Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of ITN-POP and TN-POP
2.2. Iodine Capture of ITN-POP and TN-POP
3. Materials and Methods
3.1. General Information
3.2. Synthesis of ITN and ITN-POP
3.3. Iodine Adsorption Capacity Measurements
3.3.1. Iodine Vapor Uptake Capacity
3.3.2. Iodine Adsorption from Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated Microporous Polymers: Design, Synthesis and Application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-L.; Tobin, J.M.; Xu, Z.; Vilela, F. Conjugated Porous Polymers for Photocatalytic Applications. J. Mater. Chem. A 2016, 4, 18677–18686. [Google Scholar] [CrossRef]
- Liu, M.; Guo, L.; Jin, S.; Tan, B. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, J.; Zhang, K.A.I. Designing Conjugated Porous Polymers for Visible Light-Driven Photocatalytic Chemical Transformations. Mater. Horiz. 2020, 7, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-X.; Liang, H.-P.; Anito, D.A.; Ding, X.; Han, B.-H. Emerging Applications of Porous Organic Polymers in Visible-Light Photocatalysis. J. Mater. Chem. A 2020, 8, 7003–7034. [Google Scholar] [CrossRef]
- Chen, W.; Chen, P.; Zhang, G.; Xing, G.; Feng, Y.; Yang, Y.-W.; Chen, L. Macrocycle-derived hierarchical porous organic polymers: Synthesis and applications. Chem. Soc. Rev. 2021, 50, 11684–11714. [Google Scholar] [CrossRef]
- Yang, D.-H.; Tao, Y.; Ding, X.; Han, B.-H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761–791. [Google Scholar] [CrossRef]
- Dawson, R.; Stevens, L.A.; Drage, T.C.; Snape, C.E.; Smith, M.W.; Adams, D.J.; Cooper, A.I. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J. Am. Chem. Soc. 2012, 134, 10741–10744. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, Y.; Zhao, X.; Qin, M.; Li, X.; Jin, W.; Zhang, D. One-pot synthesis of conjugated microporous polymers based on extended molecular graphenes for hydrogen storage. Polymer 2019, 174, 96–100. [Google Scholar] [CrossRef]
- Cenit, S.; Torres-Cuevas, E.S.; González-Ortega, A.; Palacio, L.; Lozano, A.E.; Freeman, B.D.; Prádanos, P.; Hernández, A. Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers 2021, 13, 931. [Google Scholar]
- Ma, H.; Yang, B.-B.; Wang, Z.; Wu, K.; Zhang, C. A three dimensional graphdiyne-like porous triptycene network for gas adsorption and separation. RSC Adv. 2022, 12, 28299–28305. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Cao, C.-X.; Han, B.-H. A cationic porous organic polymer for high-capacity, fast, and selective capture of anionic pollutants. J. Hazard. Mater. 2019, 367, 348–355. [Google Scholar] [CrossRef]
- Anito, D.A.; Wang, T.-X.; Liu, Z.-W.; Ding, X.; Han, B.-H. Iminodiacetic acid-functionalized porous polymer for removal of toxic metal ions from water. J. Hazard. Mater. 2020, 400, 123188. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, L.; Ma, F.; Zhu, X.; Dong, C.; Zhao, F. Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J. Hazard. Mater. 2021, 419, 126538. [Google Scholar] [CrossRef]
- Mandal, W.; Fajal, S.; Mollick, S.; Shirolkar, M.M.; More, Y.D.; Saurabh, S.; Mahato, D.; Ghosh, S.K. Unveiling the Impact of Diverse Morphology of Ionic Porous Organic Polymers with Mechanistic Insight on the Ultrafast and Selective Removal of Toxic Pollutants from Water. ACS Appl. Mater. Interfaces 2022, 14, 20042–20052. [Google Scholar] [CrossRef]
- Ernawati, L.; Wahyuono, R.A.; Halim, A.; Noorain, R.; Widiyastuti, W.; Dewi, R.T.; Enomae, T. Hierarchically 3-D Porous Structure of Silk Fibroin-Based Biocomposite Adsorbent for Water Pollutant Removal. Environments 2021, 8, 127. [Google Scholar] [CrossRef]
- Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; et al. Electrochemical Route to Fabricate Film-Like Conjugated Microporous Polymers and Application for Organic Electronics. Adv. Mater. 2013, 25, 3443–3448. [Google Scholar] [CrossRef]
- Gu, C.; Huang, N.; Chen, Y.; Qin, L.; Xu, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angew. Chem. Int. Ed. 2015, 54, 13594–13598. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Huang, N.; Chen, Y.; Zhang, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angew. Chem. Int. Ed. 2016, 55, 3049–3053. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C.; Zheng, Y.; Zhang, X. Isotruxene-based porous polymers as efficient and recyclable photocatalysts for visible-light induced metal-free oxidative organic transformations. Green Chem. 2021, 23, 8878–8885. [Google Scholar] [CrossRef]
- Lan, F.; Zhou, C.; Huang, X.; An, B.; Zhang, X. Metal-free, atom and redox-economical construction of C-C bonds enabled by oligofluorene-containing hypercrosslinked polymers. Green Chem. 2022, 24, 2391–2396. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, C.; Huang, X.; Wu, J.-Y.; Zhang, X. Phenylphenothiazine-Based Porous Organic Polymers as Visible-Light Heterogeneous Photocatalysts for Switchable Bromoalkylation and Cyclopropanation of Unactivated Terminal Alkenes. ACS Sustain. Chem. Eng. 2022, 10, 4650–4659. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, R.; Gao, L.; Huang, X.; Zhang, X. Unveiling the Synthetic Potential of 1,3,5-Tri(10H-phenothiazin-10-yl)benzene-Based Optoelectronic Material: A Metal-Free and Recyclable Photocatalyst for Sequential Functionalization of C(sp2)-H Bonds. ACS Appl. Mater. Interfaces 2022, 14, 30962–30968. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Liu, C.-S.; Zhou, C.; Huang, X.; Wu, J.-Y.; Zhang, X. Developing Highly Reducing Conjugated Porous Polymer: A Metal-Free and Recyclable Approach with Superior Performance for Pinacol C-C Coupling Under Visible Light. J. Mater. Chem. A 2022, 10, 16578–16584. [Google Scholar] [CrossRef]
- Li, X.-C.; Wang, C.-Y.; Lai, W.-Y.; Huang, W. Triazatruxene-based materials for organic electronics and optoelectronics. J. Mater. Chem. C 2016, 4, 10574–10587. [Google Scholar] [CrossRef]
- El Sayed, M.T. Synthetic Routes to Electroactive Organic Discotic Aromatic Triazatruxenes. J. Heterocycl. Chem. 2018, 55, 21–43. [Google Scholar] [CrossRef] [Green Version]
- García-Frutos, E.M.; Omenat, A.; Barberá, J.; Serrano, J.L.; Gómez-Lor, B. Highly ordered p-extended discotic liquid-crystalline triindoles. J. Mater. Chem. 2011, 21, 6831–6836. [Google Scholar] [CrossRef]
- Cleuvenbergen, S.V.; Asselberghs, I.; García-Frutos, E.M.; Gómez-Lor, B.; Clays, K.; Perez-Moreno, J. Dispersion Overwhelms Charge Transfer in Determining the Magnitude of the First Hyperpolarizability in Triindole Octupoles. J. Phys. Chem. C 2012, 116, 12312–12321. [Google Scholar] [CrossRef]
- Lai, W.-Y.; Zhu, R.; Fan, Q.-L.; Hou, L.-T.; Cao, Y.; Huang, W. Monodisperse Six-Armed Triazatruxenes: Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence. Macromolecues 2006, 39, 3707–3709. [Google Scholar] [CrossRef]
- Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q.-Q.; Huang, W. Kinked Star-Shaped Fluorene/Triazatruxene Co-oligomer Hybrids with Enhanced Functional Properties for High-Performance, Solution-Processed, Blue Organic Light-Emitting Diodes. Adv. Funct. Mater. 2008, 18, 265–276. [Google Scholar] [CrossRef]
- Ruiz, C.; Arrechea-Marcos, I.; Benito-Hernández, A.; Gutierrez-Puebla, E.; Monge, M.A.; López Navarrete, J.T.; Ruiz Delgado, M.C.; Ponce Ortiz, R.; Gómez-Lor, B. Solution-processed N-trialkylated triindoles for organic field effect transistors. J. Mater. Chem. C 2018, 6, 50–56. [Google Scholar] [CrossRef]
- Han, T.; Bulut, I.; Méry, S.; Heinrich, B.; Lévêque, P.; Leclerc, N.; Heiser, T. Improved structural order by side-chain engineering of organic small molecules for photovoltaic applications. J. Mater. Chem. C 2017, 5, 10794–10800. [Google Scholar] [CrossRef]
- Khan, M.U.; Iqbal, J.; Khalid, M.; Hussain, R.; Braga, A.A.C.; Hussain, M.; Muhammad, S. Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv. 2019, 9, 26402–26418. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Jiang, D. Conjugated Microporous Polymers as Molecular Sensing Devices: Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing. J. Am. Chem. Soc. 2012, 134, 8738–8741. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Xuan, W.; Peng, P.; Li, Z.; Lu, R.; Wu, S.; Tian, Z.; Cao, X. Chiral separation and characterization of triazatruxene-based face-rotating polyhedra: The role of non-covalent facial interactions. Chem. Commun. 2018, 54, 4685–4688. [Google Scholar] [CrossRef]
- Alkaş, A.; Telfer, S.J. Synthesis and Characterization of Zn-Carboxylate Metal-Organic Frameworks Containing Triazatruxene Ligands. Aust. J. Chem. 2019, 72, 786–796. [Google Scholar] [CrossRef]
- Tang, X.; Li, Z.; Liu, H.; Qu, H.; Gao, W.; Dong, X.; Zhang, S.; Wang, X.; Sue, A.C.-H.; Yang, L.; et al. Hollow and highly diastereoselective face-rotating polyhedra constructed through rationally engineered facial units. Chem. Sci. 2021, 12, 11730–11734. [Google Scholar] [CrossRef]
- Ali, R.; Alvi, S. The story of π-conjugated isotruxene and its congeners: From syntheses to applications. Tetrahedron 2020, 76, 131345. [Google Scholar] [CrossRef]
- Bergman, J.; Eklund, N. Synthesis and studies of tris-indolobenzenes and related compounds. Tetrahedron 1980, 36, 1445–1450. [Google Scholar] [CrossRef]
- Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 2003, 729, 3–128. [Google Scholar] [CrossRef]
- Benniston, A.C.; Harriman, A.; Li, P. Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation. J. Am. Chem. Soc. 2010, 132, 8897–8899. [Google Scholar]
- Azambre, B.; Chebbi, M. Evaluation of Silver Zeolites Sorbents Toward Their Ability to Promote Stable CH3I Storage as AgI Precipitates. ACS Appl. Mater. Interfaces 2017, 9, 25194–25203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hao, S.; Gao, L.; Zhang, Y. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Ann. Nucl. Energy 2014, 72, 237–241. [Google Scholar] [CrossRef]
- Muhammad, R.; Attia, N.F.; Cho, S.; Park, J.; Jung, M.; Chung, J.; Oh, H. Exploitation of surface heterogeneity and textural properties in nanoporous carbon fabrics for efficient iodine capture. Thin Solid Films 2020, 706, 138049. [Google Scholar] [CrossRef]
- Yang, J.H.; Cho, Y.-J.; Shin, J.-M.; Yim, M.-S. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. J. Nucl. Mater. 2015, 465, 556–564. [Google Scholar] [CrossRef]
- Hijazi, A.; Azambre, B.; Finqueneisel, G.; Vibert, F.; Blin, J.L. High iodine adsorption by polyethyleneimine impregnated nanosilica sorbents. Microporous Mesoporous Mater. 2019, 288, 109586. [Google Scholar] [CrossRef]
- Sava, D.F.; Rodriguez, M.A.; Chapman, K.W.; Chupas, P.J.; Greathouse, J.A.; Crozier, P.S.; Nenoff, T.M. Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2011, 133, 12398–12401. [Google Scholar] [CrossRef]
- Zhang, X.; Silva, I.; Fazzi, R.; Sheveleva, A.M.; Han, X.; Spencer, B.F.; Sapchenko, S.A.; Tuna, F.; McInnes, E.J.L.; Li, M.; et al. Iodine Adsorption in a Redox-Active Metal-Organic Framework: Electrical Conductivity Induced by Host-Guest Charge-Transfer. Inorg. Chem. 2019, 58, 14145–14150. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhu, Y.; Kuang, G.; Yu, G.; Jin, R. Application of Porous Organic Polymers in the Radioactive Iodine Adsorption. Prog. Chem. 2017, 29, 766–775. [Google Scholar]
- Xie, W.; Cui, D.; Zhang, S.-R.; Xu, Y.-H.; Jiang, D.-L. Iodine capture in porous organic polymers and metal-organic frameworks materials. Mater. Horiz. 2019, 6, 1571–1595. [Google Scholar] [CrossRef]
- Greci, L.; Tommasi, G.; Petrucci, R.; Marrosu, G.; Trazza, A.; Sgarabotto, P.; Righi, R.; Alberti, A. Oxidative trimerization of indole: On the formation of dications and radical cations by reaction of indole and nitrosobenzene in the presence of acids. J. Chem. Soc. Perkin Trans. 2 2000, 11, 2337–2342. [Google Scholar] [CrossRef]
- Zhang, X.; Maddock, J.; Nenoff, T.M.; Denecke, M.A.; Yang, S.; Schröder, M. Adsorption of iodine in metal–organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262. [Google Scholar] [CrossRef]
- Chen, D.-Y.; Fu, Y.; Yu, W.-G.; Yu, G.-P.; Pan, C.-Y. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chem. Eng. J. 2018, 334, 900–906. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Sun, H.-X.; Yang, R.-X.; Wang, T.-T.; Pei, C.-J.; Xiang, Z.-T.; Zhu, Z.-Q.; Liang, W.-D.; Li, A.; Deng, W.-Q. Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake. J. Mater. Chem. A 2015, 3, 87–91. [Google Scholar] [CrossRef]
- Pourebrahimi, S.; Pirooz, M. Reversible iodine vapor capture using bipyridine-based covalent triazine framework: Experimental and computational investigations. Chem. Eng. J. Adv. 2021, 8, 100150. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Chen, Q.; Sui, Z.-Y.; Pan, L.; Yu, J.-H.; Han, B.-H. Preparation and adsorption performance of cross-linked porous polycarbazoles. J. Mater. Chem. A 2014, 2, 16181–16189. [Google Scholar] [CrossRef]
- Rakstys, K.; Abate, A.; Dar, M.I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M.; et al. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 16172–16178. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; An, B.; Zhou, C.; Zhang, X. Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture. Molecules 2022, 27, 8722. https://doi.org/10.3390/molecules27248722
Gao R, An B, Zhou C, Zhang X. Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture. Molecules. 2022; 27(24):8722. https://doi.org/10.3390/molecules27248722
Chicago/Turabian StyleGao, Rong, Bohang An, Cen Zhou, and Xiao Zhang. 2022. "Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture" Molecules 27, no. 24: 8722. https://doi.org/10.3390/molecules27248722
APA StyleGao, R., An, B., Zhou, C., & Zhang, X. (2022). Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture. Molecules, 27(24), 8722. https://doi.org/10.3390/molecules27248722