Artemisia abrotanum L. (Southern Wormwood)—History, Current Knowledge on the Chemistry, Biological Activity, Traditional Use and Possible New Pharmaceutical and Cosmetological Applications
Abstract
:1. Introduction
2. Position in the History of European and Asian Medicine
3. General Information on the Species
4. Chemical Composition
5. Application in Traditional European and Non-European Medicine
6. Application in Modern Phytotherapy and Position in Official European Medicine
7. New Directions of Biological Activity of Extracts from the Herb and/or Leaves, and/or Essential Oil Confirmed by Scientific Research
7.1. Antibacterial and Antifungal Activity
7.2. Antioxidant Effect
7.3. Antitumour Effect
7.4. Allergy Symptom-Alleviating Effect
7.5. Insect-Repelling Action
7.6. Action against Animal Parasites
7.7. Antimalarial Activity
8. Application in Cosmetology and in the Food Industry
9. Safety of Use
10. Biotechnological Research
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
- Efferth, T.; Zacchino, S.; Georgiev, M.I.; Liu, L.; Wagner, H.; Panossian, A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine 2015, 22, A1–A3. [Google Scholar] [CrossRef]
- Su, X.Z.; Miller, L.H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Pellicer, J.; Saslis-Lagoudakis, C.H.; Carrió, E.; Ernst, M.; Garnatje, T.; Grace, O.M.; Gras, A.; Mumbrú, M.; Vallès, J.; Vitales, D.; et al. A phylogenetic road map to antimalarial Artemisia species. J. Ethnopharmacol. 2018, 225, 1–9. [Google Scholar] [CrossRef]
- Garcia, L.C. A Review of Artemisia annua L.: Its genetics, biochemical characteristics, and anti-malarial efficacy. Int. J. Sci. Technol. 2015, 5, 38–46. [Google Scholar]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekiert, H.; Świątkowska, J.; Klin, P.; Rzepiela, A.; Szopa, A. Artemisia annua—Importance in traditional medicine and current state of knowledge on the chemistry, biological activity and possible applications. Planta Med. 2021. [Google Scholar] [CrossRef]
- Numonov, S.; Sharopov, F.; Salimov, A.; Sukhrobov, P.; Atolikshoeva, S.; Safarzoda, R.; Habasi, M.; Aisa, H. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (Central Asia). Medicines 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Melzig, M.F. Artemisia abrotanum L, Eberraute. Z. Phyther. 2019, 40, 283–288. [Google Scholar] [CrossRef]
- Saunoriute, S.; Ragažinskiene, O.; Ivanauskas, L.; Marksa, M. Essential oil composition of Artemisia abrotanum L. during different vegetation stages in Lithuania. Chemija 2020, 31, 52–56. [Google Scholar] [CrossRef]
- Svanberg, I.; De Vahl, E. “It may also have prevented churchgoers from falling asleep”: Southernwood, Artemisia abrotanum L. (fam. Asteraceae), in the church bouquet, and its contemporary presence as a heritage plant in Sweden. J. Ethnobiol. Ethnomed. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- European Medicines Agency Committee for Veterinary Medicinal Products. Artemisia Abrotanum Summary Report; European Medicines Agency: London, UK, 1999. [Google Scholar]
- Hrytsyk, R.A.; Kutsyk, R.V.; Yurchyshyn, O.I.; Struk, O.A.; Kireev, I.V.; Grytsyk, A.R. The investigation of antimicrobial and antifungal activity of some Artemisia L. species. Pharmacia 2021, 68, 93–100. [Google Scholar] [CrossRef]
- Trendafilova, A.; Moujir, L.M.; Sousa, P.M.C.; Seca, A.M.L. Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- European Commission Cosing CosIng—Cosmetic Database. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 4 April 2020).
- Berendes, J. Des Pedanios Dioskurides aus Anazarbos Arzneimittellehre in fünf Büchern. Übersetzt und mit Erklärungen Versehen; Band III.; Ferdinand Enke: Stuttgart, Germany, 1902. [Google Scholar]
- Plinius, S.G. Naturalis Historia (Naturgeschichte); Metzler/Metzler-Verlag: Stuttgart, Germany, 1855; Volume XXI. [Google Scholar]
- Hegi, G. Illustrierte Flora von Mitteleuropa; Verlag, J.F.L., Ed.; Wiley: München, Germany, 1931; Volume VI. [Google Scholar]
- Krassnig, K. TCM mit westlichen Pflanzen. Dtsch. Z. Akupunkt. 2012, 55, 52. [Google Scholar] [CrossRef]
- Avicenna. Kanon der Medizin. Übersetzung und Bearbeitung Durch Gerhard von Cremona, Arnaldus de Villanova und Andrea Alpago (1450–1521); Abrotanum: Basel, Switzerland, 1556. [Google Scholar]
- Romańska, K. Etnofarmacja i etnomedycyna na łamach czasopisma “Lud” w latach 1946–1986. In Historia Leków Naturalnych; Kuźnicka, B., Ed.; Polska Akademia Nauk: Warsaw, Poland, 1999; Volume 5, p. 145. [Google Scholar]
- Madaus, G. Lehrbuch der Biologischen Heilmittel; Band, I., Ed.; Georg Olms Verlag: Hildesheim, NY, USA, 1976. [Google Scholar]
- Reier, H. Hildegard von Bingen Physica. Nach der Textausgabe; von J. P. Migne, Paris 1882 ins Deutsche übersetzt, Herbert Reier: Kiel, Germany, 1980. [Google Scholar]
- Brunfels, O. Ander Teyl des Teütschen Contrafayten Kreüterbůchs; Hans Schott: Strasburg, Germany, 1537. [Google Scholar]
- Bock, H. New Kreütter Bůch.; Wendel Rihel: Strasburg, Germany, 1539. [Google Scholar]
- Fuchs, L. New Kreütterbuch; Michael Isingrin: Basel, Switzerland, 1543. [Google Scholar]
- Tabernaemontanus. Neuw Kreuterbuch; Nicolaus Basseus: Franckfurt am Mayn, Germany, 1588. [Google Scholar]
- Lémery, N. Dictionnaire Universel Des Drogues Simples; Christoph Friedrich Richtern: Paris, France, 1699. [Google Scholar]
- Syrennivs, S. Zielnik Herbarzem z Języka Łacinskiego Zowią; Drukarnia Bazylego Skalskiego: Kraków, Poland, 1613. [Google Scholar]
- Arabas, I. Leki roślinne w “Dziełach Wszystkich” Oskara Kolberga. In Historia leków Naturalnych; Kuźnicka, B., Ed.; Polska Akademia Nauk: Warsaw, Poland, 1986; Volume 1, pp. 91–161. [Google Scholar]
- The Plant List. Available online: http://www.theplantlist.org/ (accessed on 12 March 2020).
- Plants of the Word online. Kew science. 2020. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:306365-2 (accessed on 13 March 2021).
- GBIF.org. GBIF Home Page. 2020. Available online: https://www.gbif.org (accessed on 12 March 2020).
- Rumińska, A.; Ożarowski, A. Leksykon Roślin Leczniczych; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1990. [Google Scholar]
- GRIN. Available online: https://www.ars-grin.gov/ (accessed on 2 June 2020).
- Missouri Botanical Garden. Available online: https://www.tropicos.org/home (accessed on 15 June 2020).
- The Herb Society of America. Artemisia: An Essential Guide. Available online: https://www.herbsociety.org/hsa-learn/hsa-publications/hsa-essential-guides.html#item7738862 (accessed on 4 April 2020).
- Ożarowski, A.; Jaroniewski, W. Rośliny Lecznicze i ich Praktyczne Zastosowanie; Panacea: Warsaw, Poland, 1987. [Google Scholar]
- Watson, L.E.; Bates, P.L.; Evans, T.M.; Unwin, M.M.; Estes, J.R. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2002, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Suresh, J.; Elango, K.; Dhanabal, S.P.; Paramakrishnan, N.; Suresh, B. A comparative pharmacognostical evaluation of two Artemisia species found in Nilgiris biosphere. Anc. Sci. Life 2007, 27, 7–13. [Google Scholar] [PubMed]
- Baiceanu, E.; Vlase, L.; Baiceanu, A.; Nanes, M.; Rusu, D.; Crisan, G. New polyphenols identified in Artemisiae abrotani herba extract. Molecules 2015, 20, 11063–11075. [Google Scholar] [CrossRef]
- Vaughan, J.; Geissler, C. The New Oxford Book of Food Plants, 2nd ed.; Oxford University Press: Oxford, UK, 2009; ISBN 0191609498. [Google Scholar]
- Podbielkowski, Z.; Sudnik-Wójcikowska, B. Słownik Roślin Użytkowych; Wydanie, V.I., Ed.; Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 2003. [Google Scholar]
- Volak, J.; Stodola, J.; Severa, F. Rośliny Lecznicze; Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 1987. [Google Scholar]
- Pino, J.A.; Marbot, R.; Martí, M.P. Leaf oil of Artemisia abrotanum L. grown in Cuba. J. Essent. Oil Res. 2011, 23, 119–120. [Google Scholar] [CrossRef]
- Muangphrom, P.; Misaki, M.; Suzuki, M.; Shimomura, M.; Suzuki, H.; Seki, H.; Muranaka, T. Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol-5-ene synthases from Artemisia abrotanum. Phytochemistry 2019, 164, 144–153. [Google Scholar] [CrossRef]
- Khalid, K.A.; El-Gohary, A.E. Productivity of wormwood (Artemisia abrotanum) enhanced by trace elements. Bull. Natl. Res. Cent. 2020, 44, 1–10. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Aruba, O.S.; Jasim, G.A.; Nasser, A.A. Detection of terpenes of Iraqi Artemisia abrotanum L. by GC/MS in hexane extract. Al Mustansiriyah J. Pharm. Sci. 2019, 19, 239–248. [Google Scholar]
- Khodakov, G.V.; Kotikov, I.V.; Pankovetskii, V.N. Component composition of essential oil from Artemisia abrotanum and A. dracunculus. Chem. Nat. Compd. 2009, 45, 755–758. [Google Scholar] [CrossRef]
- Tunón, H.; Thorsell, W.; Mikiver, A.; Malander, I. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 2006, 77, 257–261. [Google Scholar] [CrossRef]
- Bergendorff, O.; Sterner, O. Spasmolytic flavonols from Artemisia abrotanum. Planta Med. 1995, 61, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Serkerov, S.V.; Ibragimova, S.I. New steroidal compound from Artemisia abrotanum. Chem. Nat. Compd. 2014, 50, 478–479. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, J.; Ahuja, J.; Paramakrishnan, N.; Sebastian, M. Total phenolic and total flavonoids content of aerial parts of Artemisia abrotanum Linn. and A. pallens Wall. Anal. Chem. Lett. 2012, 2, 186–191. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; El-Ansary, D.O.; Al-Mana, F.A.; Mahmoud, E.A. Polyphenol content and biological activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia. Processes 2020, 8, 531. [Google Scholar] [CrossRef]
- Remberg, P.; Björk, L.; Hedner, T.; Sterner, O. Characteristics, clinical effect profile and tolerability of a nasal spray preparation of Artemisia abrotanum L. for allergic rhinitis. Phytomedicine 2004, 11, 36–42. [Google Scholar] [CrossRef]
- Ur Rashid, M.; Alamzeb, M.; Ali, S.; Ullah, Z.; Shah, Z.A.; Naz, I.; Khan, M.R. The chemistry and pharmacology of alkaloids and allied nitrogen compounds from Artemisia species: A review. Phyther. Res. 2019, 33, 2661–2684. [Google Scholar] [CrossRef]
- Tewari, D.; Mocan, A.; Parvanov, E.D.; Sah, A.N.; Nabavi, S.M.; Huminiecki, L.; Ma, Z.F.; Lee, Y.Y.; Horbanczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for therapy of jaundice: Part I. Front. Pharmacol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M. Artemisia species: From traditional medicines to modern antimalarials-and back again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Jeschke, E.; Ostermann, T.; Lüke, C.; Tabali, M.; Kröz, M.; Bockelbrink, A.; Witt, C.M.; Willich, S.N.; Matthes, H. Remedies containing Asteraceae extracts. Drug Saf. 2009, 32, 691–706. [Google Scholar] [CrossRef]
- Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM) Southernwood for Homoeopathic Preparations. Available online: https://ansm.sante.fr/var/ansm_site/storage/original/application/fba9a2c564da57f105b5f4327037aa07.pdf (accessed on 15 March 2020).
- Almahdawy, S.S.; Said, A.M.; Abbas, I.S.; Dawood, A.H. The evaluation of antimicrobial and cytotoxic activity of the essential oil extracted from the aerial parts of southernwood herb (Artemisia abrotanum L.) that recently grown in Iraq. Asian J. Pharm. Clin. Res. 2017, 10, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Podbielkowski, Z. Słownik Roślin Użytkowych; Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 1980. [Google Scholar]
- Suresh, J.; Vasavi Reddy, A.; Rajan, D.; Ihsanullah, M.; Nayeemmullah Khan, M. Antimicrobial activity of Artemisia abrotanum and Artemisia pallens. Int. J. Pharmacogn. Phytochem. Res. 2011, 3, 18–21. [Google Scholar]
- Al-Zubairi, A.S.; Al-Mamary, M.A.; Al-Ghasani, E. The Antibacterial, Antifungal, and Antioxidant Activities of Essential Oil from Different Aromatic Plants. Glob. Adv. Res. J. Med. Med. Sci. 2017, 6, 224–233. [Google Scholar]
- Amirmohammadi, M.; Khajoenia, S.; Bahmani, M.; Rafieian-Kopaei, M.; Eftekhari, Z.; Qorbani, M. In vivo evaluation of antiparasitic effects of Artemisia abrotanum and Salvia officinalis extracts on Syphacia obvelata, Aspiculoris tetrapetra and Hymenolepis nana parasites. Asian Pac. J. Trop. Dis. 2014, 4, 5–9. [Google Scholar] [CrossRef]
- Avitabile, E.; Senes, N.; D’Avino, C.; Tsamesidis, I.; Pinna, A.; Medici, S.; Pantaleo, A. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite. PLoS ONE 2020, 15, e0238532. [Google Scholar] [CrossRef] [PubMed]
- Varothai, S.; Bunyaratavej, S.; Leeyaphan, C.; Phaitoonwattanakij, S.; Winayanuwattikun, W. Pilot study of the efficacy and safety of nail gel containing Artemisia abrotanum extract and glycerin in the treatment of nail plate surface abnormality. Siriraj Med. J. 2021, 73. [Google Scholar] [CrossRef]
- Bolyard, M. In vitro regeneration of Artemisia abrotanum L. by means of somatic organogenesis. In-Vitro Cell. Dev. Biol. 2018, 54, 127–130. [Google Scholar] [CrossRef]
Group of Compounds | Compounds | Plant’s Part | Origin | Extraction Method | Extraction Yield | Concentration | Refs. |
---|---|---|---|---|---|---|---|
Sesquiterpenoids | β-caryophyllene | aerial parts | Japan | n-hexane | nd * | 3.37% (Fukuoka), 1.35% (Okinawa) | [44] |
leaves | Cuba | hd ** | nd | 0.7% | [45] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.5–2.8% | [46] | ||
nd | Germany | nd | nd | 0.7% | [47] | ||
β-elemene | leaves | Cuba | hd | nd | 0.1% | [44] | |
aerial parts | Japan | n-hexane | nd | 0.08% (Fukuoka), nd (Okinawa) | [45] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.7–2.4% | [46] | ||
germacrene D | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
aerial parts | Japan | n-hexane | nd | 12.47% (Fukuoka), 25.05% (Okinawa) | [45] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.8–2.7% | [46] | ||
nd | Germany | nd | nd | 3.4% | [47] | ||
aerial parts | Iraq | n-hexane | nd | 0.27% | [48] | ||
nd, | Crimea | nd | nd | 0.68–1.43% | [49] | ||
7-epi-silphiperfol-5-ene | aerial parts | Japan | n-hexane | nd | 2.24% (Fukuoka), 0.5% (Okinawa) | [45] | |
silphiperfol-4,7 (14)-diene | aerial parts | Japan | n-hexane | nd | nd (Fukuoka), trace (Okinawa) | [45] | |
nd | Germany | nd | nd | 0.3% | [47] | ||
silphiperfol-5-ene | aerial parts | Japan | n-hexane | nd | 1.09% (Fukuoka), 0.82% (Okinawa) | [45] | |
nd | Germany | nd | nd | 0.7% | [47] | ||
silphiperfol-5-en-3-ol A | aerial parts | Japan | n-hexane | nd | 1.65% (Fukuoka), 5.79% (Okinawa) | [45] | |
silphiperfol-5-en-3-one A | aerial parts | Japan | n-hexane | nd | 68.94% (Fukuoka), 56.11% (Okinawa) | [45] | |
nd | Germany | nd | nd | 18.9% | [47] | ||
silphiperfol-5-en-3-one B | aerial parts | Japan | n-hexane | nd | 5.37% (Fukuoka), 5.03% (Okinawa); | [45] | |
nd | Germany | nd | nd | 2.7% | [47] | ||
silphiperfol-6-α-ol | aerial parts | Japan | n-hexane | nd | 1.40% (Fukuoka), 1.84%(Okinawa) | [45] | |
silphiperfolen isomer | nd | Germany | nd | nd | 0.7% | [47] | |
β-copaene | aerial parts | Japan | n-hexane | nd | 0.09% (Fukuoka), 0.22% (Okinawa) | [45] | |
δ-elemen | aerial parts | Japan | n-hexane | nd | 1.22% (Fukuoka), 1.81% (Okinawa) | [45] | |
(E)-nerolidol | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
(E)-β-damascenone | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
α-dehydro-ar-himachalene | leaves | Cuba | hd | 1.9% | 2.5% | [44] | |
γ-dehydro-ar-himachalene | leaves | Cuba | hd | 1.9% | 0.4% | [44] | |
δ-cadinene | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
humulene epoxide I | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
T-muurolol | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.4–1.6% | [46] | |
α-cadinol | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.7–1.8% | [46] | |
cedrene | aerial parts | Iraq | n-hexane | nd | 1.38% | [48] | |
3-carene | aerial parts | Iraq | n-hexane | nd | 2.00% | [48] | |
citronellol | aerial parts | Iraq | n-hexane | nd | 0.38% | [48] | |
caryophyllene | aerial parts | Iraq | n-hexane | nd | 0.54% | [48] | |
nd | Crimea | nd | nd | 0.15% | [49] | ||
farnesyl butanoate | aerial parts | Lithuania | hd | nd | 0.32–0.38% | [9] | |
α-cubebene | aerial parts | Lithuania | hd | nd | 0.08–0.34% | [9] | |
(E)-β-farnesene | aerial parts | Lithuania | hd | nd | 0.15–0.19% | [9] | |
bisabolone | aerial parts | Lithuania | hd | nd | 0.17–0.46% | [9] | |
β-cubebene | aerial parts | Lithuania | hd | nd | 0.11–0.12% | [9] | |
α-epi-7-epi-5-eudesmol | aerial parts | Lithuania | hd | nd | 0.00–0.34% | [9] | |
γ-eudesmol acetate | aerial parts | Lithuania | hd | nd | 0.80–2.18% | [9] | |
isospathulenol | aerial parts | Lithuania | hd | nd | 0.26–0.80% | [9] | |
isogermacrene D | aerial parts | Lithuania | hd | nd | 5.23–15.67% | [9] | |
germacren-D-4-ol | aerial parts | Lithuania | hd | nd | 0.00–0.44% | [9] | |
epi-longipinanol | aerial parts | Lithuania | hd | nd | 0.00–0.92% | [9] | |
davanone B | aerial parts | Lithuania | hd | nd | 0.00–0.67% | [9] | |
δ-amorphene | aerial parts | Lithuania | hd | nd | 0.00–17.85% | [9] | |
β-selinene | aerial parts | Lithuania | hd | nd | 0.00–0.09% | [9] | |
leaves | Cuba | hd | 1.9% | 0.3% | [44] | ||
α-humulene | aerial parts | Lithuania | hd | nd | 0.32–0.51% | [9] | |
leaves | Cuba | hd | 1.9% | 0.1% | [44] | ||
aerial parts | Japan | n-hexane | nd | 1.25% (Fukuoka), 0.04% (Okinawa) | [45] | ||
nd | Germany | nd | nd | 1.8% | [47] | ||
bicyclogermacrene | aerial parts | Lithuania | hd | nd | 0.27–0.83% | [9] | |
leaves | Cuba | hd | 1.9% | <0.1% | [44] | ||
aerial parts | Japan | n-hexane | nd | 0.78% (Fukuoka), 1.58% (Okinawa) | [45] | ||
nd | Crimea | nd | nd | 0.23–0.30% | [49] | ||
caryophyllene oxide | aerial parts | Lithuania | hd | nd | 0.45–1.15% | [9] | |
leaves | Cuba | hd | 1.9% | 0.8%; | [44] | ||
aerial parts | Iraq | n-hexane | nd | 1.99% | [48] | ||
nd | Crimea | nd | nd | 0.11–0.19% | [49] | ||
α-copaene | aerial parts | Lithuania | hd | nd | 0.09–0.13%; | [9] | |
aerial parts | Japan | n-hexane | nd | 0.05% (Fukuoka), 0.16% (Okinawa) | [45] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/100 g | 0.6–2.9% | [46] | ||
β-bourbonene | aerial parts | Lithuania | hd | nd | 0.00–0.52% | [9] | |
nd | Crimea | nd | nd | 0.24% | [49] | ||
davanone | aerial parts | Egypt | hd | 2.2–10.1 mL/100 g | 1.4–2.1% | [46] | |
aromadendrene | aerial parts | Lithuania | hd | nd | 2.39–7.44% | [9] | |
cis-davanone | aerial parts | Romania | hd | nd | 5.2% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 7.4% | [47] | ||
davanon ether | aerial parts | Romania | hd | nd | 0.9% | [47] | |
davana ether | aerial parts | Romania | hd | nd | 3.2% | [47] | |
artedouglasia oxide A | aerial parts | Romania | hd | nd | 2.20% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 1.80% | [47] | ||
artedouglasia oxide B | aerial parts | Romania | hd | nd | 1.3%; | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 1.0% | [47] | ||
artedouglasia oxide D | aerial parts | Romania | hd | nd | 1.0% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 0.6% | [47] | ||
nordavanone | aerial parts | Romania | hd | nd | 3.0% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 5.4% | [47] | ||
artedouglasia C | aerial parts | Lithuania | hd | nd | 0.20–0.23% | [9] [47] | |
aerial parts | Romania | hd | nd | 1.7% | |||
aerial parts | Romania | dichloromethane followed by hd | nd | 1.1% | |||
eudesma-5-en-11-ol | nd | Crimea | nd | nd | 0.14–0.37% | [49] | |
α-eudesmol | nd | Crimea | nd | nd | 0.19–4.85% | [49] | |
trans-α-bisabolen | nd | Crimea | nd | nd | 1.09% | [49] | |
cadinol | 0.72–1.19% | [49] | |||||
guaiol | nd | Crimea | nd | nd | 0.19–2.40% | [49] | |
nerolidol | nd | Crimea | nd | nd | 0.28% | [49] | |
spathulenol | nd | Crimea | nd | nd | 0.17–0.21% | [49] | |
α-bisabolol | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.5–1.7% | [46] | |
nd | Crimea | nd | nd | 3.52–4.64% | [49] | ||
β-eudesmol | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 12.4–12.9% | [46] | |
nd | Crimea | nd | nd | 0.12–0.26% | [49] | ||
Monoterpenoids | chrysanthenone | leaves | Cuba | hd | 1.9% | 2.7% | [44] |
α-thujene | leaves | Cuba | hd | 1.9% | 0.5% | [44] | |
p-cymenene | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
neryl propionate | leaves | Cuba | hd | 1.9% | 0.2% | [44] | |
trans-sabinol | leaves | Cuba | hd | 1.9% | 5.1% | [44] | |
isobornyl propionate | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
α-thujone | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
E-β-ocimene | leaves | Cuba | hd | 1.9% | 0.3% | [44] | |
Z-β-ocimene | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
cuminyl acetate | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
cis-carvyl acetate | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
bornyl acetate | leaves | Cuba | hd | 1.9% | 1.6% | [44] | |
neryl isobutanoate | leaves | Cuba | hd | 1.9% | 0.4% | [44] | |
isobornyl formate | nd | Germany | nd | nd | 0.1% | [47] | |
sabinene | leaves | Cuba | hd | 1.9% | 4.4% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.8–1.3% | [46] | ||
nd | Germany | nd | nd | 0.1% | [47] | ||
aerial parts | Iraq | n-hexane | nd | 0.77% | [48] | ||
nd | Crimea | nd | nd | 0.34–3.58% | [49] | ||
myrcene | leaves | Cuba | hd | 1.9% | 0.9% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 2.1–2.7% | [46] | ||
nd | Crimea | nd | nd | 0.33% | [49] | ||
p-cymene | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.7–1.5% | [46] | ||
nd | Germany | nd | nd | 7.8% | [47] | ||
nd | Crimea | nd | nd | 0.39–1.69% | [49] | ||
α-terpineol | leaves | Cuba | hd | 1.9% | 8.2% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.3–1.9% | [46] | ||
nd | Crimea | nd | nd | 0.22–1.43% | [49] | ||
nd | Germany | nd | nd | 0.2% | [47] | ||
γ-terpinene | leaves | Cuba | hd | 1.9% | 2.6% | [44] | |
nd | Crimea | nd | nd | 0.73–1.06% | [49] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.5–2.9% | [46] | ||
4-terpineol | leaves | Cuba | hd | 1.9% | 5.9% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.8–0.9% | [46] | ||
nd | Crimea | nd | nd | 2.27–3.72% | [49] | ||
nd | Germany | nd | nd | 1.8% | [47] | ||
eugenol | leaves | Cuba | hd | 1.9% | 0.2% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.6–2.1% | [46] | ||
nd | Crimea | nd | nd | 0.16% | [49] | ||
limonene | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.6–2.3% | [46] | ||
nd | Crimea | nd | nd | 0.16–0.48% | [49] | ||
geranyl isobutanoate | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
nd | Crimea | nd | nd | 0.17–0.79% | [49] | ||
trans-carvyl acetate | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
nd | Crimea | nd | nd | 0.12–0.49% | [49] | ||
terpinolene | leaves | Cuba | hd | 1.9% | 0.9% | [44] | |
nd | Crimea | nd | nd | 0.21–0.26% | [49] | ||
cis-sabinene hydrate | aerial parts | Lithuania | hd | nd | 0.04–0.11% | [9] | |
leaves | Cuba | hd | 1.9% | 0.3% | [44] | ||
nd | Crimea | nd | nd | 0.14–0.97% | [49] | ||
nd | Germany | nd | nd | 0.3% | [47] | ||
myrtenol | aerial parts | Lithuania | hd | nd | 0.0–0.9% | [9] | |
aerial parts | Iraq | n-hexane | nd | 0.47% | [48] | ||
nd | Crimea | nd | nd | 0.09–0.39% | [49] | ||
trans-ocimene | nd | Crimea | nd | nd | 0.13–0.29% | [49] | |
lavandulyl butanoate | aerial parts | Lithuania | hd | nd | 0.83–4.70% | [9] | |
3-thujanol | aerial parts | Lithuania | hd | nd | 0.00–0.21% | [9] | |
β-myrcene | aerial parts | Lithuania | hd | nd | 0.05–0.11% | [9] | |
β-ocimene | aerial parts | Lithuania | hd | nd | 0.00–0.07% | [9] | |
trans-β-ocimene | aerial parts | Lithuania | hd | nd | 0.00–0.05% | [9] | |
1,4-cineole | aerial parts | Lithuania | hd | nd | 4.12–13.14% | [9] | |
β-phellandrene | aerial parts | Lithuania | hd | nd | 0.35–0.44% | [9] | |
trans-ocimenol | aerial parts | Lithuania | hd | nd | 0.00–0.08% | [9] | |
α-terpinolene | aerial parts | Lithuania | hd | nd | 0.07–0.09% | [9] | |
cis-chrysanthenol | aerial parts | Lithuania | hd | nd | 0.49–0.84% | [9] | |
trans-pinocamphone | aerial parts | Lithuania | hd | nd | 0.00–0.11% | [9] | |
lavandulol | aerial parts | Lithuania | hd | nd | 0.00–0.30% | [9] | |
4-tujanol | aerial parts | Lithuania | hd | nd | 0.52–1.00% | [9] | |
cis-piperitol | aerial parts | Lithuania | hd | nd | 0.00–0.17% | [9] | |
cis-chrysanthenyl acetate | aerial parts | Lithuania | hd | nd | 0.15–0.21% | [9] | |
δ-terpineol acetate | aerial parts | Lithuania | hd | nd | 0.10–0.14% | [9] | |
α-terpinyl acetate | aerial parts | Lithuania | hd | nd | 0.05–0.16% | [9] | |
β-myrcene | aerial parts | Lithuania | hd | nd | 0.00-0.05% | [9] | |
E-myrtenol | aerial parts | Lithuania | hd | nd | 0.00–0.9% | [9] | |
lavandulyl caproate | aerial parts | Lithuania | hd | nd | 0.28–1.21% | [9] | |
lavandulyl isovalerate | aerial parts | Lithuania | hd | nd | 0.33–0.65% | [9] | |
trans-β-ocimene | aerial parts | Lithuania | hd | nd | 0.00–0.05% | [9] | |
trans-chrysanthenyl acetate | aerial parts | Germany | nd | nd | 1.0% | [47] | |
trans-sabinyl acetate | aerial parts | Lithuania | hd | nd | 0.29–0.50% | [9] | |
leaves | Cuba | hd | 1.9% | 33.4% | [44] | ||
α-phellandrene | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
aerial parts | Lithuania | hd | nd | 0.05–0.25% | [9] | ||
camphene | aerial parts | Lithuania | hd | nd | 0.10–0.64% | [9] | |
leaves | Cuba | hd | 1.9% | 1.7% | [44] | ||
nd | Crimea | nd | nd | 2.42–7.20% | [49] | ||
nd | Germany | nd | nd | 2.7% | [47] | ||
α-pinene | aerial parts | Lithuania | hd | nd | 0.09–0.20% | [9] | |
leaves | Cuba | hd | 1.9% | 1.1% | [44] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.7–1.9% | [46] | ||
nd | Crimea | nd | nd | 1.1–1.8% | [49] | ||
nd | Germany | nd | nd | 0.1% | [47] | ||
α-terpinene | leaves | Cuba | hd | 1.9% | 2.4% | [44] | |
aerial parts | Lithuania | hd | nd | 0.21–0.31% | [9] | ||
nd | Crimea | nd | nd | 0.27–0.50% | [49] | ||
nd | Germany | nd | nd | 0.9% | [47] | ||
trans-sabinene hydrate | nd | Crimea | nd | nd | 0.24–1.15% | [49] | |
nd | Germany | nd | nd | 0.3% | [47] | ||
linalool | aerial parts | Lithuania | hd | nd | 0.08–0.11% | [9] | |
nd | Crimea | nd | nd | 0.2% | [49] | ||
1,8-cineole | leaves | Cuba | hd | 1.9% | 4.3% | [44] | |
aerial parts | Lithuania | hd | nd | 0.0–13.0% | [9] | ||
aerial parts | Iraq | n-hexane extraction | nd | 10.05% | [48] | ||
nd | Crimea | nd | nd | 15.46–33.19% | [49] | ||
nd | Germany | nd | nd | 24.5% | [47] | ||
2-hydroxy-1,8-cineole | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 37.9–38.7% | [46] | |
borneol | leaves | Cuba | hd | 1.9% | 1.6% | [44] | |
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.5–2.8%; | [46] | ||
aerial parts | Iraq | n-hexane | nd | 8.96% | [48] | ||
nd | Crimea | nd | nd | 2.16–3.29% | [49] | ||
nd | Germany | nd | nd | 9.3% | [47] | ||
camphor | aerial parts | Lithuania | hd | nd | 0.86–1.33% | [9] | |
aerial parts | Iraq | n-hexane | nd | 6.31% | [48] | ||
aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 11.8–12.1% | [46] | ||
nd | Crimea | nd | nd | 20.33–44.63% | [49] | ||
nd | Germany | nd | nd | 3.5% | [47] | ||
1-terpineol | aerial parts | Romania | hd | nd | 1.6% | [47] | |
cis-β-terpineol | aerial parts | Romania | hd | nd | 1.6% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 0.8% | [47] | ||
trans-piperitol | aerial parts | Iraq | n-hexane | nd | 0.38% | [48] | |
aerial parts | Romania | hd | nd | 1.2% | [47] | ||
piperitone | aerial parts | Lithuania | hd | nd | 20.38–38.48% | [9] | |
aerial parts | Romania | hd | nd | 0.5% | [47] | ||
terpenyl acetate | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.7–2.2% | [46] | |
myrtanal | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 0.4–1.1% | [46] | |
α-terpenyl acetate | nd | Crimea | nd | nd | 0.13–0.31% | [49] | |
verbenyl acetate | nd | Crimea | nd | nd | 0.20–0.44% | [49] | |
trans-carveol | nd | Crimea | nd | nd | 0.23–0.33% | [49] | |
myrtenal | nd | Crimea | nd | nd | 0.08–0.12% | [49] | |
nd | Germany | nd | nd | 0.37% | [47] | ||
3 (10) -carene-2-ol | nd | Crimea | nd | nd | 1.10–1.19% | [49] | |
α-thujenal | nd | Crimea | nd | nd | 0.26% | [49] | |
2 (10) -pinen-2-one | nd | Crimea | nd | nd | 3.75% | [49] | |
cis-carvone | nd | Crimea | nd | nd | 0.13% | [49] | |
ment-1,5-dien-7-ol | nd | Crimea | nd | nd | 0.54% | [49] | |
pinocarvone | nd | Crimea | nd | nd | 1.26% | [49] | |
p-menth-1-en-8-ol | nd | Crimea | nd | nd | 2.16% | [49] | |
verbenol | nd | Crimea | nd | nd | 2.83–3.22% | [49] | |
sabinaketone | nd | Crimea | nd | nd | 0.24% | [49] | |
p-menth-2-en-1-ol | nd | Crimea | nd | nd | 0.16–0.32% | [49] | |
cembrene | aerial parts | Lithuania | hd | nd | 0.11–0.12% | [9] | |
tricyclene | nd | Crimea | nd | nd | 0.09–0.2% | [49] | |
nd | Germany | nd | nd | 0.08% | [47] | ||
β-pinene | nd | Crimea | nd | nd | 0.26–0.97% | [49] | |
nd | Germany | nd | nd | 0.3% | [47] | ||
Diterpenoids | phytol isomer | aerial parts | Romania | hd | nd | 1.2% | [47] |
lupeol | aerial parts | Iraq | n-hexane | nd | 7.0% | [48] | |
Triterpenoids | agarospirol | nd | Crimea | nd | nd | 0.19–2.40% | [49] |
Spiroterpenoids | methyleugenol | leaves | Cuba | hd | 1.9% | <0.1% | [44] |
nd | Crimea | nd | nd | 0.30–1.58% | [49] | ||
Phenylpropanoid derivatives | estragol (methyl chavicol) | leaves | Cuba | hd | 1.9% | <0.1% | [44] |
aerial parts | Romania | hd | nd | 0.9% | [47] | ||
aerial parts | Romania | dichloromethane followed by hd | nd | 0.8% | [24] | ||
elemicine | nd | Crimea | nd | nd | 0.12–0.26% | [49] | |
Jasmonates | methyl cis-jasmonate | aerial parts | Egypt | hd | 2.2–10.1 mL/ 100 g | 1.9–2.6% | [46] |
Other compounds | 1-octen-3-ol | aerial parts | Lithuania | hd | nd | 0.16–0.18% | [9] |
nd | Crimea | nd | nd | 0.43–0.73% | [49] | ||
(Z)-jasmone, | aerial parts | Lithuania | hd | nd | 0.15–0.18% | [9] | |
nonanal | aerial parts | Lithuania | hd | nd | 0.00–0.33% | [9] | |
1,4-dimethyl-4-propyl-2-one-1-(2)–cyclo-hexene | nd | Crimea | nd | nd | 0.39–0.54% | [49] | |
2,2,3-trimethyl-3-cyclopentene-1-acetaldehyde | nd | Crimea | nd | nd | 0.20–0.23% | [49] | |
cis-jasmone | nd | Crimea | nd | nd | 0.28–0.45% | [49] | |
cis-arbusculone | aerial parts | Lithuania | hd | nd | 0.35–2.15% | [9] | |
aerial parts | Romania | hd | nd | 0.7% | [47] | ||
(E)-2-hexenal | leaves | Cuba | hd | 1.9% | 0.4% | [44] | |
(Z)-3-hexenol | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
2-phenylacetaldehyde | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
hexanal | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
heptanal | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
α-(E)-ionone | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
methyl p-anisate | leaves | Cuba | hd | 1.9% | 0.1% | [44] | |
isobutanoate ester of anisic acid | leaves | Cuba | hd | 1.9% | <0.1% | [44] | |
isopergol | aerial parts | Iraq | n-hexane | nd | 1.14% | [48] | |
4-methylpent-2-enolide | aerial parts | Romania | hd | nd | 15.7% | [47] | |
aerial parts | Romania | dichloromethane followed by hd | nd | 1.7% | [47] | ||
lavender lactone | aerial parts | Romania | hd | nd | 2.6% | [47] | |
trans-arbusculone | aerial parts | Romania | hd | nd | 0.6% | [47] |
Group of Compounds | Compounds | References |
---|---|---|
Sesquiterpene lactones | santonin | [50] |
artemisinin | [33,37,40] | |
Flavonoids | rutoside | [33] |
apigenin, artemisetin, hyperoside, isoquercitrin, kaempferol, quercetol, luteolin, myricetin, patuletin | [40] | |
quercetin | [40,55] | |
centaureidine, casticin | [56] | |
Coumarines | isofraxidine | [33,37] |
umbelliferone | [33,37,50] | |
scopoletin | [33,37,50,56] | |
herniarin | [37] | |
esculetin | [37,50] | |
coumarin | [50] | |
Phenolic acids | ferulic acid, gentisic acid, caftaric acid, p-coumaric acid, sinapic acid | [40] |
chlorogenic acid | [33,37,40,50,55] | |
isochlorogenic acid, protocatechuic acid, rosmarinic acid, syryngic acid, vanillic acid | [55] | |
caffeic acid | [33,37,40,50,55] | |
Sterols | 24β-ethylcholesta-6 (7), 20 (21)-dien-3β-ol | [52] |
Resins | nd * | [33] |
Tannins | nd | [33,37,54] |
Alkaloids | abrotine | [33,37,57] |
Other compounds | cis-jasmone | [50] |
Activity | Mechanism of Action | References |
---|---|---|
antibacterial and antifungal | Lethal effect of A. abrotanum ethanolic extract on the bacteria Bacillus stearothermophilus, Micrococcus luteus, Klebsiella pneumoniae, Pseudomonas cepacia, Salmonella typhi, and the fungi Candida albicans, Saccharomyces cerevisiae, Trichosporon beigelii. | [65] |
Lethal effect of the essential oil of A. abrotanum herb on Candida albicans. | [47] | |
Inhibition of the growth of Staphylococcus aureus, Escherichia coli and Candida albicans by components of A. abrotanum essential oil, incl. borneol, cymene, camphor, terpineol, 1,8-cineole, and aromadendrene. | [63] | |
Inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris bacteria by the essential oil of the herb A. abrotanum. Some activity against Aspergillus flavus. | [66] | |
Inhibition of the growth of the bacteria: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus flavus, and the fungi Penicillium ochrochloron, Penicillium funiculosum, Candida albicans, Aspergillus ochraceus, Aspergillus niger, and Aspergillus flavus. | [55] | |
Moderate inhibition of the growth of bacteria: Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus gordonii, Enterococcus faecalis, Escherichia coli, Citrobacter freundii, Pseudomonas aeruginosa; methicilin suseptible: Staphylococcus aureus and Staphylococcus epidermis; methicilin resistant: Staphylococcus aureus and Staphylococcus haemolyticus and macrolides resistant: Propionibacterium acnes strains under influence of A. abrotanum herb ethanolic extract. Decrement of Candida albicans, Candida tropicalis colonies and Aspergillus niger spore germination. Synergistic action of A. abrotanum herb ethanolic extract with erythromycin against Staphylococcus aureus with efflux mechanism of MLS-resistance. | [12] | |
antioxidative | Moderate antioxidant activity of A. abrotanum ethanolic extract in the test with DPPH. | [40] |
Reducing potential and inhibition of lipid peroxidation by the essential oil from the herb of A. abrotanum. | [66] | |
Reducing potential of methanolic extract from A. abrotanum herb, in particular its components, rosmarinic acid, isochlorogenic acid and quercitrin. | [55] | |
antitumour | Decrease in the survival of neoplastic cells of the RD (rhabdomyosarcoma) line by the components of A. abrotanum essential oil such as borneol, cymene, camphor, terpineol, 1,8-cineole and aromadendrene. | [63] |
Methanolic extract of A. abrotanum leaves and its components (incl. chlorogenic acid and isochlorogenic acid) inhibit the proliferation of cells of the Jurkat line (T-lymphoblastic leukemia line), MCF-7 line (breast adenocarcinoma line), Hela line (cervical adenocarcinoma line), HT-29 line (colorectal adenocarcinoma line). | [55] | |
alleviating allergy symptoms | Relief of symptoms of allergic rhinitis with possible concomitant allergic conjunctivitis, relief of symptoms of bronchial obstruction and symptoms of exercise-induced asthma by using a nasal spray with a mixture of essential oils and flavonoids present in Artemisia abrotanum. | [56] |
insect repellent | Toluene extract from the herb A. abrotanum and the individual components of the extract show an insect repellent effect against Ixodes ricinus and Aedes aegypti. | [50] |
against animal parasites | Reduction in the number of eggs of Hymenolepis nana (dwarf tapeworm), Syphacia obvelata and Aspiculuris tetraptera (rodent pinworms) in the faeces of mice after administration of ethanolic extract from A. abrotanum leaves. | [67] |
antiplasmodial | Notable antiprotozoal activity against P. falciparum under influence of A. abrotanum-AgNPs | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekiert, H.; Knut, E.; Świątkowska, J.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia abrotanum L. (Southern Wormwood)—History, Current Knowledge on the Chemistry, Biological Activity, Traditional Use and Possible New Pharmaceutical and Cosmetological Applications. Molecules 2021, 26, 2503. https://doi.org/10.3390/molecules26092503
Ekiert H, Knut E, Świątkowska J, Klin P, Rzepiela A, Tomczyk M, Szopa A. Artemisia abrotanum L. (Southern Wormwood)—History, Current Knowledge on the Chemistry, Biological Activity, Traditional Use and Possible New Pharmaceutical and Cosmetological Applications. Molecules. 2021; 26(9):2503. https://doi.org/10.3390/molecules26092503
Chicago/Turabian StyleEkiert, Halina, Ewa Knut, Joanna Świątkowska, Paweł Klin, Agnieszka Rzepiela, Michał Tomczyk, and Agnieszka Szopa. 2021. "Artemisia abrotanum L. (Southern Wormwood)—History, Current Knowledge on the Chemistry, Biological Activity, Traditional Use and Possible New Pharmaceutical and Cosmetological Applications" Molecules 26, no. 9: 2503. https://doi.org/10.3390/molecules26092503