Fast and Non-Destructive Profiling of Commercial Coffee Aroma under Three Conditions (Beans, Powder, and Brews) Using GC-IMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-IMS Results
2.2. Biomarkers Identified Using GC-IMS
2.3. Comparison between GC-IMS and E-Nose
3. Materials and Methods
3.1. Coffee Samples
3.2. Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)
3.3. E-Nose
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bressanello, D.; Liberto, E.; Cordero, C.; Sgorbini, B.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchi, C. Chemometric Modeling of Coffee Sensory Notes through Their Chemical Signatures: Potential and Limits in Defining an Analytical Tool for Quality Control. J. Agric. Food Chem. 2018, 66, 7096–7109. [Google Scholar] [CrossRef] [PubMed]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee Roasting and Aroma Formation: Application of Different Time-Temperature Conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef] [PubMed]
- Abdul Ghani, N.H.; Bingol, G.; Li, B.; Yu, W.; Young, B. Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles. J. Food Process Eng. 2019, 42, e13063. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging. Food Chem. 2022, 371, 131159. [Google Scholar] [CrossRef] [PubMed]
- Gigl, M.; Frank, O.; Barz, J.; Gabler, A.; Hegmanns, C.; Hofmann, T. Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee. J. Agric. Food Chem. 2021, 69, 1027–1038. [Google Scholar] [CrossRef]
- He, Y.; Zhang, H.; Wen, N.; Hu, R.; Wu, G.; Zeng, Y.; Li, X.; Miao, X. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography-mass spectrometry. J. Sci. Food Agric. 2018, 98, 154–165. [Google Scholar] [CrossRef]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef]
- Cohen, M.J.; Karasek, F.W. Plasma ChromatographyTM—A New Dimension for Gas Chromatography and Mass Spectrometry. J. Chromatogr. Sci. 1970, 8, 330–337. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.P.; Blank, I.; Li, F.; Li, C.; Liu, Y. GC x GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cai, D.; Li, W.; Blank, I.; Liu, Y. Application of gas chromatography-ion mobility spectrometry (GC-IMS) and ultrafast gas chromatography electronic-nose (uf-GC E-nose) to distinguish four Chinese freshwater fishes at both raw and cooked status. J. Food Biochem. 2022, 46, e13840. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Martin-Gomez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace—Gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Dobao-Prieto Mdel, M.; Arce, L.; Valcarcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S.; Oliveira, R.C.S.; Agresti, P.C.M.; Augusti, R. A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. J. Food Eng. 2009, 92, 345–352. [Google Scholar] [CrossRef]
- Schnabel, F.; de Melo Virginio Filho, E.; Xu, S.; Fisk, I.D.; Roupsard, O.; Haggar, J. Shade trees: A determinant to the relative success of organic versus conventional coffee production. Agrofor. Syst. 2017, 92, 1535–1549. [Google Scholar] [CrossRef]
- Hendon, C.H.; Colonna-Dashwood, L.; Colonna-Dashwood, M. The role of dissolved cations in coffee extraction. J. Agric. Food Chem. 2014, 62, 4947–4950. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Qu, H.-Y.; Xie, M.-Z.; Zeng, G.; Huang, H.-Y.; Ren, F.; Chen, N.-H. Direct authentication of three Chinese materia medica species of the Lilii Bulbus family in terms of volatile components by headspace-gas chromatography-ion mobility spectrometry. Anal. Methods 2019, 11, 530–536. [Google Scholar] [CrossRef]
- Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchi, C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC-MS to describe the sensory properties in cup. Food Chem. 2017, 214, 218–226. [Google Scholar] [CrossRef]
- ILópez-Galilea, I.; Fournier, N.; Cid, C.; Guichard, E. Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. J. Agric. Food Chem. 2006, 54, 8560–8566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, M.; Li, Y.; Wang, B. Research Progress in Flavor Components of Coffee. Food Res. Dev. 2016, 37, 213–218. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Q.; Linforth, R.; Fisk, I.D.; Yang, N. Modifying Robusta coffee aroma by green bean chemical pre-treatment. Food Chem. 2019, 272, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Cheong, M.W.; Tan, A.A.; Liu, S.Q.; Curran, P.; Yu, B. Pressurised liquid extraction of volatile compounds in coffee bean. Talanta 2013, 115, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Huang, J.; Hu, J.; Zhang, Y.; Wang, S.; Li, C.; Marcone, M.; Xie, M. Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Sci. Hum. Wellness 2013, 2, 87–92. [Google Scholar] [CrossRef]
- Märk, J.; Pollien, P.; Lindinger, C.; Blank, I.; Märk, T. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J. Agric. Food Chem. 2006, 54, 2786–2793. [Google Scholar] [CrossRef]
- Liu, C.; Yang, N.; Yang, Q.; Ayed, C.; Linforth, R.; Fisk, I.D. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chem. 2019, 281, 8–17. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Sebald, K.; Dunkel, A.; Schafer, J.; Hinrichs, J.; Hofmann, T. Sensoproteomics: A New Approach for the Identification of Taste-Active Peptides in Fermented Foods. J. Agric. Food Chem. 2018, 66, 11092–11104. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.P.; Deng, S.; Li, C.; Xu, X.; Zhou, G.; Liu, Y. Application of sensory evaluation, GC-ToF-MS, and E-nose to discriminate the flavor differences among five distinct parts of the Chinese blanched chicken. Food Res. Int. 2020, 137, 109669. [Google Scholar] [CrossRef]
No. | Compounds | CAS | RI | Dt/ Riprel | C-Bean | P-Bean | S-Bean | C-Powder | P-Powder | S-Powder | C-Brew | P-Brew | S-Brew |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aldehydes (5) | |||||||||||||
1 | butanal monomer | 123-72-8 | 546 | 1.3 | 21 ± 2 a | 23 ± 3 a | 96 ± 6 d | 27 ± 3 ab | 23 ± 2 ab | 94 ± 6 d | 46 ± 4 c | 30 ± 3 b | 98 ± 3 d |
2 | butanal dimer | 123-72-8 | 615 | 1.1 | 86 ± 5 b | 80 ± 7 ab | 93 ± 9 c | 98 ± 2 c | 83 ± 0 b | 75 ± 1 a | 99 ± 1 c | 96 ± 1 c | 94 ± 1 c |
3 | pentanal | 110-62-3 | 660 | 1.2 | 85 ± 7 bc | 95 ± 7 c | 84 ± 21 bc | 43 ± 5 a | 63 ± 3 ab | 90 ± 8 c | 81 ± 19 bc | 87 ± 16 c | 85 ± 12 bc |
4 | propanal | 123-38-6 | 805 | 1.1 | 11 ± 2 a | 56 ± 5 c | 91 ± 15 e | 35 ± 3 b | 79 ± 2 d | 96 ± 6 e | 15 ± 3 a | 62 ± 4 c | 97 ± 5 e |
5 | methional | 3268-49-3 | 916 | 1.1 | 52 ± 6 b | 91 ± 11 de | 77 ± 1 cd | 71 ± 1 c | 94 ± 3 de | 99 ± 2 e | 33 ± 10 a | 44 ± 21 ab | 50 ± 13 ab |
Ketones (10) | |||||||||||||
6 | 2-propanone | 67-64-1 | 500 | 1.1 | 85 ± 1 a | 92 ± 7 bc | 88 ± 3 ab | 99 ± 0 d | 99 ± 1 d | 98 ± 0 cd | 95 ± 1 cd | 98 ± 0 cd | 99 ± 1 d |
7 | 2,3-butanedione | 431-03-8 | 571 | 1.2 | 91 ± 4 bc | 94 ± 6 bc | 80 ± 15 b | 97 ± 3 c | 86 ± 2 bc | 60 ± 5 a | 94 ± 6 bc | 85 ± 9 bc | 80 ± 11 b |
8 | butanone monomer | 78-93-3 | 590 | 1.1 | 62 ± 5 a | 83 ± 15 bc | 83 ± 14 bc | 95 ± 7 c | 85 ± 9 c | 65 ± 8 ab | 78 ± 12 abc | 89 ± 9 c | 93 ± 8 c |
9 | butanone dimer | 78-93-3 | 587 | 1.1 | 80 ± 5 a | 80 ± 9 a | 92 ± 7 bcd | 94 ± 2 cd | 97 ± 3 d | 89 ± 1 bc | 86 ± 1 ab | 95 ± 0 cd | 99 ± 1 d |
10 | 2,3-pentanedione | 600-14-6 | 671 | 1.3 | 90 ± 10 de | 66 ± 5 c | 25 ± 5 a | 99 ± 1 e | 89 ± 2 de | 77 ± 4 cd | 41 ± 11 b | 33 ± 11 ab | 28 ± 9 a |
11 | 2-pentanone monomer | 107-87-9 | 686 | 1.1 | 23 ± 6 a | 66 ± 7 cd | 86 ± 19 e | 40 ± 5 b | 72 ± 3 d | 92 ± 7 e | 55 ± 1 c | 87 ± 1 e | 98 ± 2 e |
12 | 2-pentanone dimer | 107-87-9 | 685 | 1.4 | 40 ± 1 a | 74 ± 2 bc | 90 ± 14 cd | 75 ± 3 bc | 97 ± 4 d | 78 ± 2 bcd | 60 ± 16 b | 83 ± 16 cd | 86 ± 15 cd |
13 | 3-pentanone | 96-22-0 | 693 | 1.4 | 36 ± 9 a | 78 ± 6 b | 86 ± 20 bc | 88 ± 3 bc | 97 ± 4 c | 74 ± 2 b | 74 ± 1 b | 96 ± 1 c | 98 ± 2 c |
14 | 3-hydroxy-2-butanone | 513-86-0 | 701 | 1.3 | 93 ± 6 cd | 91 ± 8 cd | 60 ± 1 b | 98 ± 2 d | 91 ± 1 cd | 84 ± 2 c | 15 ± 7 a | 14 ± 7 a | 15 ± 7 a |
15 | methyl isobutyl | 108-10-1 | 723 | 1.2 | 63 ± 2 a | 97 ± 2 d | 95 ± 4 d | 71 ± 9 abc | 93 ± 3 d | 94 ± 6 d | 69 ± 13 ab | 86 ± 14 cd | 81 ± 13 bcd |
Alcohols (8) | |||||||||||||
16 | ethanol monomer | 64-17-5 | 482 | 1.0 | 99 ± 1 ef | 95 ± 3 def | 92 ± 6 d | 99 ± 1 f | 93 ± 2 de | 84 ± 1 c | 94 ± 6 def | 48 ± 3 a | 54 ± 3 b |
17 | ethanol dimer | 64-17-5 | 482 | 1.1 | 81 ± 4 c | 51 ± 4 b | 44 ± 3 a | 90 ± 2 d | 92 ± 3 d | 97 ± 3 e | 99 ± 1 e | 80 ± 3 c | 87 ± 2 d |
18 | isopropyl alcohol | 67-63-0 | 506 | 1.2 | 52 ± 6 bc | 77 ± 26 cd | 68 ± 16 c | 97 ± 4 e | 40 ± 16 ab | 28 ± 11 a | 95 ± 5 de | 60 ± 5 bc | 65 ± 1 c |
19 | 2-propanol | 123-38-6 | 546 | 1.3 | 58 ± 2 a | 80 ± 18 bc | 74 ± 9 b | 92 ± 1 cd | 98 ± 2 d | 93 ± 1 d | 87 ± 0 cd | 97 ± 1 d | 99 ± 1 d |
20 | butanol | 71-36-3 | 660 | 1.2 | 25 ± 1 a | 28 ± 5 a | 49 ± 1 b | 82 ± 15 cd | 71 ± 4 c | 53 ± 2 b | 92 ± 9 d | 82 ± 5 cd | 94 ± 3 d |
21 | 2-methyl-1-propanol | 78-83-1 | 673 | 1.2 | 77 ± 6 b | 83 ± 10 b | 91 ± 9 b | 96 ± 3 b | 73 ± 5 b | 40 ± 9 a | 86 ± 9 b | 77 ± 28 b | 80 ± 21 b |
22 | 3-methyl-2-butanol | 598-75-4 | 692 | 1.2 | 98 ± 3 e | 82 ± 3 bc | 68 ± 2 a | 98 ± 2 e | 93 ± 2 de | 89 ± 1 cd | 94 ± 8 de | 76 ± 7 b | 64 ± 6 a |
23 | 2-methyl-1-butanol | 137-32-6 | 776 | 1.5 | 21 ± 7 a | 67 ± 12 b | 97 ± 5 c | 84 ± 14 c | 95 ± 2 c | 64 ± 10 b | 50 ± 6 b | 92 ± 9 c | 86 ± 10 c |
Acids (2) | |||||||||||||
24 | acetic acid | 64-19-7 | 635 | 1.2 | 40 ± 5 a | 74 ± 4 b | 90 ± 9 c | 72 ± 8 b | 92 ± 6 c | 93 ± 8 c | 65 ± 8 b | 87 ± 8 c | 95 ± 8 c |
25 | propanoic acid | 79-09-4 | 694 | 1.1 | 48 ± 3 a | 77 ± 2 c | 91 ± 10 d | 45 ± 3 a | 73 ± 3 bc | 94 ± 6 d | 61 ± 10 b | 90 ± 11 d | 91 ± 9 d |
Esters (4) | |||||||||||||
26 | methyl acrylate | 96-33-3 | 575 | 1.3 | 25 ± 3 a | 61 ± 23 bc | 98 ± 3 e | 36 ± 3 a | 72 ± 12 cd | 87 ± 11 de | 42 ± 12 ab | 63 ± 10 bc | 92 ± 10 de |
27 | ethyl acetate monomer | 141-78-6 | 641 | 1.1 | 39 ± 4 a | 79 ± 15 cd | 88 ± 15 de | 53 ± 6 ab | 89 ± 8 de | 95 ± 5 de | 65 ± 6 bc | 89 ± 8 de | 96 ± 5 e |
28 | isoamyl acetate | 123-92-2 | 854 | 1.3 | 38 ± 14 abc | 77 ± 25 de | 54 ± 3 bcd | 92 ± 6 e | 98 ± 2 e | 74 ± 4 de | 13 ± 6 a | 22 ± 8 ab | 37 ± 13 cd |
29 | ethyl acetate dimer | 141-78-6 | 868 | 1.1 | 68 ± 9 c | 92 ± 9 ef | 74 ± 6 cd | 94 ± 2 ef | 98 ± 2 f | 85 ± 2 de | 21 ± 4 a | 28 ± 5 ab | 38 ± 10 b |
Furans (5) | |||||||||||||
30 | 2-ethylfuran monomer | 3208-16-0 | 681 | 1.1 | 44 ± 6 b | 62 ± 10 c | 88 ± 12 de | 98 ± 3 e | 22 ± 3 a | 31 ± 2 a | 92 ± 9 de | 85 ± 3 de | 84 ± 4 d |
31 | 2-ethylfuran dimer | 3208-16-0 | 681 | 1.1 | 77 ± 3 bc | 73 ± 10 b | 84 ± 15 bc | 70 ± 1 b | 90 ± 4 bc | 95 ± 5 c | 14 ± 0 a | 26 ± 11 a | 80 ± 23 bc |
32 | furfural monomer | 98-01-1 | 823 | 1.3 | 93 ± 8 f | 41 ± 8 d | 13 ± 1 a | 98 ± 2 f | 50 ± 3 e | 31 ± 1 c | 99 ± 1 f | 31 ± 2 c | 22 ± 1 b |
33 | furfural dimer | 98-01-1 | 825 | 1.1 | 92 ± 8 de | 85 ± 5 cd | 59 ± 4 a | 64 ± 3 a | 87 ± 4 cd | 96 ± 4 e | 97 ± 3 e | 83 ± 2 c | 72 ± 2 b |
34 | 5-methylfurfural | 620-02-0 | 967 | 1.1 | 90 ± 10 c | 71 ± 7 b | 39 ± 2 a | 99 ± 1 c | 73 ± 2 b | 45 ± 1 a | 94 ± 6 c | 64 ± 10 b | 51 ± 9 a |
Others (3) | |||||||||||||
35 | dimethyl sulfide | 75-18-3 | 517 | 1.0 | 50 ± 3 c | 23 ± 7 a | 29 ± 7 ab | 92 ± 7 e | 34 ± 1 b | 21 ± 1 a | 98 ± 2 e | 64 ± 1 d | 47 ± 1 c |
36 | propane 2-methoxy-2-methyl | 96-33-3 | 575 | 1.3 | 50 ± 3 a | 76 ± 9 bc | 99 ± 1 d | 84 ± 4 cd | 94 ± 6 cd | 51 ± 6 a | 58 ± 16 ab | 79 ± 15 c | 89 ± 13 cd |
37 | ethyl pyrazine | 13925-00-3 | 911 | 1.1 | 92 ± 9 d | 91 ± 1 d | 74 ± 6 bc | 98 ± 2 d | 67 ± 1 ab | 61 ± 3 a | 99 ± 1 d | 79 ± 3 c | 74 ± 4 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Chen, H.; Cui, D.; Fang, X.; Gao, J.; Liu, Y. Fast and Non-Destructive Profiling of Commercial Coffee Aroma under Three Conditions (Beans, Powder, and Brews) Using GC-IMS. Molecules 2022, 27, 6262. https://doi.org/10.3390/molecules27196262
Chen Y, Chen H, Cui D, Fang X, Gao J, Liu Y. Fast and Non-Destructive Profiling of Commercial Coffee Aroma under Three Conditions (Beans, Powder, and Brews) Using GC-IMS. Molecules. 2022; 27(19):6262. https://doi.org/10.3390/molecules27196262
Chicago/Turabian StyleChen, Yanping, He Chen, Dandan Cui, Xiaolei Fang, Jie Gao, and Yuan Liu. 2022. "Fast and Non-Destructive Profiling of Commercial Coffee Aroma under Three Conditions (Beans, Powder, and Brews) Using GC-IMS" Molecules 27, no. 19: 6262. https://doi.org/10.3390/molecules27196262