgenic mice that expressed PrP without 
GPI anchors with a stable form of PrPSc produced a completely new prion strain with 25–
50-times higher levels of PK-resistant PrPSc compared to WT mice. However, C57BL/6 
mice were selected for the breeding of GPI-knockout mutants used in these experiments 
[765]. Most inbred mice including C57BL/6 exhibit reduced melatonin production where 
the serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) mRNA 
encodes a severely truncated AANAT protein due to a stop codon being spliced into a 
pseudo-exon, with the C57BL/6J strain exhibiting complete melatonin “knockdown” 
[766], whereas two very short peaks in the middle of darkness and at light onset were 
observed in C57BL/6 mice [767]. It is, therefore, not unreasonable to hypothesize that the 
lack of continuous presence of melatonin in plasma lipid bilayers contributed to the path-
ogenic conversion of PrP fragments interacting with lipids in membranes. 

4.1. Melatonin Maintains Lipid Raft Integrity and Prion Physiological Functions by Modulating 
Cholesterol and Lipid Phase Transitions 

The amyloidogenic PrP106–126 residues exhibit fusogenic properties, promoting li-
pid mixing [768] which can be exacerbated by low pH or high cholesterol levels [769–771]. 
In fact, cholesterol suppression has been shown to mediate prion propagation where PrPC 
degradation and PrPSc conversion were substantially reduced in cholesterol-rich neuronal 
N2a cells treated with lovastatin, an inhibitor of the rate-limiting enzyme in the 3-hy-
droxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase cholesterol biosynthetic pathway 
[772,773]. In addition, PrP106–126 membrane interactions can impair bilayer mechanical 
integrity to form pores via modulating line tension [764]. Line tension maintains the en-
ergetic boundaries between lipid raft domains and surrounding membranes, and can, 
therefore, affect the physiological size, form, and shapes of lipid rafts [774]. Increasing 
cholesterol content in membrane lipids can reduce line tension to produce nanoscopic li-
pid rafts [775], which, theoretically, is a desirable physiological state as opposed to en-
larged, micron-sized lipid rafts that are produced under inflammatory conditions and 
carry pro-inflammatory, oncogenic signaling molecules [328,776,777]. However, in a 
highly oxidative, low pH TME, the effect of cholesterol on lipid rafts and prion propaga-
tion in the absence of adequate melatonin as a “broad-based metabolic buffer” to regulate 
lipid peroxidation, line tension, and cholesterol homeostasis becomes highly questionable 
(Figure 2). 

Breast cancer and prostate cancer are associated with high serum cholesterol 
[778,779] while their respective cell lines have been shown to contain more lipid rafts that 
were sensitive to cholesterol depletion-induced apoptosis compared to healthy cells [780]. 
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Cholesterol metabolism is increasingly associated with cancer MDR from increased gene 
transcription of drug efflux transporters or reprogramming of metabolic pathways that 
enable MDR phenotypes [781–783]. Depletion of cholesterol in lipid rafts in drug-resistant 
cancer cells was demonstrated to facilitate the accumulation of doxorubicin or rhodamine 
123 via suppressing MDR-1 activity and increasing drug sensitivity to overcome drug re-
sistance [784]. Increased cholesterol, on the contrary, can facilitate prion propagation due 
to its inherent electrostatic properties. Under physiological conditions, interactions be-
tween anionic lipids and rPrP can overcome energy barriers to increase β-sheet aggrega-
tion, converting a significant portion of α-helix in soluble, full-length rPrP to a PK-re-
sistant conformation similar to PrPSc [726]. Increasing cholesterol content can lower sur-
face charge of lipid membranes in saline solutions from positive to negative [785]. There-
fore, excess cholesterol may alter prion interactions with negatively charged anionic lipids 
to intensify the aggregation of PK-resistance β-sheet amyloids [786,787]. 

Melatonin not only directly interacts with cholesterol to counteract and alleviate the 
effects of cholesterol on lipid membranes [788], but also regulates lipid dynamics and 
composition, inducing lipid phase separation by modifying lipid hydrocarbon chain order 
[330,331]. By increasing disorder in the Ld phase, melatonin displaces cholesterol, driving 
cholesterol into the ordered Lo phase via competitive binding to lipid molecules [330]. The 
preferential location of melatonin at hydrophilic/hydrophobic membrane interface due to 
its ability to form strong H-bonds with hydrophilic lipid headgroups allows nonpolar 
melatonin to reverse cholesterol- and prion-induced membrane rigidity [762,789–793]. In 
the POPC/bovine brain sphingomyelin-supported lipid bilayer and POPC/bovine brain 
sphingomyelin/cholesterol-supported lipid bilayer membrane models, the PrP106–126 
fragment was demonstrated to cause membrane thinning in the Lo phase and membrane 
disintegration in the Ld phase [329]. More importantly, the results obtained suggest that 
PrP106–126 fragment membrane interactions mainly occurred in the Ld phase where the 
peptides bound to the headgroup region of lipids in the Ld phase of the membrane in-
creased membrane strain [329]. Since melatonin can stabilize lipid Lo/Ld phase-coexistence 
over an extended range of temperatures (up to 45 °C), effectively preventing the formation 
of the Ld phase at high temperatures [332], it is quite possible that local variations in mel-
atonin concentration can affect prion interactions with membrane lipids via the reordering 
of membrane lipids, which impacts the lipid phase transition, line tension, membrane flu-
idity, and functionality of lipid rafts. 

At 0.5 mol% concentration, melatonin can penetrate lipid bilayers to form fluid do-
mains where melatonin molecules are aligned parallel to phospholipid tails, but at 30 
mol% concentration, melatonin molecules become aligned parallel to the lipid bilayer 
close to the headgroup regions where one melatonin molecule associates with up to 2 lipid 
molecules, forming an ordered, uniform, lateral, crystal-like structure evenly distributed 
throughout membrane models tested [794]. The fact that exogenous melatonin supple-
mentation injected at doses between 10 and 200 mg/kg showed dramatically different 
dose-dependent subcellular distribution in male Wistar rat cerebral cortex, where mem-
branes were able to reach 10-times higher concentration levels than in the cytosol [795], 
may imply that high melatonin concentration produced under duress may act as a “broad-
based metabolic buffer,” disrupting prion interactions with membrane lipids to prevent 
aberrant phase separation resulting in pathological aggregations [721,726] while defend-
ing band 3 proteins from membrane disruptions caused by prion-hemin binding effects 
(Figure 2). 

4.2. Melatonin May Preserve Band 3 Interactions with Membrane Lipids in  
Antioxidant-Dependent and -Independent Manners 

Results from more recent atomistic molecular dynamics (MD) simulations investigat-
ing interactions between band 3 and nanoscopic lipid raft domains support early experi-
mental observations that band 3 prefers to localize in Lo lipid raft domains albeit the con-
centration of cholesterol, comprising ~45 mol% of erythrocyte membranes, greatly affects 
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membrane and band 3 interactions [796–800]. Cholesterol enrichment resulting in an ele-
vated cholesterol-to-phospholipids mole ratio exceeding the normal 0.9–1.0 amount re-
sulted in decreased membrane fluidity and strikingly abnormal changes in red cell con-
tours characterized by deranged folding and scalloping of cell margins [800]. These 
changes may be explained by band 3 interactions with lipid phases as a result of choles-
terol enrichment. All-atom MD simulations revealed that in ternary lipid bilayers com-
posed of saturated lipids, unsaturated lipids, and cholesterol, the band 3 C-terminal do-
main, which is associated with the erythrocyte cytoskeleton, interacted with high electro-
static attraction with anionic lipids in the Lo domains of phase-separated lipid bilayers, 
whereas in lipid bilayers with increased cholesterol concentration (50 mol%), band 3 was 
observed to preferentially target the Ld phase and avoided contacts with cholesterol-en-
riched Lo domains [796]. The association of band 3 with lipid nanodomains in erythrocytes 
greatly influences physiological functions [667,801] where band 3 fragments can move 
into lipid bilayers, seeking each other out to form functional fragments [802,803]. Thus, 
disturbances in lipid composition as a result of hypoxia or increased ROS in TMEs can 
potentially disrupt band 3 and associated proteins, including ankyrin-1 and spectrin te-
tramers in erythrocyte skeletal networks [670,697,699], reducing RBC membrane deform-
ability and elasticity [675,676] and lowering O2 saturation [498] to reinforce the negative 
feedback, which enhances TME-induced MDR. 

Lipid peroxidation is a cascading event initiated by ROS attacking anionic head-
groups at membrane interfaces [804] where oxidized moieties residing close to lipid head-
groups perturb membrane bilayer structures, modifying membrane properties including 
increasing membrane permeability [805], decreasing membrane fluidity [806,807], and in-
creasing line tension, which can transform nanometer-scale lipid rafts into larger, micron-
sized domains [776,808,809] that carry pro-inflammatory molecules often associated with 
cancer cell signaling pathways [328,777,780]. Experimental results using giant membrane 
vesicle model systems showed that lipid peroxidation induced significant changes in 
membrane phase behavior, causing a dramatic escalation of phase separation at room 
temperature, which increased the non-raft phase while decreasing affinity of tested raft 
proteins for raft domains [810]. Melatonin, with its free radical scavenging metabolites 
[131,133,134] and preferential location in membrane bilayer headgroups, enables dynamic 
interactions that can attenuate peroxidation effects via a reduction in bilayer thickness and 
increasing fluidity [790,794,811] while the presence of both hydrophilic and lipophilic 
moieties facilitates the neutralization of both aqueous and lipophilic free radicals includ-
ing hydroxyl radical (•OH) and hydroperoxyl radical (•OOH) [126,812,813]. The fact that 
melatonin prevents lipid peroxidation cascades and stabilizes lipid Lo-Ld phase separation 
over a range of temperatures to prevent the formation of non-raft Ld phase become espe-
cially meaningful when reports from correlative studies identified lipid peroxidation as 
the primary pathogenic event associated with the propagation of PK-resistant PrPres con-
verted from physiological PrPC [814]. Hence, without viable prions to contain damages of 
free hemin caused by excess oxidative stress, hemin aggregates bound to RBC membranes 
can reorganize membrane lipid composition to induce membrane disorder and permea-
bilization [709]. 

It is apparent that the role of melatonin in attenuating lipid peroxidation, preserving 
lipid raft and band 3 integrity, and supporting prion physiological functions can effec-
tively terminate negative feedback influences that exacerbate MDR in TMEs. Even though 
melatonin has been demonstrated to both increase and inhibit prion expression, the seem-
ingly controversial pleiotropic features of melatonin only accentuate its ultimate functions 
acting as a “broad-based metabolic buffer” that can support prion physiological stress-
response functions but suppress pathological, self-templating aggregates activated by hy-
poxic, stress-laden TMEs (Figure 2). 
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4.3. The Pleiotropic Effects of Melatonin in the Regulation of Prions in Cancer Multidrug  
Resistance 

Various experimental studies demonstrated that low levels of melatonin upregulate 
the expression of PrPC, stimulating antioxidant, protective, survival responses. Both in 
vitro and in vivo studies reported that melatonin upregulated the expression of PrPC to 
rescue mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis at only 1 
μM concentration [113], whereas silencing of PrPC inhibited all melatonin-mediated ther-
apeutic effects on MSC proliferation and functionality at the same 1 μM dose [118]. A 
quantity of 1 μM melatonin co-administered with 5 μM pioglitazone not only prevented 
indoxyl sulfate-induced senescence but also promoted high growth rates in MSCs [647]. 
Treatment of human renal proximal tubule epithelial (TH1) cells with 1 μM melatonin 
increased expression of PrPC to augment antioxidant effects against high glucose-medi-
ated fibrosis, successfully preventing fibrotic phenotype changes [648] (Table 1). Alterna-
tively, in order to inhibit or reverse prion-mediated oncogenic effects and drug resistance, 
a much higher dosage is often used instead. 

In a high oxidative TME, adequate NADH may be necessary to serve as essential 
substrates for CYB5R3 to reduce MetHb from ferric to ferrous heme [629,630]. Experi-
mental studies showed that at 2 mM concentration, melatonin provided the greatest pro-
tection against loss of NADH from exposure to 500 µM orthovanadate (Va5+) incubation 
[642], whereas to reverse acid pHe, a lower but continuous presence of melatonin was 
demonstrated to be requisite [489]. Hence, even though 1 mM melatonin was able to sig-
nificantly reduce in vitro proliferation and migration in murine melanoma B16-F10 cells, 
in vivo B16-F10 murine models using C57BL/6J mice treated with melatonin at 20 mg/kg 
(intraperitoneal injection or drinking water) matching in vitro dosage were unable to pre-
vent metastasis or curb proliferation [649] (Table 1). C57BL/6J are inbred mice expressing 
severely truncated AANAT that results in complete melatonin “knockdown” [766]. It is 
possible that 20 mg/kg melatonin supplementation via intraperitoneal injection or drink-
ing water in murine models incapable of producing melatonin did not provide a continu-
ous presence of melatonin required to reverse acidic pHe conditions that promote mela-
noma metastasis and proliferation [649,815]. However, 1 mM melatonin did promote col-
orectal cancer cell apoptosis by decreasing expression of PrPC and PINK1 to increase su-
peroxide accumulation resulting in mitochondria-mediated cell death. The effects of mel-
atonin were amplified when PrPC was completely knocked down [114]. By contrast, in a 
non-cancerous environment, melatonin upregulated PrPC and PINK1 where MSC har-
vested from chronic kidney disease mouse models treated with 100 μM melatonin exhib-
ited reduced H2O-induced senescence compared to normal mouse MSC [113] (Table 1). 

The interactions between prions and lipid rafts may also affect cancer stem cell reg-
ulation. Lipid rafts and caveolae play important roles in maintaining the self-renewal of 
embryonic stem (ES) cells by facilitating receptor-mediated signal transductions [816,817]. 
Cancer cells and ES cells share common gene transcription regulators such as Oct4 which 
contributes to pluripotency [818–820]. PrPC is able to regulate cancer stem cell properties 
via interactions with stem cell marker proteins [66]. By interacting with human mesen-
chymal-epithelial transition factor (c-MET), PrPC upregulated Oct4 to enhance cancer stem 
cell characteristics in colorectal cancer [821]. In various specimens from colorectal cancer 
patients, PrPC was found to directly regulate Oct4, and the expression of PrPC and Oct4 
were both upregulated and correlated significantly with metastasis and tumor stages 
[115]. Melatonin, not surprisingly, can enhance drug sensitivity, inhibiting colon cancer 
progression by regulating PrPC interactions with Oct4. Treating human colon cancer stem 
cells (CSCs) with 500 μM melatonin and 1 μM 5-fluorouracil (5-FU) caused apoptosis and 
inhibited expression of the stem cell marker Oct4 by inhibition of PrPC expression [115]. 
When used in combination with 1 μM oxaliplatin, 500 μM MEL melatonin promoted 
apoptosis of oxaliplatin-resistant colorectal cancer cells, again, by inhibition of PrPC [116]. 
Overexpression of PrPC plays a vital role in colorectal cancer oxaliplatin-resistance via en-
hanced superoxide dismutase (SOD) and catalase antioxidant activities, and oxaliplatin-
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resistance cancer cells often exhibit reduced intracellular superoxide anion generation. In 
addition, by inhibiting PrPC expression, melatonin can induce endoplasmic reticulum (ER) 
stress and apoptosis in oxaliplatin-resistant cells, effectively blocking oxaliplatin-associ-
ated elevation of SOD and catalase antioxidant activities [116] (Table 1). 

The use of melatonin at appropriate levels relevant to context may be a principal 
consideration when targeting prion and associated biological functions such as stem cell 
regulation. In non-cancerous settings, melatonin has been demonstrated to enhance plu-
ripotency and stem cell proliferation at 500 ng/L (2.15 nmol/L) by inducing the expression 
of stem cell markers including Oct4 [822]. At 10 nmol/L concentration in human non-can-
cer cells, melatonin selectively upregulated transcription of pluripotency and differentia-
tion markers such as NANOG [823], completely contrary to findings in ovarian cancer 
stem cell experiments where melatonin inhibited the invasion and migration of cancer 
stem cells by inhibiting NANOG expression, albeit at exceptionally high concentrations 
between 3.4 and 6.3 mM [824]. It is tempting to hypothesize that at higher concentrations, 
melatonin can modulate inhospitable environment to attenuate PrPC stress responses, 
whereas lower levels stimulate and support the natural, physiological protective activities 
of prions. 

5. Conclusions 
Liquid–liquid phase separation is postulated as the fundamental process driving the 

formation and dissolution of biomolecular condensates as rapid, energy-efficient, adap-
tive survival responses to exogenous and endogenous stress. Melatonin and prions are 
both ancient, evolutionarily conserved molecules exhibiting synergistic relationships that 
are integral to the stress response pathways employed ubiquitously by living organisms 
to counter exogenous and endogenous stress. Aberrant phase separation resulting in the 
aggregation of condensates may be implicated in the conversion of prions from physio-
logical soluble isoforms to pathological, self-templating isoforms intended to enhance sur-
vival via non-Mendelian, epigenetic inheritance, which, ironically, may enhance cancer 
drug resistance in less-than-optimal tumor microenvironments. As a “broad-based meta-
bolic buffer” in a highly-stressed TME, melatonin can not only temper pH and oxygen 
imbalances to support PrPC physiological functions and prevent phase separation-in-
duced pathological aggregation and conversion, but may also modulate epigenetic adap-
tations promoting metastasis, invasion, and stemness by intervening heme-and mem-
brane-PrPC interactions via redox activities and lipid homeostasis and lipid phase transi-
tion stabilization, respectively. If the in silico observation of increased expression of PrPC 
in cancer cells under optimal conditions does not modulate proliferation, resistance to cell 
death, and metabolism can be independently confirmed by in vitro/in vivo studies, then 
the concept of melatonin as a “broad-based metabolic buffer” characterized by exceptional 
antioxidant-dependent and -independent features that can fine-tune the tumor microen-
vironment at appropriate or even continuous applications may be an additional, but per-
haps essential, consideration as a viable therapeutic solution to counter cancer MDR. 
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Abbreviations 
3OHM 3-hydroxymelatonin 
Aβ β-amyloid peptide 
Aβo amyloid-β oligomers  
Akt protein kinase B 
ATP adenosine triphosphate 
COX cytochrome c oxidase 
CYB5R3 NADH-cytochrome b5 reductase 3  
DNA deoxyribonucleic acid 
ER endoplasmic reticulum 
ES embryonic stem 
G6P glucose 6-phosphate 
G6PD glucose-6-phosphate-dehydrogenase 
Ga giga annum (billion years) 
GLUT1 glucose transporter 1 
GOE great oxidation event  
H+ hydrogen proton 
H2O2 hydrogen peroxide 
IDR intrinsically disordered region 
Ld liquid disordered 
Lo liquid ordered  
LLPS liquid–liquid phase separation 
mM millimolar 
μM micromolar 
MD molecular dynamics 
MetHb methemoglobin 
MLO membraneless organelle 
MSC mesenchymal stem cell 
NAD+ nicotinamide adenine dinucleotide 
NADH nicotinamide adenine dinucleotide hydrogen 
NLRP3 NLR pyrin domain containing 3 (inflammasome) 
nM nanomolar 
•OH hydroxyl radical 
•OOH hydroperoxyl radical 
OXPHOS oxidative phosphorylation 
pHe extracellular pH 
pHi intracellular pH 
PI3K phosphoinositide 3-kinase 

POPE 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanola-
mine 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine 
PTM post-translational modification 
RBC red blood cell 
RCF red cell flux 
Redox oxidation-reduction 
RNA ribonucleic acid 
RNP ribonucleoprotein 
ROS reactive oxygen species 
UPS ubiquitin-protease system 
UVR ultraviolet radiation  
VDA vascular disrupting agent 
WT wild-type 
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