Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of “Yinghong 9” and “Huangyu” Large-Leaf-Variety Black Tea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Large-Leaf Varieties on Black Tea Physicochemical Qualities
2.2. Effect of Large-Leaf Variety on Black Tea Sensory Characteristics
2.3. Effect of Different Harvesting Seasons on Physicochemical Qualities
3. Materials and Methods
3.1. Experimental Materials
3.2. Methods of Black Tea Processing
3.3. Amino Acid and Soluble Sugar Determination
3.4. Tea Pigment Determination
3.5. Total Polyphenol, Catechin and Caffeine Determination
3.6. Descriptive Sensory Analysis
3.7. Color Evaluation of Tea Infusion
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, Z.H.; Gao, L.Z.; Chen, Z.M.; Zeng, X.; Huang, J.A.; Gong, Y.S.; Li, Q.; Liu, S.Q.; Lin, Y.; Cai, S.X.; et al. Leading progress on genomics, health benefits and utilization of tea resources in China. Nature 2019, 566, S15–S19. [Google Scholar]
- Umeda, M.; Tominaga, T.; Kozuma, K.; Kitazawa, H.; Furushima, D.; Hibi, M.; Yamada, H. Preventive effects of tea and tea catechins against influenza and acute upper respiratory tract infections: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 4189–4202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Muraleedharan, N.N.; Murugesan, S.; Kottur, G.; Anand, M.P.; Nishadh, A. Biochemical quality characteristics of CTC black teas of south India and their relation to organoleptic evaluation. Food Chem. 2011, 129, 117–124. [Google Scholar] [CrossRef]
- Sun, C.L.; Yuan, J.M.; Koh, W.P.; Lee, H.P.; Yu, M.C. Green tea and black tea consumption in relation to colorectal cancer risk: The singapore chinese health study. Carcinogenesis 2007, 28, 2143–2148. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.Q.; Ma, J.Q.; Ma, C.L.; Yao, M.Z.; Chen, L. Determination of catechin content in representative chinese tea germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Griffin, T.; Kraner, D.; Schaffner, K.; Sharma, D.; Leitch, A. Environmental factors variably impact tea secondary metabolites in the context of climate change: A systematic review. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Deka, H.; Barman, T.; Dutta, J.; Devi, A.; Tamuly, P.; Kumar Paul, R.; Karak, T. Catechin and caffeine content of tea (Camellia sinensis L.) leaf significantly differ with seasonal variation: A study on popular cultivars in North East India. J. Food Compos. Anal. 2021, 96, 103684. [Google Scholar] [CrossRef]
- Feng, L.; Gao, M.J.; Hou, R.Y.; Hu, X.Y.; Zhang, L.; Wan, X.C.; Wei, S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem. 2014, 155, 98–104. [Google Scholar] [CrossRef]
- Ansari, H.R.; Asil, H.M.; Rabiei, B.; Dadashpour, A. Impacts of flushing and fermentation times on the quality of black tea. Genetika 2011, 43, 537–548. [Google Scholar] [CrossRef]
- Xu, W.P.; Song, Q.S.; Li, D.X.; Wan, X.C. Discrimination of the production season of chinese green tea by chemical analysis in combination with supervised pattern recognition. J. Agric. Food Chem. 2012, 60, 7064–7070. [Google Scholar] [CrossRef]
- Pal, R.S.; Sud, R.G.; Sharma, R. Polyphenolics profile and their seasonal variation in fresh shoots of kangra tea [Camellia sinensis (L) O kuntze] grown in North Western India. Int. J. Plant Res. 2015, 28, 62–73. [Google Scholar] [CrossRef]
- Yao, L.H.; Caffin, N.; D’arcy, B.; Jiang, Y.M.; Shi, J.; Singanusong, R.T.; Liu, X.; Datta, N.; Kakuda, Y.; Xu, Y. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J. Agric. Food Chem. 2005, 53, 6477–6484. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.Y.; Liang, Y.R.; Wang, H.; Wang, K.R.; Lu, J.L.; Zhang, G.H.; Lin, W.P.; Li, M.; Fang, Q.Y. A study on the chemical composition of albino tea cultivars. J. Hortic. Sci. Biotechnol. 2015, 81, 809–812. [Google Scholar] [CrossRef]
- Wei, K.; Wang, L.Y.; Zhou, J.; Wei, H.; Zeng, J.M.; Jiang, Y.W. Comparison of catechins and purine alkaloids in albino and normal green tea cultivars (Camellia sinensis L.) by HPLC. Food Chem. 2012, 130, 720–724. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Liu, S.; Li, J.; Yang, X.; Liu, Y.; Liu, Z. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Sci. 2011, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.F.; Han, Z.X.; Feng, L.; Gao, L.P.; Gao, M.-J.; Gruber, M.Y.; Zhang, Z.L.; Xia, T.; Wan, X.-C.; Wei, S. Metabolic Flux Redirection and Transcriptomic Reprogramming in the Albino Tea Cultivar ‘Yu-Jin-Xiang’ with an Emphasis on Catechin Production. Sci. Rep. 2017, 7, 45062. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Han, J.; Zhu, B.; Jia, H.; Yang, T.; Wang, R.; Deng, W.W.; Zhang, Z.Z. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). Planta 2018, 249, 363–376. [Google Scholar] [CrossRef]
- Qiao, X.Y.; Li, B.; He, Z.Q.; Chen, H.Q.; Cao, J.X.; Huang, H.L. Analysis on antioxidant activity in vitro of yellowish Yinghong 9 black tea. Qual. Saf. Agro-Prod. 2018, 5, 85–90. [Google Scholar]
- Huang, H.L.; Qiao, X.Y.; Li, B.; Zhang, C.D.; Chen, H.Q. Effects of different withering methods on black tea quality of yellowish Yinghong 9. Food Mach. 2018, 34, 26–30,66. [Google Scholar]
- Ye, F.; Qiao, X.Y.; Gui, A.H.; Wang, S.P.; Liu, P.P.; Wang, X.P.; Zheng, L.; Feng, L.; Han, H.S.; Gao, S.W.; et al. Metabolomics provides a novel interpretation of the changes in main compounds during black tea processing through different drying methods. Molecules 2021, 26, 6739. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Kobayashi, E.; Katsuno, T.; Asanuma, T.; Fujimori, T.; Ishikawa, T.; Tomomura, M.; Mochizuki, K.; Watase, T.; Nakamura, Y.; et al. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chem. 2012, 135, 2268–2276. [Google Scholar] [CrossRef]
- Wang, J.P.; Li, W.C.; Fan, Q.Y.; Tang, X.L. Study on black tea processing suitability of white tea cultivars in jingning county. China Tea Process. 2018, 1, 29–32. [Google Scholar]
- Wei, Y.Y.; Li, T.H.; Xu, S.S.; Ni, T.C.; Deng, W.W.; Ning, J.M. The profile of dynamic changes in yellow tea quality and chemical composition during yellowing process. LWT 2021, 139, 110792. [Google Scholar] [CrossRef]
- Ma, C.Y.; Cao, J.X.; Li, J.X.; Zhou, B.; Tang, J.C.; Miao, A.Q. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis. Sci. Rep. 2016, 6, 33369. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Sabhapondit, S.; Karak, T.; Bhuyan, L.P.; Goswami, B.C.; Hazarika, M. Diversity of catechin in northeast Indian tea cultivars. Sci. World J. 2012, 2012, 485193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, T.; Scharbert, S.; Stark, T. Molecular and gustatory characterisation of the impact taste compounds in black tea infusions. Dev. Food Sci. 2006, 43, 3–8. [Google Scholar]
- Fan, Y.G.; Zhao, X.X.; Wang, H.Y.; Tian, Y.Y.; Xiang, Q.C.; Zhang, L.X. Study on physiological characteristics of leaves with different colors of ‘Huangjinya’. J. Tea Sci. 2019, 39, 530–536. [Google Scholar]
- Wu, Q.J.; Chen, Z.D.; Sun, W.J.; Deng, T.T.; Chen, M.J. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. baijiguan. Front. Plant Sci. 2016, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.R.; Lu, J.L.; Zhang, L.Y.; Wu, S.; Wu, Y. Estimation of tea quality by infusion colour difference analysis. J. Sci. Food Agric. 2005, 85, 286–292. [Google Scholar] [CrossRef]
- Wibowo, S.; Grauwet, T.; Santiago, J.S.; Tomic, J.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chem. 2015, 187, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Buchelt, B.; Wagenführ, A. Evaluation of colour differences on wood surfaces. Eur. J. Wood Wood Prod. 2011, 70, 389–391. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Jin, J.; Chen, H.; Du, Y.Y.; Ye, J.H.; Lu, J.L.; Lin, C.; Dong, J.J.; Sun, Q.L.; Wu, L.Y.; et al. Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L.) O. Kuntze). Afr. J. Biotechnol. 2008, 7, 3283–3287. [Google Scholar]
- Zagoskina, N.V.; Alyavina, A.K.; Gladyshko, T.O.; Lapshin, P.V.; Egorova, E.A.; Bukhov, N.G. Ultraviolet rays promote development of photosystem ii photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis). Russ. J. Plant Physiol. 2005, 52, 731–739. [Google Scholar] [CrossRef]
- Salman, S.; Yılmaz, C.; Gökmen, V.; Özdemir, F. Effects of fermentation time and shooting period on amino acid derivatives and free amino acid profiles of tea. LWT 2021, 137, 110481. [Google Scholar] [CrossRef]
- Mutuku, A.; Wanyoko, J.; Wachira, F.; Kamunya, S.; Chalo, R.; Kimutai, S.; Moseti, K.; Karori, S. Influence of geographical regions on catechin and caffeine levels in tea (Camellia sinensis). Am. J. Plant Sci. 2016, 7, 562–571. [Google Scholar] [CrossRef]
- Deng, W.W.; Fei, Y.; Wang, S.; Wan, X.C.; Zhang, Z.Z.; Hu, X.Y. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regul. 2013, 71, 295–299. [Google Scholar] [CrossRef]
- Song, R.; Kelman, D.; Johns, K.L.; Wright, A.D. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 2012, 133, 707–714. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Shi, Y.Z.; Ma, L.F.; Yi, X.Y.; Ruan, J.Y. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS ONE 2014, 9, e112572. [Google Scholar] [CrossRef] [Green Version]
- Sud, R.G.; Baru, A. Seasonal variations in theaflavins, thearubigins, total colour and brightness of Kangra orthodox tea (Camellia sinensis (L) O. Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 2000, 80, 1291–1299. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Liu, M.Y.; Ruan, J.Y. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biol. 2017, 17, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, D.D.; Miao, A.Q.; Cao, J.X.; Wang, W.W.; Chen, W.; Pang, S.; He, X.G.; Ma, C.Y. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: In comparison with natural aged and fresh white tea. Food Chem. 2018, 265, 189–199. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Q.; Zhang, Z.; Wan, X. A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene. J. Food Compos. Anal. 2009, 22, 137–141. [Google Scholar] [CrossRef]
- Morris, D.L. Quantitative determination of carbohydrates with dreywood’s anthrone reagent. Science 1984, 107, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Jiang, Y.M.; Caffin, N.; D’Arcy, B.; Datta, N.; Liu, X.; Singanusong, R.; Xu, Y. Phenolic compounds in tea from Australian supermarkets. Food Chem. 2006, 96, 614–620. [Google Scholar] [CrossRef]
- Camargo, A.E.I.; Daguer, D.A.E.; Barbosa, D.S. Green tea exerts antioxidant action in vitro and its consumption increases total serum antioxidant potential in normal and dyslipidemic subjects. Nutr. Res. 2006, 26, 626–631. [Google Scholar] [CrossRef]
Parameters | Yh | Hy | ||||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | Spring | Summer | Autumn | |
Tea polyphenol/mg·g−1 | 64.30 ± 7.50 e | 156.10 ± 11.30 b | 134.40 ± 2.5 c | 94.30 ± 8.40 d | 174.70 ± 3.20 a | 149.70 ± 8.80 b |
Soluble sugar/mg·g−1 | 70.50 ± 2.50 c | 84.90 ± 0.20 a | 80.90 ± 1.50 b | 57.80 ± 2.60 e | 63.20 ± 0.50 d | 69.00 ± 0.40 c |
Caffeine/mg·g−1 | 27.20 ± 1.20 e | 30.60 ± 1.10 d | 31.40 ± 0.30 c | 30.40 ± 0.40 d | 40.50 ± 0.50 a | 38.60 ± 0.90 b |
Amino acids/mg·g−1 | 30.90 ± 0.60 b | 30.20 ± 0.30 b | 28.90 ± 0.20 b | 34.10 ± 1.50 a | 31.50 ± 0.80 b | 31.70 ± 0.60 b |
TBs/mg·g−1 | 38.90 ± 0.10 a | 26.50 ± 0.60 c | 22.10 ± 1.00 d | 32.40 ± 0.30 b | 19.60 ± 0.70 e | 21.80 ± 0.70 d |
TRs/mg·g−1 | 16.70 ± 0.60 a | 9.40 ± 0.30 b | 6.90 ± 0.20 d | 17.20 ± 0.50 a | 7.30 ± 0.60 d | 8.40 ± 0.70 c |
TFs/mg·g−1 | 1.00 ± 0.10 b | 1.20 ± 0.10 a | 0.70 ± 0.00 c | 0.90 ± 0.10 b | 0.90 ± 0.10 b | 0.90 ± 0.20 b |
TF/TR ratio | 0.06 ± 0.10 c | 0.13 ± 0.10 a | 0.10 ± 0.00 b | 0.05 ± 0.01 c | 0.12 ± 0.01 a | 0.11 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Guo, X.; Li, B.; Chen, H.; Qiao, X. Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of “Yinghong 9” and “Huangyu” Large-Leaf-Variety Black Tea. Molecules 2022, 27, 8720. https://doi.org/10.3390/molecules27248720
Ye F, Guo X, Li B, Chen H, Qiao X. Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of “Yinghong 9” and “Huangyu” Large-Leaf-Variety Black Tea. Molecules. 2022; 27(24):8720. https://doi.org/10.3390/molecules27248720
Chicago/Turabian StyleYe, Fei, Xinbo Guo, Bo Li, Haiqiang Chen, and Xiaoyan Qiao. 2022. "Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of “Yinghong 9” and “Huangyu” Large-Leaf-Variety Black Tea" Molecules 27, no. 24: 8720. https://doi.org/10.3390/molecules27248720
APA StyleYe, F., Guo, X., Li, B., Chen, H., & Qiao, X. (2022). Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of “Yinghong 9” and “Huangyu” Large-Leaf-Variety Black Tea. Molecules, 27(24), 8720. https://doi.org/10.3390/molecules27248720