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Abstract: Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high
commercial value, traded worldwide and primarily used for its distinctive fragrance in incense,
perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and
infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood
caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of
endangered Agquilaria to become a rare and valuable commodity. Given that instances of natural
infection are quite low, artificial induction, including biological inoculation, is being conducted to
induce agarwood formation. A long-term investigation could unravel insights contributing toward
Aquilaria being sustainably cultivated. This review will look at the different methods of induction,
including physical, chemical, and biological, and compare the production, yield, and quality of such
treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of
fragrance-associated compounds such as chromones and terpenoids are also discussed.

Keywords: agarwood; Aquilaria; artificial induction; bioactive compounds; chromones;
terpenoids

1. Introduction

Agarwood, eaglewood, oud, aloeswood, and gaharu are some of the names of the
highly valuable fragrant heartwood used for nontimber purposes and produced by the
Aquilaria species, which belongs to the Thymelaeaceae family. These “woods of the Gods”
have been used and traded for thousands of years for making perfume, which continue
to be used in cultural and religious ceremonies, and for the production of incense sticks
and fragrance products. It is also used in traditional medicine and has been recorded in
the Ayurvedic medicinal text, the Susruta Samhita of prehistoric times, and in the Sahih
Muslim that dates to the 8th century [1]. Agarwood oil is a desirable product and is traded
worldwide, with high demand in Japan, China, the United Arab Emirates, and Saudi
Arabia. It has a high demand in the Middle East because the oil symbolizes wealth,
culture, and hospitality [2]. The value of agarwood depends on its quality, geographical
location, and uses in a culture. Agarwood chips can cost from £20 per kilo up to £6000 per
kilo depending on the amount of resin in the chips, while the agarwood oil can cost as
much as £20,000 depending on the purity [3].

There are 21 Aquilaria species, with 9 agarwood (resin)-producing species [4,5], and they
are found in India, New Guinea, Hainan Island in China, and in Southeast Asian countries
[6]. Akter [7] stated that the formation of agarwood is associated with wounding of the tree
and fungal invasion, causing the tree to produce a fragrant resin high in volatile compounds
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that helps suppress the growth of fungi. Increased damage would eventually cause more resin
to be produced.

Aquilaria

Due to its importance in culture, religion, and value, agarwood is highly sought after,
and the trees are often overexploited and traded illegally, which has placed it on the list
of endangered species in Appendix II of the Convention on International Trade in
Endangered Species of Wild Flora and Fauna (CITES) in 1995 [1]. Furthermore,
Chakrabarty et al. [8] reported that natural agarwood takes 20 years onward to be
produced, and Sadgopal [9], as cited in [7], suggested that the best yields of resin are
produced from trees aged 50 years and older. However, not all Aquilaria trees produce
agarwood, and it was estimated that only 10% of wild Aquilaria spp. are infected and
produce resin [10]. Due to this, it is difficult to meet the increasing demand for agarwood.

To prevent the extinction of Aquilaria trees and meet demand, some countries have
taken the initiative to make Aquilaria plantations and artificially induce the production of
agarwood in the trees. In Vietnam, a nongovernmental organization known as The
Rainforest Project (TRP) developed field experiments for the artificial induction of
agarwood. The experiment was performed by deliberately wounding the trees by drilling
the trees and keeping the wound open with a small piece of plastic pipe, and injecting
chemicals to stimulate the trees’ defense mechanism to produce resin. This artificial
induction was able to yield agarwood 10 times faster than natural formation and has been
considered ‘one of the most successful findings’ [4]. This is supported by a recent study
by Mohammad et al. [11], in which A. beccariana and A. microcarpa in Brunei Darussalam
were inoculated with fungi isolated from various locations in the country and were able
to produce agarwood within a month.

This review will analyze in-depth the different induction approaches (physical,
chemical, and biological) and compare whether the production, yield, and quality of
artificially induced agarwood varies from naturally formed agarwood. This will provide
insight into how to prevent the overexploitation of Aquilaria trees in the wild while trying
to meet the increasing demand for agarwood in the world. Additionally, fungal
interactions with Aquilaria trees will also be explored in this paper to provide a better
understanding of why resin is produced when the trees are stressed.

2. Natural Agarwood

Agarwood is formed when Agquilaria trees are wounded and exposed to biotic and
abiotic stresses [12]. The infection triggers the trees’ defense mechanism, causing resin to
be produced, which aids the trees in suppressing the growth of the microbes infecting the
trees in a process known as tylosis [7,12]. From the infection, the tree undergoes a
biochemical reaction that produces oleoresin, which causes the color of the wood to
eventually change from a lighter to a darker color, becoming what is commonly referred
to as agarwood [12]. Wild-type agarwood takes years to produce, and few traders are
willing to wait so long. Furthermore, only a small number of Aquilaria are infected in the
wild and produce agarwood, and the only way to be certain that the tree contains the
desired resin is to cut down the trees [4].

3. Artificially Induced Agarwood

Methods of artificial induction of agarwood have been created to prevent Aquilaria
trees from becoming extinct. This causes the trees to become endangered, and, therefore,
researchers have produced methods to artificially induce agarwood formation. There are
three methods used: biological inoculation, chemical induction, and physical wounding.
Table 1 summarizes the different induction mechanisms involved in the agarwood
formation along with the details of its quality.
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Table 1. Types of wounds inflicted on Aquilaria trees and the method to inflict these wounds for
agarwood production. The quality and yield of agarwood are dependent on the method of wound
infliction.

Wounding Type Method Quality and Yield References
Lightning strike, animal
grazing, insect attack, . . .
Natural microbial invasion on High quality and low yield [13,14]
wounded parts
Quality and yield depend
Bacterial and fungal strains  on the strain used for the
Biological cultured on agar and injected inoculation—can be either [10,15,16]
into Aquilaria trees high or low quality and
yield
Whole-tree agarwood-
1.nducm.g technique (Agar-. Similar quality to natural
wit), cultivated agarwood kit .
. agarwood and more yield
(CA-Kits), agarwood . . .
inducement method (AINM) compared with biological
Chemical . . . . . and physical wounding; [15,16,17,18,19]
jasmonic acid, acetic acid, .
L however, both yield and
sulfuric acid, alcohol, .
quality depend on the
phytohormones, salts, .
) . . . chemicals used
minerals, biologically derived
substances
Axe wounds, severe bark
removal, nailing on tree
Physical trunk, partial trunk pruning Low quality and low yield [1,13,16]
method, burning-chisel-
drilling method

3.1. Physical Wounding

Mechanical injuries are the common and traditional method used to induce
agarwood formation, as it is cheap and is inexpensive, requiring no chemicals or reagents
to be used. It is also much easier to teach methods of mechanical injuries to farmers who
cultivate agarwood. In China, farmers in Hainan, Guangdong, and Yunnan provinces
were taught the physical wounding method to cultivate more than 20 million A. sinensis
trees [15]. Ponjanagroon and Kaewrak [13] have used various methods of mechanical
injuries on A. crassna to induce the production of agarwood; they inflicted wide and
narrow wounds on the trees, made holes on the trees with screws of varied sizes, severe
bark removal with hatchets, inserted nails of assorted sizes into the tree trunk, and the last
one is to simply beat the Agquilaria trunk with a hammer. All methods produced
discoloration; however, when the wood is burnt, the wood with nails hammered into the
trunk gave no specific agarwood scent. Nobushi and Siripatanadilok [20] suggested that
air and oxygen play a role in agarwood formation. Thus, when the nails are hammered
into the trunk of the trees, oxygen is not able to enter the wound, and the discoloration
around the wound could be caused by the reaction of ferric oxide in the nails and wood
fibers [13]. Hence, there is no aromatic scent when burning the wood, as little or no resin
was formed. The study also concluded that larger objects used to injure the trees cause
wider discoloration, and the holes wounded with large screws were preferred, as it
produces the classic agarwood scent when burnt and the quantity of agarwood at 20
months (about 1 and a half years)’ harvest was still not enough for commercial purposes
[13].
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3.2. Biological Inoculation

Biological inoculation is also another alternative method to agarwood formation and
has been proven by many researchers to help induce agarwood formation. It is necessary
for the tree to first be wounded before it can be infected by microbes to induce agarwood
formation. However, not all fungi can promote agarwood production; some of the species
identified in agarwood-producing trees are Fusarium, Lasiodiplodia, Penicillium, and
Aspergillus, amongst others [12]. Inoculation of endophytic fungi on Aquilaria trees has
also been proven to produce resin in as fast as 6 months [21]. Chen et al. [22] studied the
agarwood formation induced by fermentation liquid of different fungi, in which the fungi
were isolated from a previously infected tree that produced agarwood and were inserted
into the Aquilaria tree by using a transfusion set. It was found that the dominant fungi
were Lasiodiplodia theobromae, which was present in all layers of the wood, followed by
Fusarium solani [22]. This suggests that L.theobromae and F.solani have a significant role in
agarwood production and are agarwood-promoting fungi.

3.3. Chemical Induction

Chemical induction is another common method of producing agarwood in many
countries. It is common to use sulfuric acid, jasmonic acid, acetic acid, and alcohol to
induce agarwood formation, of which jasmonic acid has been proven to induce agarwood
formation by 2-3 mm (about 0.12 in) thickness in Vietnam [17]. However, some countries
have used sulfuric acid and acetic acid with unsuccessful results, and some chemicals are
toxic to humans, hence the importance of choosing the proper chemicals when the
agarwood is intended to be used for making perfumes, tea, and medicines [17]. Methods
for injecting the chemicals in agarwood are similar in many reports, in which a hole is
drilled into the trunk of the tree, and the chemicals are injected into the tree using a syringe
or transfusion set [15,17,18]). There are kits and techniques made by researchers to induce
agarwood production, such as the cultivated agarwood kits (CA-Kits) developed by Prof.
Blanchette from the University of Minnesota, Vietnam, the whole-tree agarwood-inducing
technique (Agar-Wit) that was developed in China [15]), and the agarwood inducement
method (AINM) developed by Nuclear Malaysia, in which small holes of about 50 cm are
drilled into the xylem of a tree followed by injection of agarwood inducers into the xylem.
The resin can then be harvested after 6 months [18].

4. Biological Induction and Biosynthesis of Resin

Many endophytic fungal species have been reported to play a vital role in agarwood
resin production in the Aquilaria and Gyrinops species [23]. Table 2 describes the various
fungal endophytes known to induce agarwood formation in the Aquilaria and Gyrinops
species. These fungal species could be inoculated into the trees either by natural (naturally
occurring endophytes) or through artificial inoculation (through artificially created
wounds or openings) methods and as pure or mixed cultures enabling the stimulation of
the plants’ immune response favoring resin production [24,25,26,27]. Biological induction
is always considered the efficient method in resin formation, as it is safer, healthier, and
ecofriendly compared with other methods and is a continuous process compared with the
natural and physical induction methods [17]. Various sequential processes catalyzed by a
set of specific enzymes in the plant cells enable the formation of the resinous materials,
namely chromones and sesquiterpenoids in the plants.

Table 2. Resin-inducing endophytic fungal species isolated from the Aquilaria and Gyrinops species.

Fungal Endophyte

Specific Plant Species Reported for Resin

) References
Production

Aspergillus sp.

Botryodyplodis sp.

Agquilaria sp. [28,29,30]
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Botryosphaeria dothidea

Diplodia sp.

Fusarium bulbigenium

Fusarium lateritium

Fusarium oxysporum

Fusarium sp.

Fusarium moniliforme

Fusarium sambucinum

Fusarium solani

Fusarium tricinctum

Epicoccum granulatum

Cladosporium sp.

Torula asp.

Chaetomium globosum

Fusarium oxysporum

Aquilaria agallocha

[9,31,32,33,34]

Melanotus flavolivens

Lasiodiplodia sp.

Xylaria sp.

Paraconiothyrium variabile

Botryosphaeria sp.

Fusarium sp.

Lasiodiplodia theobromae

Fusarium oxysporum

Rigidoporus vinctus

Nigrospora oryzae

Fusarium solani

Aquilaria sinensis

[35,36,37,38,39,40,41,42,43,44,45,46]

Acremonium sp.

Fusarium sp.

Aquilaria microcarpa

[47,48]

Unidentified Deuteromycetes

Unidentified Ascomycetes

Fusarium sp.

Fusarium solani

Aquilaria malaccensis

[49,50,51,52,53]

Acremonium sp.

Fusarium sp.

Fusarium solani

Lasiodiplodia theobromae

Aquilaria crassna

[54]

Fusarium sp.

Aquilaria beccariana

[55]

Fusarium sp.

Fusarium solani

Gyrinops versteegii

[30,53,56]

Aspergillus niger

Fusarium solani

Gyrinops walla

(57]

The 2-(2-phenylethyl) chromones (PECs) and sesquiterpenoids are the major

secondary metabolites synthesized by the trees along with triterpenes and sterols due to
the stress developed by the natural and artificial induction methods on the immune
system [58]. Chromones with a remarkably high and wide range of medicinal and
therapeutic values [59,60,61] are derived from benzopyrans (polycyclic organic
compound) with a keto group in the oxime ring. Biosynthesis of the chromones is initiated
through multiple mechanisms involving the pentaketide pathway, shikimic acid
pathway, and addition of nitrogenous groups from amino acids to the chromones [59,62].
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Recent studies by Wang et al. [63] have shown that the stress caused by elevated levels of
salinity has improved resin production in the Aquilaria tress. Similarly, according to Liao
et al. [64], flindersia-type 2-(2-phenylethyl) chromones, an important and major
constituent of the resin, were found to be formed by the catalysis of III polyketide synthase
(PKs) through condensation of dihydro-cinnamoyl-CoA analogs and malonyl-CoA with
2-hydroxy-benzoyl-CoA, and on subsequent catalysis with hydroxylases or O-
methyltransferases (OMTs). As PECs are synthesized using a complex phenomenon
involving a sequence of processes in the plants, it is still a challenging task for researchers
worldwide to elucidate the exact pathway involved in the synthesis of PECs. Researchers
Goel and Makrandi [65] and Tawfik et al. [61] have stated that the known pathways of
PECs synthesis to date were found to be incomplete, with inadequate information lacking
the proper understanding of the specific linkages in the pathway of the PECs synthesis.
Conversely, sesquiterpenes, triterpenes, and sterols are synthesized using the isoprenoid
precursor with the mevalonic acid pathway in the cytosol of the plant cells, and the
methylerythritol phosphate pathway acts as a precursor that helps in the synthesis of
monoterpenes, diterpenes, and carotenoids in the plastids [66,67,68]. Both the pathways
discussed above initiate the synthesis of C5 homoallylic isoprenoid precursors such as
isopentenyl pyrophosphate and dimethylallyl pyrophosphate (which are found to be
exchanged among the two pathways in the space between the cytosol and plastids),
engaging pyruvate, acetyl-CoA, and various other enzymes [67]. These C5 homoallylic
isoprenoid precursors on sequential condensation in the presence of C15 farnesyl
pyrophosphate synthase generates C15 farnesyl pyrophosphate [66,69]. Researchers such
as Yang et al. [69] and Liu et al. [70] have stated that C15 farnesyl pyrophosphate synthase
acts as the key limiting factor in the synthesis of sesquiterpenes that are encoded by the
gene Am-FaPS-1 and AsFPS: in Aquilaria species. Another set of enzymes, namely
sesquiterpene synthase and cytochrome P450 dependent mono-oxygenases, play a
pervasive role in the final stage of the sesquiterpene synthesis by oxidative
functionalization of the C15 farnesyl pyrophosphate with the cytochrome P450 dependent
mono-oxygenases, thus forming a multicyclic scaffold complex. These scaffolds are
further modified by the addition of functional groups by alkylation, esterification, and the
addition of sugar residues to the hydroxyl end generated by the cytochrome P450-
dependent mono-oxygenases in the scaffolds, thus forming different known
sesquiterpenoids [71,72]. Further, many studies are underway to better understand the
synthesis pathway of the sesquiterpenoids and the role of different genes involved in their
synthesis and the synthesis of various synthases involved in the process.

5. Agarwood Quality

The market value of agarwood is determined by its quality. Agarwood quality
grading is often supervised by trained human graders who base the quality on color, odor,
high fixative, and consumer perception [2]. Different countries have their own ways of
labeling agarwood quality; some countries prefer to use the terms ‘high quality” and ‘low
quality,” and other countries prefer to categorize agarwood into groups A, B, C, or D [73].
However, it is subjective when agarwood quality is determined by humans, in which each
person might have different opinions on the physical appearance of agarwood. In
addition, humans are prone to fatigue and nausea when exposed to many fragrances for
a prolonged period, and this would limit the analysis and may cause wrong judgment to
be made. The agarwood compound is associated with the presence of sesquiterpenes,
which are the main active compounds in agarwood that gives it the fragrant odor [74].
Thus, the more sesquiterpenes the agarwood contains, the higher the quality of the oil
would be.

The three methods of artificial induction come with their own advantages and
disadvantages. The physical-mechanical method is by far the most common method and
is also known as the traditional method. According to researchers [13,16], this method
produces low-grade and low-yield agarwood and often takes a long time to produce
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agarwood. However, this method is common, as it is easy to teach farmers who cultivate
agarwood and is cheap cost-wise. As for the biological method, the quality and yield
depend on the strains of fungi or bacteria used during the inoculation process. Some
studies have mentioned Aspergillus sp., L. theobromae, and Fusarium sp. [12,22] as playing
a significant role in the biological inoculation of agarwood. The quality of agarwood is
then determined by analyzing the sesquiterpenes compounds that are present. As for the
production time, agarwood can be produced in as early as 6 months [21], but the yield of
agarwood from this method needs to be further evaluated when using different strains.

In terms of chemical induction, Chong et al. [18] harvested agarwood from trees that
were 18 months (about 1 and a half years) old, in which some of the trees were inoculated
with fungi, and the others were injected with chemical inducers using AINM. Their results
showed that the yield of agarwood using chemical inducers was 12.9 times higher than
using fungal strains [18]. Another study by Liu et al. [15] also showed that agarwood
collected from the Agar-Wit method after 6 months was also superior compared with
physical wounding and biological inoculation. High-quality agarwood had a high alcohol
soluble extractive content, and the samples collected using the Agar-Wit method had an
alcohol soluble content surpassing the 10% standard, which was similar to the agarwood
obtained from wild Aquilaria trees [15]. Furthermore, when the harvest occurred after 12
or 20 months (about 1 and a half years), the agarwood produced was an even higher
quality [15]. Additionally, in these studies, the quality of agarwood oil and the yield using
chemical inducers compared with other methods had high levels of the sesquiterpenes
compound, which shows that chemical induction is the best method to produce agarwood
that has similar qualities to wild agarwood.

6. Bioactive Compounds Obtained from Agarwood, Their Pharmaceutical Properties,
and Medicinal Benefits

Agarwood and its products, either as oil, smoke, or powder admixtures, are well
known for their bioactivity in controlling various fungal pathogens and their unique
medicinal properties globally [75]. Several chemical compounds have been reported to be
identified from agarwood such as chromone derivates, terpenoids, flavonoids,
benzophenones, lignans, benzenoid derivates, phenolic compounds, triterpenes, steroids,
and other chemical compounds [58,76]. Of these, chromones and terpenoids
(sesquiterpenoids) are the compounds of interest that are potentially known for their
bioactivity, pharmaceutical value, and medicinal properties [76]. In contrast, the other
chemical compounds are natural compounds observed in most plants and trees [77].

6.1. Chromones

More than 80 different chromones (2-(2-phenylethyl) chromones) and about 31
different terpenoids are known to date (Table 3) that are responsible for various medicinal
benefits [78]. Chromones (1,4-benzopyrone) are the known isomer of coumarin, which are
derivatives of benzopyran with a substituted keto group in the pyran ring, are
ubiquitously present in the Pant Kingdom, and are a part of the human and animal diet
[79]. The 2-(2-phenylethyl) chromones are the rare and uncommon group of chromones
that possess phenylethylene at the C-2 position, which are reported to be abundantly
available in agarwood resin (Table 3) [80,81]. These 2-(2-phenylethyl) chromones have
been isolated only from a few plant species, making it a rare compound extracted from
plants such as agarwood that are responsible for the warm, balsamic, long-lastingly sweet
odor of the burnt agarwood [82]. Furthermore, they are classified into four subgroups,
namely 2-(2-Phenylethyl)chromone monomers (PEC), comprising four subdivisions
(Flindersia-type 2-(2-phenylethyl)chromones, the most abundant group; 5,6,7,8-
Tetrahydro-2-(2-phenylethyl)chromones, highly oxidizing group; mono-epoxy-5,6,7,8-
tetrahydro-2-(2-phenylethyl)chromones; diepoxy-5,6,7,8-tetrahydro-2-(2-
henylethyl)chromones), 2-(2-Phenylethenyl)chromones are predominantly obtained from
chemical synthesis, agarwood, cyanobacteria, and rhizomes of Imperata cylindrica or
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Platanus x acerifolia; dimeric 2-(2-phenylethyl)chromones; sesquiterpenoid-4H-chromones
and benzylacetone-4H-chromones, predominantly obtained from Gyrinops salicifolia; and
trimeric 2-(2-phenethyl)chromones [64,83,84,85,86,87]. They act as potential and
remarkable pharmacological compounds containing various bioactivities such as
antimicrobial, antiviral, anticancer, antitumor, anti-inflammatory, antioxidant, enzyme
inhibition, antifeedant, antidepressant, antiobesity, and antihypersensitive properties,
including antagonistic activity in melanin-concentrating hormone receptor-1 [88,89,90].

Table 3. List of chromones and terpenoids known to be extracted from agarwood obtained from
Aquilaria sinensis, A. malaccensis, A. filaria, and Gyrinops versteegii (as reported by Wang et al. [91] and

Yuan et al. [76]).

Chemical Compounds Bioactive Properties References
Chromones
6-hydroxy-7-methoxy-2-[2-(3"-hydroxy-4'- [60,92,93]
methoxyphenyl)ethyl]chromone
6,7-dimethoxy-2-[2-(3"-hydroxy-4'- (60,93]
methoxyphenyl)ethyl]chromone /
7-hydroxy-6-methoxy-2-[2-(3"-hydroxy-4'-
(60]
methoxyphenyl)ethyl]chromone
6,7- dimethoxy-2-[2-(4'-hydroxy-3'-
[60,93]
methoxyphenyl)ethyl]Jchromone
6,7-dihydroxy- 2-[2-(4'-methoxyphenyl)ethyl]chromone [60]
6-hydroxy-7-methoxy-2-[2-(4'- [60]
hydroxyphenyl)ethyl]chromone
-dih -2-[2-(3"-h -4'-
6,8-dihydroxy-2-[2-(3"-hydroxy [60,92,93]
methoxyphenyl)ethyl]chromone
6-methoxy-2-[2-(3-hydroxy-4-
(80]
methoxyphenyl)ethyl]chromone
5-hydroxy-6-methoxy-2-[2-(4- Antioxidant, analgesic, digestive,
[80,94]
methoxyphenyl)ethyljchromone tumor cell inhibition, enzyme
6-methoxy-2-[2-(4-methoxyphenyl)ethyl]chromone inhibition, antimicrobial, [80]
6-methoxy-2-[2-(4-hydroxyphenyl)ethyl]chromone antiplasmodial, antifeedant, [80,92]
6-methoxy-2-[2-(3-methoxy-4- immunomodulatory, anti-
. . 3 [80,95,96]
hydroxyphenyl)ethyl]chromone inflammatory, antitubercullii
6,7-dimethoxy-2-[2-phenylethyl]chromone Treatment of gastritis, diarrhea, [80,94,97]
6-hydroxy-2-(2-phenylethyl)chromone stiff muscles, hypothermic disease, [80,94]
6-hydroxy-2-[2-(4-methoxyphenyl)ethyl]chromone diuretic disease, CNS activity, [80]
6,8-dihydroxy-2-(2- phenylethyl)chromone nephritis, cystitis, urethral disease, [80]
5-hydroxy-6-methoxy-2-[2-(3-hydroxy-4- pyrexia, rheumatism, headache, [80]
methoxyphenyl)ethy]]Chromone hepatitis, Cough, bronchitis, asthma
5-hydroxy-6-methoxy-2-[2-(4-
(80]
methoxyphenyl)ethyl]chromone
6-hydroxy-7-methoxy-2-[2-(4-
[97]
methoxyphenyl)ethyl]chromone
6-methoxy-7-hydroxy-2-[2-(4-
[97]
methoxyphenyl)ethyl]chromone
6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]Jchromone [97]
6-hydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]Jchromone [92,97]
6-hydroxy-2-[2-(3, 4-dimethoxyphenyl)ethyl]Jchromone [97]
6,8-dihydroxy-2-[2-(4-methoxyphenyl)ethyl]Jchromone [97]
8-chloro-6-hydroxy-2-[2-(3-methoxy-4- [97]
hydroxyphenyl)ethyl]chromone
5-methoxy-6-hydroxy-2-[2-(3-methoxy-4-
(971
hydroxyphenyl)ethyl]chromone
4',6-dihydroxy-3',7-dimethoxy-2-(2-phenyl)ethylchromone [92]
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6-methoxy-2-[2-(3-methoxy-4-
hydroxyphenyl)ethyl]chromone
6-hydroxy-2-[2-(4-hydroxyphenyl)ethyl]chromone
6,8-dihydroxy-2-[2-(3-methoxy-4-
hydroxyphenyl)ethyl]chromone

7-hydroxy-6-methoxy-2-(2-phenylethyl)chromone

6,7-dimethoxy-2-(2-phenylethyl)chromone

6-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]chromone

(95]

[95]

[96]

[95]

(93]

(98]

7-hydroxy-2-(2-phenylethyl)chromone

(98]

flindersiachromone

[94]

6-methoxy-2-(2-phenylethyl)chromone

[94]

5-hydroxy-6,7-dimethoxy-2-[2-(4"-
methoxyphenyl)ethyl]chromone

(81]

8-chloro-6-hydroxy-2-(2-phenylethyl)chromen-4-one

[99]

8-chloro-6-hydroxy-2-[2-(4-methoxyphenyl)-ethyl]chromen-4-

one

[99]

aquilarinoside C

[100]

6-hydroxy-2-[2-(40-hydroxy-30-
methoxyphenyl)ethenyl]Jchromone

(60]

(55,6S,75,8R)-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-
tetrahydroxy-5,6,7,8-tetrahydrochromone

(92]

(55,65,75,8R)-2-(2-phenylethyl)-5,6,7,8-tetrahydroxy-5,6,7,8-
tetrahydrochromone

(92]

(55,65,75,8R)-2-[2-(4-methoxyphenyl)ethyl]-5,6,7,8-
tetrahydroxy-5,6,7,8-tetrahydrochromone

(92]

(55,6R,75,8R)-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-
5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone

(92]

(55,6R,7R,8S)-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-
5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone

(92]

(55,6R,7R,8S)-2-[2-(4-hydroxyphenyl)ethyl]-5,6,7,8-
tetrahydroxy-5,6,7,8-tetrahydrochromone

(92]

8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-
tetrahydrochromone

(92]

6S,7R)-5,6,7,8-Tetrahydro-6,7-dihydroxy-2-(2-phenylethyl)-
4H-1-benzopyran-4-one

(94]

aquilarone F

[94]

(5R,6R,7R,85)-8-chloro-5,6,7-trihydroxy-2-(4-
methoxyphenethyl)-5,6,7,8-tetrahydrochromone

(81]

(55,6S,75,8S)-8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-
5,6,7,8-tetrahydrochromone

(81]

(5R,6R,7R,8R)-8-chloro-5,6,7-trihydroxy-2-(4-
methoxyphenethyl)-5,6,7,8-tetrahydrochromone

(81]

(5R,6S,75)-5,6,7-trihydroxy-2-(4-hydroxy-3-
methoxyphenethyl)-5,6,7,8-tetrahydrochromone

(81]

tetrahydrochromone A

[101]

tetrahydrochromone B

[101]

tetrahydrochromone C

[101]

tetrahydrochromone D

[101]

tetrahydrochromone E

[101]

tetrahydrochromone F

[101]

tetrahydrochromone G

[101]

tetrahydrochromone H

[101]

tetrahydrochromone I

[101]

tetrahydrochromone J

[101]
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(5R,6R,75,8R)-5,6,7,8-tetrahydroxy-2-(2-phenylethyl)-5,6,7,8-

tetrahydrochromone [84]
agarotetrol [84]
ginanmer [84]
5,6-epoxy-7(3-hydroxy-83-methoxy-2-(2-
(80]
phenylethyl)chromone
rel-(1aR,2R,3R,7bS)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-
. [80]
phenylethyl)-7H-oxireno-benzopyran-7-one
rel-(1aR,2R,3R,7bS)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2- [94]
(4-methoxyphenyl)ethyl]-7H-oxireno-ben zopyran-7-one
oxidoagarochromone A [80]
tetrahydrochromone L [101]
tetrahydrochromone M [101]
oxidoagarochromone A [80]
oxidoagarochromone B [80]
oxidoagarochromone C [101]
(R)-6,7-dimethoxy-2-(2-hydroxy-2-phenylethyl)chromone [93]
(5)-6,7-dimethoxy-2-(2-hydroxy-2-phenylethyl)chromone [93]
AHI10 [94]
AH14 [94]
(55,6R,75,8R)-2-[2-(4-Methoxyphenyl)ethyl]-5,6,7-trihydroxy-
5,6,7,8-tetrahydro-8-{6- methoxy-2-[2-(3"-methoxy-4"- [102]
hydroxyphenyl)ethyl]chromonyl-7-oxy}chromone
(55,6R,7S,8R)-2-[2-(4-Methoxyphenyl)ethyl]-5,6,7-trihydroxy-
5,6,7,8-tetrahydro-8-{2-[2-(4"-methoxy [102]
phenyl)ethyl]chromonyl-6-oxy}chromone
(55,6R,7S,8R)-2-(2-Phenylethyl)-5,6,7-trihydroxy-5,6,7,8- (102]
tetrahydro-8-[2-(2-phenylethyl)chromonyl-6- oxy]chromone
(5R,6R,7R,85)-2-(2-Phenylethyl)-5,6,7-trihydroxy-5,6,7,8- (102]
tetrahydro-8-[2-(2-phenylethyl)chromonyl-6- oxy]chromone
aquisinenone A [81]
(-)-4'-methoxyaquisinenone A [81]
aquisinenone B [81
(-)-6"-hydroxyaquisinenone B [81]
(+)-6"-hydroxy-4',4"-dimethoxyaquisinenone B [81]
aquisinenone C [81]
(-)-aquisinenone D [81]
4'-demethoxyaquisinenone D [81]
(+)-aquisinenone E [81]
(-)-aquisinenone F [81]
(-)-aquisinenone G [81]
(+)-4'-methoxyaquisinenone G [81]
Terpenoids
(+)-98-Hydroxyeudesma-4,11(13)-dien-12-al [103]
(+)-Eudesma-4,11(13)-dien-8c,9p-diol [103]
(+)-8a-Hydroxyeudesma-3,11(13)-dien-14-al [103]
(+)-Eudesma-3,11(13)-dien-8c,93-diol Antimicrobial, anti-inflammatory, [103]
(+)-Eudesma-4(14),11(13)-dien-8a,93-diol anticancer, antidiabetes, [103]
(4R,5R,75,95,10S)-(-)-Eudesma-11(13)-en-4,9-diol antioxidants [103]
(+)-98,10B-Epoxyeremophila-11(13)-en Treatment of immunological [103]
(+)-11-Hydroxyvalenc-1(10),8-dien-2-one disorders, neurological disorders, [103]
(-)-Eremophila-9-en-8f3,11-diol cancer [103]
1,10-Dioxo-4H-5H-7H-11H-1,10-secoguaia-2(3)-en-12,8-olide [104]
1-Hydroxy-4H-5H-7H-11H-8,9-secoguaia-9(10)-en-8,12-olide [104]
1-Hydroxy-4a,10a-dimethyl-5H-octahydro-azulen-8-one [104]
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la-Hydroxy-4a,10a-dimethyl-5H-octahydro-azulen-8-one [104]

4-Hydroxyl-baimuxinol [105]

7B-H-9(10)-ene-11,12-Epoxy-8-oxoeremophilane [105]

7a-H-9(10)-ene-11,12-Epoxy-8-oxoeremophilane [105]

(55,75,95,10S)-(+)-9-Hydroxy-selina-3,11-dien-12-al [106]

(55,75,95,10S)-(-)-9-Hydroxy-selina-3,11-dien-14-al [106]

(55,75,95,10S)-(+)-9-Hydroxy-eudesma-3,11(13)-dien-12- [106]

methyl ester

(75,95,105)-(+)-9-Hydroxy-selina-4,11-dien-14-al [106]

(75,85,10S)-(+)-8,12-Dihydroxy-selina-4,11-dien-14-al [106]

Qinanol A [107]

Qinanol B [107]

Qinanol C [107]

Qinanol D [107]

Qinanol E [107]

Qinanol F [107]

3-oxo-7-Hydroxylholosericin A [97]

1,5,8,12-Diepoxy-guaia-12-one [97]

(+)-8B-Hydroxy-longicamphenylone [60]

11B-Hydroxy-13-isopropyl-dihydrodehydrocostus lactone [60]

Agquilarabietic acid A [69]

Aquilarabietic acid B [69]

Aquilarabietic acid C [69]

Aquilarabietic acid D [69]

Agquilarabietic acid E [69]

Aquilarabietic acid F [69]

Aquilarabietic acid G [69]

Agquilarabietic acid H [69]

Aquilarabietic acid I [69]

Aquilarabietic acid ] [69]

Aquilarabietic acid K [69]

Aquilarin B [108]

Aquilanol A [109]

Aquilanol B [109]

Daphnauranol D [109]

Chamaejasmone E [109]

Aquilacallane A [110]

Aquilacallane B [110]

Aquimavitalin [111]

12-O-(20E,40E)-6-oxohexa-20, 40-Dienoylphorbol-13-acetate [112]

12-Deoxy-13-O-acetylphorbol-20-(90Z)-octadecenoate [112]
12-O-(20E,40E)-60, 70-(erythro)-dihydroxytetradeca-20, 40 -

dienoylphorbol-13-acetate (112]

12-O-(20E,40E)-60, 70-(threo)-dihydroxytetradeca-20, 40- (112]

dienoylphorbol-13-acetate

Furthermore, chromones are considered naturally available products with diverse
structures and functions that act as potential candidates for replacing synthetic drugs in
various pharmacological therapeutics [89,113,114,115,116,117,118,119,120,121,122,123,124,
125,126]. Similarly, Duan et al. [127] and Vanguru et al. [128] have reported the therapeutic
properties of chromones against a wide range of cancers, especially in controlling breast
cancer and ovarian cancer [129,130]. They act as intercellular adhesion molecule
inhibitors, cyclooxygenase inhibitors, mast cell stabilizers, leukotriene receptor
antagonists, interleukin-5 inhibitors, lipoxygenase inhibitors, and nitric oxide production
inhibitors controlling inflammation as potential anti-inflammatory compounds



Molecules 2022, 27, 3386

12 of 21

[92,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146]. Chromones derived
from the leaf extracts of plants act as the basic structural compound in the development
of various drugs that inhibit infectious diseases caused by a wide range of microbes
inferring its antimicrobial property [147,148,149,150,151]. Reactive oxygen species (ROS)
act as oxygen moieties impairing the DNA, lipids, proteins, and lipoproteins with their
oxidative damage [152,153,154]. Chromones present in the food material (plants) act as
potential antioxidants in reducing the lipid peroxidase activity of the ROS and free
radicals and disease progression [155,156,157,158,159,160,161,162]. In particular,
chromones have been found to be promising in controlling and treating the
neurodegenerative disease Alzheimer’s, which is caused due to the redox imbalance
created by the free radicals and the ROS in the human brain [62,163]. Valentina et al. [164]
and Wang et al. [91] have investigated and reported the inhibitory effect of the chromones
on the a-amylase and a-glucosidase enzymes to manage postprandial diabetes by
delaying sugar uptake in the human body. Further, the role of chromones in the treatment
of various disorders such as gastritis, diarrhea, stiff muscles, hypothermic disease,
diuretic disease, nephritis, cystitis, pyrexia, rheumatism, headache, hepatitis, cough,
bronchitis, asthma, etc. have been reported and described by various researchers
worldwide (Table 3) [88,89,90].

6.2. Terpenoids

Terpenoids are abundantly present in nature, especially in plants, and are known to
contain oxygen derivatives that bear a hydroxyl group at the C-3 position [77]. To date,
about three different terpenoids have been identified in agarwood and Agquilaria plant
leaves, namely 3-oxo-22-hydroxyhopane, 3b-olean-12-ene-3,23-diol, and hederagenin
[13,70,97]. Among all the terpenoids known, sesquiterpenoids are the dominant fragrant
compounds observed to be present in agarwood and agarwood products with the
presence of three isoprene structural units (Table 3) [82,165]. They exist as volatile
compounds in the essential oils extracted from agarwood and are of several types with
unique aromatic properties specific to each type [77]. Eudesmanes, otherwise known as
selinanes, are bicyclic sesquiterpenoids with a decalin skeleton, diverse functional groups,
and multiple chiral centers acting as significant sesquiterpenoids found in agarwood
obtained from Aquilaria agallocha, A. sinensis, A. crassna, A. malaccensis, and Gyrinops
salicifolia [13,84,86,103,166,167]. They possess a sweet, woody, honey, balsamic, minty, and
fresh floral odor [82]. Guaianes are the sesquiterpenoids made of a five- and seven-
membered ring-coupled structures containing 4,10-dimethyl-7-isopropenyl moiety and
are observed in Aquilarin and Gyrinops species with a woody and floral odor
[84,97,104,168]. Agarospiranes sesquiterpenes, also known as vetispiranes, are composed
of spirocyclic sesquiterpenes present in Aquilaria agallocha, A. sinensis, A. crassna, and A.
malaccensis with a spicy, peppery, woody, sweet, and balsamic odor [82,168,169,170].
Eremophilanes, known as valencanes, are similar to eudesmanes structurally and differ
due to the presence of a specific methyl group in the structure with a characteristic warm
woody and minty odor [13,84,86]. Acoranes, responsible for the long-lasting odor of
agarwood, are the spiro sesquiterpenes that are rarely obtained from agarwood
[97,103,171]. Cadinanes, a bicyclic sesquiterpene, is similar to eudesmanes with the
presence of an isopropyl and methyl group in its structure obtained from A. sinensis and
A. crassna [13,172]. Prezizaanes are the tricyclic sesquiterpenes found in A. malaccensis with
a special fragrance [171,173,174]. Similarly, Zizaanes, a tricyclicc and Humulanes, a
humulane-type sesquiterpenes, have also been reported to be obtained from A. sinensis
and A. crassna [103,171,175]. Further, other sesquiterpenoids such as daphnauranols
obtained from A. malaccensis, 12-Hydroxy-dihydrocyperolone from G. salicifolia,
malacinones A and B from A. malaccensis, and 1,5,9-trimethyl-1,5,9-cyclododecatriene
from A. sinensis have been reported by researchers such as Ma et al. [175], Li et al. [97],
Chen et al. [176], and Ma et al. [177]. Among all the sesquiterpenoids reported,
eudesmanes, eremophilanes, and guaianes are the potential sesquiterpenoids obtained
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from agarwood of which guaianes are the compounds possessing high structural diversity
that are specific to each plant species [77].

Furthermore, sesquiterpenes act as a potential neuroprotective agent and help in
combating Alzheimer’s disease [178]. Similarly, agarol obtained from A. malaccensis, an
eudesmane sesquiterpene, and 8bH-Dihydrogmelofuran and gmelofuran, a cadinene
sesquiterpenes isolated from A. malaccensis and A. agallocha, were reported to have
anticancer, antioxidant and antimicrobial properties [179]. Antidiabetes activity has been
observed in some sesquiterpenoids such as Prezizaane, jinkohol II, aquilarene D, jinkohol,
zizaane, agarozizanol E, and isokhusenol acting as inhibitors against a-glucosidase [180].

Moreover, cucurbitacin triterpenoids were found to possess cytotoxic activities,
making them a potential candidate for the treatment of cancer [181]. Similarly, -
Caryophyllene, isolated from A. crassna, was found to specifically help in the de-
proliferation of cancerous cells. Further, 3-Caryophyllene was a potential antimicrobial
compound effective against various pathogenic strains that include Bacillus cereus, B.
subtilis, S. aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Aspergillus
niger, Penicillium citrinum, Rhizopus oryzae, and Trichoderma reesei [179]. Flavonoids,
benzophenones, xanthones, lignans, phenolic compounds, degraded sesquiterpenes,
alkaloids, and nucleosides are some of the other chemical constituents of the Aquilaria
species that are available compounds in plants, and they contribute to the structural
stability of the plants [58].

7. Economic Importance and Market Value of Agarwood

Aquilaria trees and the agarwood obtained from them are very popular for the wide
variety of economically important products obtained from them [182]. Their products,
such as wood, wood chips, oil, powder, and flakes, have been used in various applications
such as medicinal, religious, cosmetics, and cultural purposes [183,184]. Antonopoulou et
al. [185], Barden et al. [1], Kiet [186], Lim and Anack [187], Persoon [188], and Sitepu et al.
[189] have reported the potential usage of agarwood oil and powder in Ayurvedic
medicine practiced in the Indian subcontinent, and also in Tibetan, Vietnamese, Chinese,
and Malaysian medicines. Moreover, it is used for religious and cultural purposes in many
countries such as Northeast and Southeast Asia, Taiwan, Korea, and Japan [184,185,190].
Furthermore, Sitepu et al. [189], Barden et al. [1], and Chakrabarty et al. [8] have reported
the importance of agarwood in the manufacturing of perfumes, cosmetic products, soaps,
shampoos, incense, and other fragrance products worldwide.

Therefore, the market value of agarwood and the demand for its products have
increased tremendously. Globally, agarwood products, such as wood pieces, wood chips,
powder, oil, dust, incense, and perfumes, have been reported to have a market value of
USD several thousand billion [1,182,191]. Agarwood is graded into different categories
based on the resin quality; the first grade has a high global demand increasing the market
value to about USD 10,000 per kg of wood, and the least grade with USD 30 per kg [192].
Further, according to a report by Nanyang Siang Pau in 2005 and Abdin [193], agarwood
oil is generally sold at a cost of USD 30,000 to 40,000 per kg. Similarly, in 2013, Akter et al.
[7] reported an estimated increase in the market value of agarwood and its products to
reach up to USD 6-8 billion or even up to USD 36 billion by 2017. Similarly, other reports
from various sources indicate that the agarwood oil market value is expected to reach
about USD 201.03 million by 2026. Hence, it is essential to better understand the basic
scientific concepts of agarwood induction and formation to improve its production.
Furthermore, the invention of simple technology for induction would enable the easy
handling of the techniques by farmers to induce the crops.
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8. Conclusions

Agarwood formation in the natural environment, although mysterious, can be
produced through artificial inoculation techniques. Agarwood is highly sought after due
to its economic value and cultural and medicinal uses around the world. Its high value
has caused indiscriminate logging of wild Aquilaria trees, thereby causing dominant
species to become critically endangered. Therefore, methods of artificial induction are
developed to prevent its extinction and reduce the burden on wild Aquilaria. The quality
of artificially induced agarwood is close to wild agarwood, and its production in Aquilaria
plantations may be able to meet the ever-increasing demand for this unique fragrance.
Several applications, including perfumery and therapeutics, further substantiate the
ongoing investigations into agarwood and the growing impetus for sustainable
cultivation.
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