On the Nature of the Bonding in Coinage Metal Halides
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohanessian, G.; Goddard, W.A. Valence-bond concepts in transition metals: Metal hydride diatomic cations. Acc. Chem. Res. 1990, 23, 386–392. [Google Scholar] [CrossRef]
- Galbraith, J.M.; Shurki, A.; Shaik, S. A Valence Bond Study of the Bonding in First Row Transition Metal Hydride Cations: What Energetic Role Does Covalency Play? J. Phys. Chem. A 2000, 104, 1262–1270. [Google Scholar] [CrossRef]
- Mann, J.B.; Meek, T.L.; Knight, E.T.; Capitani, J.F.; Allen, L.C. Configuration Energies of the d-Block Elements. J. Am. Chem. Soc. 2000, 122, 5132–5137. [Google Scholar] [CrossRef]
- Kaupp, M. “Non-VSEPR” Structures and Bonding in d0 Systems. Angew. Chem. Int. Ed. 2001, 40, 3534–3565. [Google Scholar] [CrossRef]
- Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 2006, 28, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Radenković, S.; Danovich, D.; Shaik, S.; Hiberty, P.C.; Braïda, B. The nature of bonding in metal-metal singly bonded coinage metal dimers: Cu2, Ag2 and Au2. Comput. Theor. Chem. 2017, 1116, 195–201. [Google Scholar] [CrossRef]
- Joy, J.; Danovich, D.; Kaupp, M.; Shaik, S. Covalent vs Charge-Shift Nature of the Metal–Metal Bond in Transition Metal Complexes: A Unified Understanding. J. Am. Chem. Soc. 2020, 142, 12277–12287. [Google Scholar] [CrossRef]
- Liakos, D.G.; Neese, F. Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)2+ Core Revisited. J. Chem. Theor. Comput. 2011, 7, 1511–1523. [Google Scholar] [CrossRef]
- Pyykko, P. Relativistic effects in structural chemistry. Chem. Rev. 1988, 88, 563–594. [Google Scholar] [CrossRef]
- Linares, M.; Braida, B.; Humbel, S. Valence Bond Approach of Metal−Ligand Bonding in the Dewar−Chatt−Duncanson Model. Inorg. Chem. 2007, 46, 11390–11396. [Google Scholar] [CrossRef]
- Shaik, S.; Hiberty, P.C. A Chemist’s Guide to Valence Bond Theory; Wiley-Interscience: New York, NY, USA, 2008. [Google Scholar]
- Shurki, A.; Braïda, B.; Wu, W. Valence Bond Theory with XMVB. In Complementary Bonding Analysis; Grabowsky, S., Ed.; De Gruyter STEM: Berlin, Germany, 2021; ISBN 978-3-11-066006-7. [Google Scholar]
- Wu, W.; Su, P.; Shaik, S.; Hiberty, P.C. Classical Valence Bond Approach by Modern Methods. Chem. Rev. 2011, 111, 7557–7593. [Google Scholar] [CrossRef]
- Shaik, S.; Danovich, D.; Hiberty, P. Valence Bond Theory—Its Birth, Struggles with Molecular Orbital Theory, Its Present State and Future Prospects. Molecules 2021, 26, 1624. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Polymeropoulos, E.E.A. Warshel: Computer Modeling of Chemical Reactions in Enzymes and Solutions, J. Wiley & Sons, Inc., New York, 1991, ISBN 0-47-1533955, 236 Seiten, Preis: £ 71,-. Ber. Der Bunsenges. Für Phys. Chem. 1992, 96, 1323–1324. [Google Scholar] [CrossRef]
- Bauer, P.; Barrozo, A.; Purg, M.; Amrein, B.A.; Esguerra, M.; Wilson, P.; Major, D.T.; Åqvist, J.; Kamerlin, S.C.L. Q6: A comprehensive toolkit for empirical valence bond and related free energy calculations. SoftwareX 2018, 7, 388–395. [Google Scholar] [CrossRef]
- Prah, A.; Purg, M.; Stare, J.; Vianello, R.; Mavri, J. How Monoamine Oxidase A Decomposes Serotonin: An Empirical Valence Bond Simulation of the Reactive Step. J. Phys. Chem. B 2020, 124, 8259–8265. [Google Scholar] [CrossRef]
- Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P.C. Charge-shift bonding and its manifestations in chemistry. Nat. Chem. 2009, 1, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Braïda, B.; Hiberty, P.C. The essential role of charge-shift bonding in hypervalent prototype XeF2. Nat. Chem. 2013, 5, 417–422. [Google Scholar] [CrossRef]
- Shaik, S.; Danovich, D.; Galbraith, J.M.; Braïda, B.; Wu, W.; Hiberty, P.C. Charge-Shift Bonding: A New and Unique Form of Bonding. Angew. Chem. Int. Ed. 2019, 59, 984–1001. [Google Scholar] [CrossRef]
- Shaik, S.; Danovich, D.; Braida, B.; Wu, W.; Hiberty, P.C. New Landscape of Electron-Pair Bonding: Covalent, Ionic, and Charge-Shift Bonds. In The Chemical Bond II. Structure and Bonding; Mingos, D.M.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 170, pp. 169–212. ISBN 978-3-319-33522-3. [Google Scholar]
- Hiberty, P.C.; Danovich, D.; Shaik, S. A Conversation on New Types of Chemical Bonds. Israel J. Chem. 2021. [Google Scholar] [CrossRef]
- Wu, W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P.C. The Inverted Bond in [1.1.1] Propellane is a Charge-Shift Bond. Angew. Chem. Int. Ed. 2009, 48, 1407–1410. [Google Scholar] [CrossRef]
- Danovich, D.; Foroutan-Nejad, C.; Hiberty, P.C.; Shaik, S. Nature of the Three-Electron Bond. J. Phys. Chem. A 2018, 122, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Fayet, P.; Granzer, F.; Hegenbart, G.; Moisar, E.; Pischel, B. The role of small silver clusters in photography. Eur. Phys. J. D 1986, 3, 299–302. [Google Scholar] [CrossRef]
- Neipp, C.; Pascual, C.; Beléndez, A. Mixed phase-amplitude holographic gratings recorded in bleached silver halide materials. J. Phys. D Appl. Phys. 2002, 35, 957–967. [Google Scholar] [CrossRef]
- Kang, S.-K.; Yoon, A.S.-K.; Kim, Y.-M. Copper-Catalyzed Coupling Reaction of Terminal Alkynes with Aryl- and Alkenyliodonium Salts. Org. Lett. 2001, 3, 2697–2699. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Brust, M.; Schmidbaur, H. Gold—An introductory perspective. Chem. Soc. Rev. 2008, 37, 1759–1765. [Google Scholar] [CrossRef]
- Tolbatov, I.; Coletti, C.; Marrone, A.; Re, N. Reactivity of Gold(I) Monocarbene Complexes with Protein Targets: A Theoretical Study. Int. J. Mol. Sci. 2019, 20, 820. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marzo, T.; Coletti, C.; La Mendola, D.; Storchi, L.; Re, N.; Marrone, A. Reactivity of antitumor coinage metal-based N-heterocyclic carbene complexes with cysteine and selenocysteine protein sites. J. Inorg. Biochem. 2021, 223, 111533. [Google Scholar] [CrossRef] [PubMed]
- Rabilloud, F. Structure and stability of coinage metal fluoride and chloride clusters (MnFn and MnCln, M = Cu, Ag, or Au; n = 1–6). J. Comput. Chem. 2012, 33, 2083–2091. [Google Scholar] [CrossRef]
- Rabilloud, F. Structure and Bonding in Coinage Metal Halide Clusters MnXn, M = Cu, Ag, Au; X = Br, I; n = 1–6. J. Phys. Chem. A 2012, 116, 3474–3480. [Google Scholar] [CrossRef]
- Li, X. Metalophilic interaction in gold halide: Quantum chemical study of AuX (X = F-at). J. Comput. Chem. 2014, 35, 923–931. [Google Scholar] [CrossRef]
- Li, X.; Geng, Z.-D. Investigation into the metallophilic interaction in coinage-metal halides: An ab initio study of CMX (CM = Cu and Ag, X = F − I). J. Mol. Model. 2015, 21, 205. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Peterson, K.A.; Puzzarini, C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chim. Acta 2005, 114, 283–296. [Google Scholar] [CrossRef]
- Andrae, D.; Dolg, M.; Stoll, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Hiberty, P.; Flament, J.; Noizet, E. Compact and accurate valence bond functions with different orbitals for different configurations: Application to the two-configuration description of F2. Chem. Phys. Lett. 1992, 189, 259–265. [Google Scholar] [CrossRef]
- Hiberty, P.C.; Humbel, S.; Byrman, C.P.; Van Lenthe, J.H. Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH. J. Chem. Phys. 1994, 101, 5969–5976. [Google Scholar] [CrossRef]
- Hiberty, P.C.; Shaik, S. Breathing-orbital valence bond method—A modern valence bond method that includes dynamic correlation. Theor. Chem. Acc. 2002, 108, 255–272. [Google Scholar] [CrossRef]
- Chirgwin, B.H.; Coulson, C.A. The electronic structure of conjugated systems. VI. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1950, 201, 196–209. [Google Scholar] [CrossRef]
- Song, L.; Mo, Y.; Zhang, Q.; Wu, W. XMVB: A program for ab initio nonorthogonal valence bond computations. J. Comput. Chem. 2005, 26, 514–521. [Google Scholar] [CrossRef]
- Chen, Z.; Ying, F.; Chen, X.; Song, J.; Su, P.; Song, L.; Mo, Y.; Zhang, Q.; Wu, W. XMVB 2.0: A new version of Xiamen valence bond program. Int. J. Quantum Chem. 2014, 115, 731–737. [Google Scholar] [CrossRef]
- Guichemerre, M.; Chambaud, G.; Stoll, H. Electronic structure and spectroscopy of monohalides of metals of group I-B. Chem. Phys. 2002, 280, 71–102. [Google Scholar] [CrossRef]
- Dewar, M.J.S. A review of π Complex Theory. Bull. Soc. Chim. Fr. 1951, 18, C71. [Google Scholar]
- Chatt, J.; Duncanson, L.A. 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes. J. Chem. Soc. (Resumed) 1953, 2939–2947. [Google Scholar] [CrossRef]
- Braïda, B.; Chen, Z.; Wu, W.; Hiberty, P.C. Valence Bond Alternative Yielding Compact and Accurate Wave Functions for Challenging Excited States. Application to Ozone and Sulfur Dioxide. J. Chem. Theory Comput. 2020, 17, 330–343. [Google Scholar] [CrossRef]
- Bouabça, T.; Braïda, B.; Caffarel, M. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo. J. Chem. Phys. 2010, 133, 44111. [Google Scholar] [CrossRef]
- Braïda, B.; Toulouse, J.; Caffarel, M.; Umrigar, C.J. Quantum Monte Carlo with Jastrow-valence-bond wave functions. J. Chem. Phys. 2011, 134, 084108. [Google Scholar] [CrossRef]
- Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure; Springer: Boston, MA, USA, 1979. [Google Scholar] [CrossRef]
- Evans, C.; Gerry, M.C. The Pure Rotational Spectra of AuCl and AuBr. J. Mol. Spectrosc. 2000, 203, 105–117. [Google Scholar] [CrossRef][Green Version]
- Zhang, H.; Danovich, D.; Wu, W.; Braïda, B.; Hiberty, P.C.; Shaik, S. Charge-Shift Bonding Emerges as a Distinct Electron-Pair Bonding Family from Both Valence Bond and Molecular Orbital Theories. J. Chem. Theory Comput. 2014, 10, 2410–2418. [Google Scholar] [CrossRef] [PubMed]
MX | def2-TZVP | cc-pVQZ | aug-cc-pVQZ | Exp. [47] |
---|---|---|---|---|
CuF | 1.768 | 1.750 | 1.748 | 1.745 |
CuCl | 2.103 | 2.068 | 2.062 | 2.051 |
CuBr | 2.231 | 2.182 | 2.177 | 2.170 |
AgF | 1.988 | 1.981 | 1.981 | 1.980 |
AgCl | 2.295 | 2.294 | 2.288 | 2.281 |
AgBr | 2.415 | 2.400 | 2.393 | 2.390 |
AuF | 1.919 | 1.926 | 1.926 | 1.918 |
AuCl | 2.214 | 2.220 | 2.216 | 2.199 |
AuBr | 2.333 | 2.329 | 2.326 | 2.320 |
MAE | 0.02 | 0.01 | 0.01 | |
0.06 | 0.02 | 0.02 |
def2-TZVP | cc-pVQZ | aug-cc-pVQZ | Exp. | |||
---|---|---|---|---|---|---|
CCSD(T) | SD-BOVB | CCSD(T) | SD-BOVB | CCSD(T) | ||
CuF | 91.8 | 90.4 a | 95.7 | 97.7 a | 99.0 | 98.9 [53]; 102.9 [54] |
CuCl | 83.2 | 82.1 a | 85.8 | 85.0 a | 89.0 | 90.3 [53]; 90.6 [54] |
CuBr | 77.3 | 74.9 a | 79.6 | 77.9 a | 83.3 | 79.1 [53] |
AgF | 76.4 | 73.2 a | 77.8 | 81.6 a | 81.1 | 85.3 [53]; 83.9 [54] |
AgCl | 71.8 | 70.8 a | 72.0 | 75.4 a | 74.7 | 66.7 [53]; 73.6 [54] |
AgBr | 67.5 | 64.8 | 67.3 | 70.5 | 70.8 | 67.0 [53]; 71.5 [54] |
AuF | 63.9 | 59.7 | 66.8 | 70.7 | 69.1 | 70.3 [53]; 73.8 [54] |
AuCl | 64.0 | 61.0 | 65.5 | 63.1 a | 68.2 | 66.9 [53]; 72.2 [55] |
AuBr | 60.9 | 56.5 | 62.0 | 64.2 | 66.3 | 50.9 [53]; 68.3 [55] |
MAE | 5.0 | 7.6 (2.6) | 3.2 | 1.8 (1.5) | 0.00 |
MX | ||||||
---|---|---|---|---|---|---|
CuF | 21.8 | 24.1 | 16.9 | 18.7 | 38.7 | 42.8 |
CuCl | 15.6 | 19.0 | 9.5 | 11.6 | 25.2 | 30.6 |
CuBr | 15.0 | 20.0 | 7.9 | 10.5 | 22.9 | 30.5 |
AgF | 28.2 | 38.5 | 12.5 | 17.0 | 40.7 | 55.5 |
AgCl | 26.8 | 37.8 | 8.3 | 11.7 | 35.1 | 49.5 |
AgBr | 27.3 | 42.1 | 6.4 | 9.8 | 33.7 | 51.9 |
AuF | 55.4 | 92.8 | 10.1 | 17.0 | 65.5 | 109.8 |
AuCl | 47.4 | 77.8 | 7.2 | 11.9 | 54.6 | 89.7 |
AuBr | 44.3 | 78.5 | 6.1 | 10.9 | 50.4 | 89.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đorđević, S.; Radenković, S.; Shaik, S.; Braïda, B. On the Nature of the Bonding in Coinage Metal Halides. Molecules 2022, 27, 490. https://doi.org/10.3390/molecules27020490
Đorđević S, Radenković S, Shaik S, Braïda B. On the Nature of the Bonding in Coinage Metal Halides. Molecules. 2022; 27(2):490. https://doi.org/10.3390/molecules27020490
Chicago/Turabian StyleĐorđević, Slađana, Slavko Radenković, Sason Shaik, and Benoît Braïda. 2022. "On the Nature of the Bonding in Coinage Metal Halides" Molecules 27, no. 2: 490. https://doi.org/10.3390/molecules27020490
APA StyleĐorđević, S., Radenković, S., Shaik, S., & Braïda, B. (2022). On the Nature of the Bonding in Coinage Metal Halides. Molecules, 27(2), 490. https://doi.org/10.3390/molecules27020490