Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy
Abstract
1. Introduction
2. Computational Details
3. Computational Models
4. Results
4.1. Test of the Computational Method
4.2. Interaction Energies
4.3. The Eint(Vb), Eint(Gb), and Eint(ρb) Relationships
4.4. The Eint(∇2ρb) Relationship
4.5. The Eint(λ||,b) Relationship
4.6. The Eint(Hb) Relationship
4.7. The Eint(dY…X) Relationship
4.8. The [(A)nZ–Cl···I]− Series
5. Discussion
6. Final Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Resnati, G. Halogen Bonding: Fundamentals and Applications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, R.; et al. Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly and Performance of Light-Responsive Supramolecular Polymers. Adv. Funct. Mater. 2012, 22, 2572–2579. [Google Scholar] [CrossRef]
- Natale, D.; Marequerivas, J.C. The combination of transition metal ions and hydrogen-bonding interactions. Chem. Commun. 2008, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Feller, R.K.; Cheetham, A.K. Structural and chemical complexity in multicomponent inorganic–organic framework materials. CrystEngComm 2009, 11, 980–985. [Google Scholar] [CrossRef]
- Corradi, E.; Meille, S.V.; Messina, M.T.; Metrangolo, P.; Resnati, G. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew. Chem. Int. Ed. 2000, 39, 1782–1786. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356. [Google Scholar] [CrossRef]
- Cinčić, D.; Friščić, T.; Jones, W. Structural equivalence of Br and I halogen bonds: A route to isostructural materials with controllable properties. Chem. Mater. 2008, 20, 6623–6626. [Google Scholar] [CrossRef]
- Tepper, R.; Schubert, U.S. Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 6004–6016. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord. Chem. Rev. 2017, 345, 54–72. [Google Scholar] [CrossRef]
- Li, B.; Zang, S.-Q.; Wang, L.-Y.; Mak, T.C.W. Halogen bonding: A powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coord. Chem. Rev. 2016, 308, 1–21. [Google Scholar] [CrossRef]
- Saccone, M.; Cavallo, G.; Metrangolo, P.; Resnati, G.; Priimagi, A. Halogen-Bonded Photoresponsive Materials. In Halogen Bonding II. Topics in Current Chemistry; Metrangolo, P., Resnati, G., Eds.; Springer: Cham, Switzerland, 2014; Volume 359. [Google Scholar]
- Aakeröy, C.B.; Spartz, C.L. Halogen Bonding in Supramolecular Synthesis. In Halogen Bonding I. Topics in Current Chemistry; Metrangolo, P., Resnati, G., Eds.; Springer: Cham, Switzerland, 2014; Volume 358. [Google Scholar]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen bonds in crystal engineering: Like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Cariati, E.; Forni, A.; Biella, S.; Metrangolo, P.; Meyer, F.; Resnati, G.; Righetto, S.; Tordin, E.; Ugo, R. Tuning second-order NLO responses through halogen bonding. Chem. Commun. 2007, 2590–2592. [Google Scholar] [CrossRef] [PubMed]
- Christopherson, J.-C.; Topić, F.; Barrett, C.J.; Friščić, T. Halogen-Bonded Cocrystals as Optical Materials: Next-Generation Control over Light–Matter Interactions. Cryst. Growth Des. 2018, 18, 1245–1259. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Gurbanov, A.V.; Guseinov, F.I.; Guedes da Silva, M.F.C. Noncovalent interactions in metal complex catalysis. Coord. Chem. Rev. 2019, 387, 32–46. [Google Scholar] [CrossRef]
- Szell, P.M.J.; Zablotny, S.; Bryce, D.L. Halogen bonding as a supramolecular dynamics catalyst. Nature Commun. 2019, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Huber, S.M. Halogen Bonds in Organic Synthesis and Organocatalysis. In Halogen Bonding II. Topics in Current Chemistry; Metrangolo, P., Resnati, G., Eds.; Springer: Cham, Switzerland, 2014; Volume 359. [Google Scholar]
- Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen bond: Its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 2014, 54, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. Halogen bonding—A novel interaction for rational drug design? J. Med. Chem. 2009, 52, 2854–2862. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking back, looking forward at halogen bonding in drug discovery. Molecules 2017, 22, 1397. [Google Scholar] [CrossRef]
- Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271. [Google Scholar] [CrossRef]
- Abate, A.; Biella, S.; Cavallo, G.; Meyer, F.; Neukirch, H.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halide anions driven self-assembly of haloperfluoroarenes: Formation of one-dimensional non-covalent copolymers. J. Fluorine Chem. 2009, 130, 1171–1177. [Google Scholar] [CrossRef]
- Dey, B.; Choudhury, S.R.; Gamez, P.; Vargiu, A.V.; Robertazzi, A.; Chen, C.-Y.; Lee, H.M.; Jana, A.D.; Mukhopadhyay, S. Water−Chloride and Water−Bromide Hydrogen-Bonded Networks: Influence of the Nature of the Halide Ions on the Stability of the Supramolecular Assemblies. J. Phys. Chem. A 2009, 113, 8626–8634. [Google Scholar] [CrossRef] [PubMed]
- Cowan, J.A. Supramolecular Chemistry of Anions; Bianchi, A., Bowman-James, K., Garcoa-Espapa, E., Eds.; Wiley-VCH: New York, NY, USA, 1997. [Google Scholar]
- Bowman-James, K. Alfred Werner Revisited: The Coordination Chemistry of Anions. Acc. Chem. Res. 2005, 38, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Gale, P.A.; Quesada, R. Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coord. Chem. Rev. 2006, 250, 3219–3244. [Google Scholar] [CrossRef]
- Feiters, M.C.; Meyer-Klaucke, W.; Kostenko, A.V.; Soldatov, A.V.; Leblanc, C.; Michel, G.; Potin, P.; Küpper, F.C.; Hollenstein, K.; Locher, K.P.; et al. Anion binding in biological systems. J. Phys. Conf. Ser. 2009, 190, 012196. [Google Scholar] [CrossRef]
- Yang, H.S.; Kim, E.; Lee, S.; Park, H.J.; Cooper, D.S.; Rajbhandari, I.; Choi, I. Mutation of Aspartate 555 of the Sodium/Bicarbonate Transporter SLC4A4/NBCe1 Induces Chloride Transport. J. Biol. Chem. 2009, 284, 15970–15979. [Google Scholar] [CrossRef]
- Okada, Y.; Sato, K.; Numata, T. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 2009, 587, 2141–2149. [Google Scholar]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Sarwar, M.G.; Dragisic, B.; Sagoo, S.; Taylor, M.S. A Tridentate Halogen-Bonding Receptor for Tight Binding of Halide Anions. Angew. Chem. Int. Ed. 2010, 49, 1674–1677. [Google Scholar] [CrossRef]
- Svec, J.; Necas, M.; Sindelar, V. Bambus [6]uril. Angew. Chem. Int. Ed. 2010, 49, 2378–2381. [Google Scholar] [CrossRef]
- Chang, K.-J.; Moon, D.; Lah, M.S.; Jeong, K.-S. Indole-Based Macrocycles as a Class of Receptors for Anions. Angew. Chem. Int. Ed. 2005, 44, 7926–7929. [Google Scholar] [CrossRef]
- Hisaki, I.; Sasaki, S.-I.; Hirose, K.; Tobe, Y. Synthesis and Anion-Selective Complexation of Homobenzylic Tripodal Thiourea Derivatives. Eur. J. Org. Chem. 2007, 607–615. [Google Scholar] [CrossRef]
- Li, Y.; Flood, A.H. Pure C–H Hydrogen Bonding to Chloride Ions: A Preorganized and Rigid Macrocyclic Receptor. Angew. Chem. Int. Ed. 2008, 47, 2649–2652. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.S.; Jacobsen, E.N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew. Chem. Int. Ed. 2006, 45, 1520–1543. [Google Scholar] [CrossRef]
- Lacour, J.; Moraleda, D. Chiral anion-mediated asymmetric ion pairing chemistry. Chem. Commun. 2009, 7073–7089. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.L.; Kanai, T.; Toste, F.D. Chiral Anion-Mediated Asymmetric Ring Opening of meso-Aziridinium and Episulfonium Ions. J. Am. Chem. Soc. 2008, 130, 14984–14986. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.L.; Kang, E.J.; Mba, M.; Toste, F.D. A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis. Science 2007, 317, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Coe, B.J.; Fielden, J.; Foxon, S.P.; Brunschwig, B.S.; Asselberghs, I.; Clays, K.; Samoc, A.; Samoc, M. Combining Very Large Quadratic and Cubic Nonlinear Optical Responses in Extended, Tris-Chelate Metallochromophores with Six π-Conjugated Pyridinium Substituents. J. Am. Chem. Soc. 2010, 132, 3496–3513. [Google Scholar] [CrossRef]
- Leventis, H.C.; O’Mahony, F.; Akhtar, J.; Afzaal, M.; O’Brien, P.; Haque, S.A. Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions. J. Am. Chem. Soc. 2010, 132, 2743–2750. [Google Scholar] [CrossRef]
- Zhao, C.; MacFarlane, D.R.; Bond, A.M. Modified Thermodynamics in Ionic Liquids for Controlled Electrocrystallization of Nanocubes, Nanowires, and Crystalline Thin Films of Silver−Tetracyanoquinodimethane. J. Am. Chem. Soc. 2009, 131, 16195–16205. [Google Scholar] [CrossRef]
- Wada, H.; de Caro, D.; Valade, L.; Ozawa, T.; Bando, Y.; Mori, T. Thin-film phases of organic charge-transfer complexes formed by chemical vapor deposition. Thin Solid Films 2009, 518, 299–304. [Google Scholar] [CrossRef]
- Uji, S.; Mori, T.; Takahashi, T. Focus on Organic Conductors. Sci. Technol. Adv. Mater. 2009, 10, 020301. [Google Scholar] [CrossRef]
- Hodgkiss, J.M.; Tu, G.; Albert-Seifried, S.; Huck, W.T.S.; Friend, R.H. Ion-Induced Formation of Charge-Transfer States in Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2009, 131, 8913–8921. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.; Wang, H.H.; Emge, T.J.; Geiser, U.; Beno, M.A.; Carlson, R.J.; Thorn, K.D.; Schultz, A.J.; Whangbo, M.-H. Rational Design of Synthetic Metal Superconductors. Prog. Inorg. Chem. 1987, 35, 51–218. [Google Scholar]
- Poreba, T.; Ernst, M.; Zimmer, D.; Macchi, P.; Casati, N. Pressure-Induced Polymerization and Electrical Conductivity of a Polyiodide. Angew. Chem. Int. Ed. 2019, 58, 6625–6629. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.A.; Hill, J.G. A Simple Model for Halogen Bond Interaction Energies. Inorganics 2019, 7, 19. [Google Scholar] [CrossRef]
- Legon, A.C.; Millen, D.J. Hydrogen bonding as a probe of electron densities: Limiting gas-phase nucleophilicities and electrophilicities of B and HX. J. Am. Chem. Soc. 1987, 109, 356–358. [Google Scholar] [CrossRef]
- Legon, A.C. A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B···XY and B···HX, where X and Y are halogen atoms. Phys. Chem. Chem. Phys. 2014, 16, 12415–12421. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Legon, A.C. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B···A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds. Molecules 2017, 22, 1786. [Google Scholar] [CrossRef]
- Afonin, A.V.; Vashchenko, A.V. Benchmark calculations of intramolecular hydrogen bond energy based on molecular tailoring and function-based approaches: Developing hybrid approach. Int. J. Quant. Chem. 2019, 119, e26001. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Buikin, P.A.; Korlyukov, A.A. Peculiarities of Br··· Br bonding in crystal structures of polybromides and bromine solvates. CrystEngComm 2020, 22, 7361–7370. [Google Scholar] [CrossRef]
- Oliveira, V.P.; Marcial, B.L.; Machado, F.B.C.; Kraka, E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. Materials 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.T.; Chen, M.M.; Fang, Z.J.; Au, C.T.; Cao, C.Z. Relationship Investigation between C(sp2)–X and C(sp3)–X Bond Energies Based on Substituted Benzene and Methane. ACS Omega 2020, 5, 19304–19311. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, D.E.; Lyubeshkin, A.V.; Volodin, A.D.; Korlyukov, A.A. Molecular Structures Polymorphism the Role of F···F Interactions in Crystal Packing of Fluorinated Tosylates. Crystals 2019, 9, 242. [Google Scholar] [CrossRef]
- Bartashevich, E.; Matveychuk, Y.; Tsirelson, V. Identification of the Tetrel Bonds between Halide Anions and Carbon Atom of Methyl Groups Using Electronic Criterion. Molecules 2019, 24, 1083. [Google Scholar] [CrossRef] [PubMed]
- Mata, I.; Alkorta, I.; Espinosa, E.; Molins, E. Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem. Phys. Lett. 2011, 507, 185–189. [Google Scholar] [CrossRef]
- Małecka, M. DFT studies and AIM analysis of intramolecular N–HO hydrogen bonds in 3-aminomethylene-2 methoxy-5,6-dimethyl-2-oxo-2,3-dihydro-2λ5-[1,2]oxaphosphinin-4-one and its derivatives. Struct. Chem. 2010, 21, 175–184. [Google Scholar] [CrossRef]
- Grabowski, S.J.; Bilewicz, E. Cooperativity halogen bonding effect—Ab initio calculations on H2CO⋯(ClF)n complexes. Chem. Phys. Lett. 2006, 427, 51–55. [Google Scholar] [CrossRef]
- Szatyłowicz, H. Structural aspects of the intermolecular hydrogen bond strength: H-bonded complexes of aniline, phenol and pyridine derivatives. J. Phys. Org. Chem. 2008, 21, 897–914. [Google Scholar] [CrossRef]
- Hugas, D.; Simon, S.; Duran, M. Electron Density Topological Properties Are Useful To Assess the Difference between Hydrogen and Dihydrogen Complexes. J. Chem. Phys. A 2007, 111, 4506–4512. [Google Scholar] [CrossRef] [PubMed]
- Rozas, I.; Alkorta, I.; Elguero, J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161. [Google Scholar] [CrossRef]
- Lipkowski, P.; Grabowski, S.J.; Robinson, T.L.; Leszczynski, J. Properties of the C−H···H Dihydrogen Bond: An ab Initio and Topological Analysis. J. Phys. Chem. A 2004, 108, 10865–10872. [Google Scholar] [CrossRef]
- Grabowski, S.J. Hydrogen bonding strength—measures based on geometric and topological parameters. J. Phys. Org. Chem. 2004, 17, 18–31. [Google Scholar] [CrossRef]
- Lyssenko, K.A. Analysis of supramolecular architectures: Beyond molecular packing diagrams. Mendeleev Commun. 2012, 22, 1–7. [Google Scholar] [CrossRef]
- Lyssenko, K.A.; Barzilovich, P.Y.; Nelyubina, Y.V.; Astaf’ev, E.A.; Antipin, M.Y.; Aldoshin, S.M. Charge transfer and hydrogen bond energy in glycinium salts. Russ. Chem. Bull. Int. Ed. 2009, 58, 31–40. [Google Scholar] [CrossRef]
- Gálvez, O.; Gómez, P.C.; Pacios, L.F. Variation with the intermolecular distance of properties dependent on the electron density in cyclic dimers with two hydrogen bonds. J. Chem. Phys. 2003, 118, 4878. [Google Scholar] [CrossRef]
- Zou, J.W.; Jiang, Y.-J.; Guo, M.; Hu, G.-X.; Zhang, B.; Liu, H.-C.; Yu, Q.-S. Ab Initio Study of the Complexes of Halogen-Containing Molecules RX (X = Cl, Br, and I) and NH3: Towards Understanding the Nature of Halogen Bonding and the Electron-Accepting Propensities of Covalently Bonded Halogen Atoms. Chem. Eur. J. 2005, 11, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, M.; Loewenschuss, A.; Marcus, Y. An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys. Chem. Chem. Phys. 2000, 2, 2699–2702. [Google Scholar] [CrossRef]
- Pacios, L.F. Change with the Intermolecular Distance of Electron Properties of Hydrogen Bond Dimers at Equilibrium and Non-equilibrium Geometries. Struct. Chem. 2005, 16, 223–241. [Google Scholar] [CrossRef]
- Raissi, H.; Nadim, E.S.; Yoosefian, M.; Farzad, F.; Ghiamati, E.; Nowroozi, A.R.; Fazli, M.; Amoozadeh, A. The effects of substitutions on structure, electron density, resonance and intramolecular hydrogen bonding strength in 3-mercapto-propenethial. J. Mol. Struct. Theochem. 2010, 960, 1–9. [Google Scholar] [CrossRef]
- Roohi, H.; Bagheri, S. Influence of substitution on the strength and nature of CH···N hydrogen bond in XCCH···NH3 complexes. Int. J. Quant. Chem. 2011, 111, 961–969. [Google Scholar] [CrossRef]
- Hayashi, S.; Matsuiwa, K.; Kitamoto, M.; Nakanishi, W. Dynamic Behavior of Hydrogen Bonds from Pure Closed Shell to Shared Shell Interaction Regions Elucidated by AIM Dual Functional Analysis. J. Phys. Chem. A 2013, 117, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, E.; Novoa, J.J. The strength–length relationship at the light of ab initio computations: Does it really hold? CrystEngComm 2004, 6, 368–376. [Google Scholar] [CrossRef]
- Buralli, G.J.; Petelski, A.N.; Peruchena, N.M.; Sosa, G.L.; Duarte, D.J.R. Multicenter (FX)n/NH3 Halogen Bonds (X = Cl, Br and n = 1–5). QTAIM Descriptors of the Strength of the X…N Interaction. Molecules 2017, 22, 2034. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Matveychuk, Y.V.; Mukhitdinova, S.E.; Sobalev, S.A.; Khrenova, M.G.; Tsirelson, V.G. The common trends for the halogen, chalcogen, and pnictogen bonds via sorting principles and local bonding properties. Theor. Chem. Acc. 2020, 139, 26. [Google Scholar] [CrossRef]
- Boyd, R.J.; Choi, S.C. Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions. Chem. Phys. Lett. 1986, 129, 62–65. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Mata, I.; Molins, E.; Alkorta, I.; Espinosa, E. Effect of an external electric field on the dissociation energy and the electron density properties: The case of the hydrogen bonded dimer HF···HF. J. Chem. Phys. 2009, 130, 044104. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen bonding without borders: An atoms-in-molecules perspective. J. Phys. Chem. A 2006, 110, 3349–3351. [Google Scholar] [CrossRef]
- Vener, M.V.; Egorova, A.N.; Churakov, A.V.; Tsirelson, V.G. Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 2012, 33, 2303–2309. [Google Scholar] [CrossRef]
- Levina, E.O.; Chernyshov, I.Y.; Voronin, A.P.; Alekseiko, L.N.; Stash, A.I.; Vener, M.V. Solving the enigma of weak fluorine contacts in the solid state: A periodic DFT study of fluorinated organic crystals. RSC Adv. 2019, 9, 12520–12537. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Kirina, Y.V.; Kukushkin, V.Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 52, 5565–5568. [Google Scholar] [CrossRef]
- Romanova, A.; Lyssenko, K.; Ananyev, I. Estimations of Energy of Noncovalent Bonding from Integrals over Interatomic Zero-Flux Surfaces: Correlation Trends and Beyond. J. Comput. Chem. 2018, 39, 1607–1616. [Google Scholar] [CrossRef]
- Saleh, G.; Gatti, C.; Presti, L.L.; Contreras-Garca, J. Revealing Non-covalent Interactions in Molecular Crystals through Their Experimental Electron Densities. Chem. Eur. J. 2012, 18, 15523–15536. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Ahmadi, B. A theoretical investigation on the nature of Cl···N and Br···N halogen bonds in F–Ar–X···NCY complexes (X = Cl, Br and Y = H, F, Cl, Br, OH, NH2, CH3 and CN). Comput. Theor. Chem. 2012, 997, 77–82. [Google Scholar] [CrossRef]
- Mata, I.; Alkorta, I.; Molins, E.; Espinosa, E. Universal Features of the Electron Density Distribution in Hydrogen-Bonding Regions: A Comprehensive Study Involving H···X (X = H, C, N, O, F, S, Cl, π) Interactions. Chem. Eur. J. 2010, 16, 2442–2452. [Google Scholar] [CrossRef] [PubMed]
- Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868–2881. [Google Scholar] [CrossRef]
- de Oliveira, B.G.; Zabardasti, A.; do Rego, D.G.; Pour, M.M. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): Intermolecular strength, molecular orbital interactions and prediction of covalency. Theor. Chem. Acc. 2020, 139, 131. [Google Scholar] [CrossRef]
- Boyd, R.J.; Choi, S.C. A bond-length-bond-order relationship for intermolecular interactions based on the topological properties of molecular charge distributions. Chem. Phys. Lett. 1985, 120, 80–85. [Google Scholar] [CrossRef]
- Mó, O.; Yáñez, M.; Elguero, J. Cooperative (nonpairwise) effects in water trimers: An ab initio molecular orbital study. J. Chem. Phys. 1992, 97, 6628. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Khorassani, S.M.H.; Delarami, H. Estimation of individual binding energies in some dimers involving multiple hydrogen bonds using topological properties of electron charge density. Chem. Phys. 2009, 365, 18–23. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Amezaga, N.J.M.; Pamies, S.C.; Peruchena, N.M.; Sosa, G.L. Halogen Bonding: A Study based on the Electronic Charge Density. J. Phys. Chem. A 2010, 114, 552–562. [Google Scholar] [CrossRef]
- Grabowski, S.J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef]
- Nikolaienko, T.Y.; Bulavina, L.A.; Hovorun, D.M. Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Phys. Chem. Chem. Phys. 2012, 14, 7441–7447. [Google Scholar] [CrossRef]
- Porta, P.D.; Zanasi, R.; Monaco, G. Hydrogen–hydrogen bonding: The current density perspective. J. Comput. Chem. 2015, 36, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chem. Phys. Lett. 2003, 369, 248–255. [Google Scholar] [CrossRef]
- D’Oria, E.; Novoa, J.J. Cation–Anion Hydrogen Bonds: A New Class of Hydrogen Bonds That Extends Their Strength beyond the Covalent Limit. A Theoretical Characterization. J. Phys. Chem. A 2011, 115, 13114–13123. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.-Q.; An, J.-J.; Yu, J.-Y. Theoretical Study on Measure of Hydrogen Bonding Strength: R–CN···pyrrole Complexes. Chin. J. Chem. 2005, 23, 400–403. [Google Scholar]
- Cubero, E.; Orozco, M.; Hobza, P.; Luque, F.J. Hydrogen Bond versus Anti-Hydrogen Bond: A Comparative Analysis Based on the Electron Density Topology. J. Phys. Chem. A 1999, 103, 6394–6401. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen Bonding in Phenol, Water, and Phenol−Water Clusters. J. Phys. Chem. A 2005, 109, 843–850. [Google Scholar] [CrossRef]
- Wojtulewski, S.; Grabowski, S.J. Unconventional F–H⋯π hydrogen bonds—ab initio and AIM study. J. Molec. Struct. 2002, 605, 235–240. [Google Scholar] [CrossRef]
- Bagheri, S.; Masoodi, H.R.; Abadi, M.N. Estimation of individual NH···X (X = N, O) hydrogen bonding energies in some complexes involving multiple hydrogen bonds using NBO calculations. Theor. Chem. Acc. 2015, 134, 127. [Google Scholar] [CrossRef]
- Jabłonski, M.; Solà, M. Influence of Confinement on Hydrogen Bond Energy. The Case of the FH···NCH Dimer. J. Phys. Chem. A 2010, 114, 10253–10260. [Google Scholar] [CrossRef]
- Ayoub, A.T.; Tuszynski, J.; Klobukowski, M. Estimating hydrogen bond energies: Comparison of methods. Theor. Chem. Acc. 2014, 133, 1520. [Google Scholar] [CrossRef]
- Brovarets, O.O.; Yurenko, Y.P.; Hovorun, D.M. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. J. Biomol. Struct. Dyn. 2014, 32, 993–1022. [Google Scholar] [CrossRef]
- Martyniak, A.; Majerz, I.; Filarowski, A. Peculiarities of quasi-aromatic hydrogen bonding. RSC Adv. 2012, 2, 8135–8144. [Google Scholar] [CrossRef]
- Iogansen, A.V. Direct Proportionality of the Hydrogen Bonding Energy and the Intensification of the Stretching ν(XH) Vibration in Infrared Spectra. Spectrochim. Acta A 1999, 55, 1585–1612. [Google Scholar] [CrossRef]
- Alkorta, I.; Legon, A.C. An Ab Initio Investigation of the Geometries and Binding Strengths of Tetrel-, Pnictogen-, and Chalcogen-Bonded Complexes of CO2, N2O, and CS2 with Simple Lewis Bases: Some Generalizations. Molecules 2018, 23, 2250. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, M.L. Can halogen bond energy be reliably estimated from electron density properties at bond critical point? The case of the (A)nZ Y···X− (X, Y = F, Cl, Br) interactions. Int. J. Quant. Chem. 2019, 119, e25869. [Google Scholar] [CrossRef]
- Kuznetsov, M.L. Relationships between Interaction Energy and Electron Density Properties for Homo Halogen Bonds of the [(A)nY–X···X–Z(B)m] Type (X = Cl, Br, I). Molecules 2019, 24, 2733. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A. How Reliable Are Intermolecular Interaction Energies Estimated from Topological Analysis of Experimental Electron Densities? Cryst. Growth Des. 2015, 15, 5624–5628. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Tsirelson, V.G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Halogen and Chalcogen Bond Energies Evaluated Using Electron Density Properties. ChemPhysChem 2020, 21, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Gaussian 09; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., et al., Eds.; Revision D.01; Gaussian: Wallingford, CT, USA, 2013. [Google Scholar]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. A New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; Machado, S.F. Contracted Gaussian basis sets for Douglas−Kroll−Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130, 064108. [Google Scholar] [CrossRef]
- Neto, A.C.; Muniz, E.P.; Centoducatte, R.; Jorge, F.E. Gaussian basis sets for correlated wave functions. Hydrogen, helium, first-and second-row atoms. J. Mol. Struct. Theochem. 2005, 718, 219–224. [Google Scholar] [CrossRef]
- Camiletti, G.G.; Machado, S.F.; Jorge, F.E. Gaussian basis set of double zeta quality for atoms K through Kr: Application in DFT calculations of molecular properties. J. Comp. Chem. 2008, 29, 2434–2444. [Google Scholar] [CrossRef]
- Barros, C.L.; De Oliveira, P.J.P.; Jorge, F.E.; Neto, A.C.; Campos, M. Gaussian basis set of double zeta quality for atoms Rb through Xe: Application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108, 1965–1972. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. Halogen bonds: Benchmarks and theoretical analysis. J. Chem. Theory Comput. 2013, 9, 1918–1931. [Google Scholar] [CrossRef] [PubMed]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J.J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A.; Gristmill, T.K. AIMAll; Version 14.10.27; Gristmill Software: Overland Park, KS, USA, 2014; Available online: Aim.tkgristmill.com (accessed on 1 September 2015).
- Burns, L.A.; Marshall, M.S.; Sherrill, C.D. Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions. J. Chem. Theor. Comput. 2014, 10, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, K.; Mizuno, T.; Iino, T.; Eguchi, D.; Yamabe, S. Characteristic Changes of Bond Energies for Gas-Phase Cluster Ions of Halide Ions with Methane and Chloromethanes. J. Phys. Chem. A 2001, 105, 4887–4893. [Google Scholar] [CrossRef]
- Wenthold, P.G.; Squires, R.R. Bond dissociation energies of F2− and HF2−. A gas-phase experimental and G2 theoretical study. J. Chem. Phys. 1995, 99, 2002–2005. [Google Scholar]
- Keesee, R.G.; Castleman, A.W., Jr. Gas-phase studies of hydration complexes of Cl− and I− and comparison to electrostatic calculations in the gas phase. Chem. Phys. Lett. 1980, 74, 139–142. [Google Scholar] [CrossRef]
- Do, K.; Klein, T.P.; Pommerening, C.A.; Sunderlin, L.S. A new flowing afterglow-guided ion beam tandem mass spectrometer. Applications to the thermochemistry of polyiodide ions. J. Am. Soc. Mass Spectrom. 1997, 8, 688–696. [Google Scholar] [CrossRef]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density functional theory is straying from the path toward the exact functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef]
- Bertolotti, F.; Shishkina, A.V.; Forni, A.; Gervasio, G.; Stash, A.I.; Tsirelson, V.G. Intermolecular Bonding Features in Solid Iodine. Cryst. Growth Des. 2014, 14, 3587–3595. [Google Scholar] [CrossRef]
- Wang, R.; Dols, T.S.; Lehmann, C.W.; Englert, U. Charge Density of Intra- and Intermolecular Halogen Contacts. Z. Anorg. Allg. Chem. 2013, 639, 1933–1939. [Google Scholar] [CrossRef]
- Hathwar, V.R.; Row, T.N.G. Nature of Cl···Cl Intermolecular Interactions via Experimental and Theoretical Charge Density Analysis: Correlation of Polar Flattening Effects with Geometry. J. Phys. Chem. A 2010, 114, 13434–13441. [Google Scholar] [CrossRef]
- Wang, A.; Wang, R.; Kalf, I.; Dreier, A.; Lehmann, C.W.; Englert, U. Charge-Assisted Halogen Bonds in Halogen-Substituted Pyridinium Salts: Experimental Electron Density. Cryst. Growth Des. 2017, 17, 2357–2364. [Google Scholar] [CrossRef]
- Hathwar, V.R.; Gonnade, R.G.; Munshi, P.; Bhadbhade, M.M.; Row, T.N.G. Halogen Bonding in 2,5-Dichloro-1,4-benzoquinone: Insights from Experimental and Theoretical Charge Density Analysis. Cryst. Growth Des. 2011, 11, 1855–1862. [Google Scholar] [CrossRef][Green Version]
- Brezgunova, M.E.; Aubert, E.; Dahaoui, S.; Fertey, P.; Lebègue, S.; Jelsch, C.; Ángyán, J.G.; Espinosa, E. Charge Density Analysis and Topological Properties of Hal3-Synthons and Their Comparison with Competing Hydrogen Bonds. Cryst. Growth Des. 2012, 12, 5373–5386. [Google Scholar] [CrossRef]
- Merkens, C.; Pan, F.; Englert, U. 3-(4-Pyridyl)-2,4-pentanedione—A bridge between coordinative, halogen, and hydrogen bonds. CrystEngComm 2013, 15, 8153–8158. [Google Scholar] [CrossRef]
Type of Interaction | Estimator | Relationship | Reference |
---|---|---|---|
H···O | Vb | Eint ~ 0.5Vb | [82] |
FH···FR | Gb | Eint ~ −0.429Gb | [83,86] |
Vb | Eint ~ 0.37Vb − 3.1 | [83] | |
Cl···X a | Vb | Eint ~ 0.49Vb | [119] |
Gb | Eint ~ −0.47Gb | [119] | |
Br···X a | Vb | Eint ~ 0.58Vb | [119] |
Vb | Eint ~ 0.375Vb − 0.57 | [120] | |
Gb | Eint ~ −0.57Gb | [119] | |
I···X a | Vb | Eint ~ 0.68Vb | [119] |
Vb | Eint ~ 0.556Vb + 0.64 | [120] | |
Gb | Eint ~ −0.67Gb | [119] | |
F···F | Gb | Eint ~ −0.129Gb | [87] |
Cl···Cl | Vb | Eint ~ −0.1006Vb2 − 0.218Vb − 0.55 | [117] |
Gb | Eint ~ −0.0841Gb2 + 0.367Gb − 0.84 | [117] | |
Br···Br | Vb | Eint ~ −0.0926Vb2 − 0.173Vb − 0.16 | [117] |
Gb | Eint ~ −0.1178Gb2 + 0.73Gb − 1.5 | [117] | |
I···I | Vb | Eint ~ −0.0635Vb2 − 0.217Vb − 0.25 | [117] |
Gb | Eint ~ −0.1564Gb2 + 1.138Gb − 2.25 | [117] |
Structure | Method | ΔH a CP/no-CP b |
---|---|---|
[H3C–H···F]− | M06-2X/6-31+G* | −6.8/−7.1 |
CCSD/6-31+G* | −4.2/−5.1 | |
CCSD(T)//CCSD/6-31+G* c | −4.3/−5.4 | |
CCSD/6-311+G** | −4.7/−5.8 | |
CCSD/aug-cc-pVTZ//6-31+G* d | −6.0/−6.4 | |
CCSD(T)/aug-cc-pVTZ//CCSD/6-31+G* e | −6.3/−6.8 | |
exp. f | −6.7 ± 0.2 | |
[F–H–F]− | M06-2X/6-31+G* | −50.2/−50.7 |
CCSD/6-31+G* | −42.7/−44.8 | |
CCSD(T)//CCSD/6-31+G* c | −42.8/−45.2 | |
CCSD/6-311+G** | −42.3/−46.5 | |
CCSD/aug-cc-pVTZ//6-31+G* d | −43.7/−45.1 | |
CCSD(T)/aug-cc-pVTZ//CCSD/6-31+G* e | −43.9/−45.4 | |
CCSD/aug-cc-pVTZ | −44.8/−46.3 | |
CCSD(T)//CCSD/aug-cc-pVTZ c | −45.0/−46.6 | |
exp. g | −45.8 ± 1.6 | |
[HO–H···Cl]− | M06-2X/6-31+G* | −15.0/−15.2 |
CCSD/6-31+G* | −12.3/−14.2 | |
CCSD(T)//CCSD/6-31+G* c | −12.5/−14.5 | |
CCSD/aug-cc-pVTZ//6-31+G* d | −13.3/−13.9 | |
CCSD(T)/aug-cc-pVTZ//CCSD/6-31+G* e | −13.8/−14.4 | |
CCSD/aug-cc-pVTZ | −13.5/−14.2 | |
CCSD(T)//CCSD/aug-cc-pVTZ c | −14.0/−14.8 | |
exp. h | −14.9 ± 0.2 | |
[HO–H···I]− | M06-2X/ADZP–DKH//ADZP i | −10.3/−14.0 |
CCSD(T)/aug-cc-pVTZ(PP)//CCSD/ADZP j | −8.1/−11.0 | |
exp. h | −11.1 ± 0.1 | |
[H3C–H···I]− | M06-2X/ADZP–DKH//ADZP i | −1.6/−3.1 |
CCSD(T)/aug-cc-pVTZ(PP)//CCSD/ADZP j | −0.4/−2.4 | |
exp. f | −2.6 ± 0.2 | |
[I–I–I]− | M06-2X/ADZP–DKH//ADZP k | −29.3/−36.6 |
CCSD(T)/aug-cc-pVTZ(PP)//CCSD/ADZP k | −27.3/−30.6 | |
exp. l,m | −30.1 ± 1.4 |
Ref. Code | Contact | ρb,theor (M06-2X) | ρb,theor (PBE0-D3BJ) | ρb,exp [Ref.] |
---|---|---|---|---|
ICSD 194468 | I···I | 0.097 | 0.102 | 0.101 [139] |
ETUDUT01 | Cl···Cl | 0.052 | 0.050 | 0.048(2) [140] |
IJIGOU | Cl···Cl | 0.033 | 0.032 | 0.03 [141] |
FUFNOJ02 | Cl···Cl | 0.053 | 0.051 | 0.05 [141] |
IJIHAL | Cl···Cl | 0.045 | 0.044 | 0.03 [141] |
CIHBAX01 | Br···Cl | 0.079 | 0.078 | 0.081(2) [142] |
BZQDCL11 | Cl···O | 0.055 | 0.054 | 0.054(1) [143] |
PCPHOL01 | Cl···Cl | 0.050 | 0.048 | 0.058 [144] |
ROFKAZ01 | Br···Br | 0.061 | 0.060 | 0.063 [144] |
XIPRUL | I···N | 0.174 | 0.176 | 0.154(12) [145] |
XIPRUL | I···O | 0.099 | 0.105 | 0.092(7) [145] |
Series | Vb | Gb | ρb | d(Y···X) | ||||
---|---|---|---|---|---|---|---|---|
R2 | MAD | R2 | MAD | R2 | MAD | R2 | MAD | |
[(A)nZ–I···F]− | 0.91 | 4.76 | 0.92 | 4.66 | 0.91 | 4.68 | 0.91 | 4.77 |
[(A)nZ–Cl···F]− a | 0.95 | 3.36 | 0.95 | 3.53 | 0.94 b | 3.59 b | 0.94 | 3.88 |
[(A)nZ–Br···F]− a | 0.94 | 3.83 | 0.95 | 3.29 | 0.94 b | 3.73 b | 0.93 | 4.00 |
[(A)nZ–I···Cl]− | 0.95 | 2.43 | 0.96 | 2.34 | 0.95 | 2.49 | 0.95 | 2.55 |
[(A)nZ–Cl···Cl]− a | 0.95 | 2.06 | 0.95 | 2.08 | 0.95 | 2.15 | 0.95 | 2.17 |
[(A)nZ–Br···Cl]− a | 0.94 | 2.73 | 0.94 | 2.63 | 0.93 | 3.01 | 0.94 | 2.78 |
[(A)nZ–Cl···Br]− a | 0.96 | 2.17 | 0.95 | 2.31 | 0.95 | 2.35 | 0.96 | 2.33 |
[(A)nZ–Br···Br]− a | 0.94 | 2.75 | 0.94 | 2.77 | 0.93 | 3.01 | 0.93 | 2.89 |
[(A)nZ–I···Br]− | 0.95 | 2.22 | 0.96 | 2.17 | 0.95 | 2.23 | 0.95 | 2.29 |
[(A)nZ–I···I]− | 0.96 | 2.34 | 0.95 | 2.48 | 0.96 | 2.21 | 0.96 | 2.27 |
[(A)nZ–Br···I]− | 0.95 | 2.70 | 0.95 | 2.66 | 0.96 | 2.41 | 0.96 | 2.50 |
Series | Estimator | Equation | R2 | MAD |
---|---|---|---|---|
[(A)nZ–I···F]− | Vb | −Eint = −0.77Vb − 6.50 | 0.91 | 4.76 |
Gb | −Eint = 1.04Gb − 8.97 | 0.92 | 4.66 | |
ρb | −Eint = 150.4ρb2 − 30.29ρb + 12.69 | 0.91 | 4.68 | |
dY···X | −Eint = 5.28 × 104e−3.327d | 0.91 | 4.77 | |
[(A)nZ–I···Cl]− | Vb | −Eint = −1.46Vb − 1.65 | 0.95 | 2.43 |
Gb | −Eint = 0.121Gb2 − 0.57Gb + 5.77 | 0.96 | 2.34 | |
Hb | −Eint = −2.75Hb + 14.80 a | 0.95 | 2.43 | |
ρb | −Eint = 145.6ρb2 + 46.09ρb + 1.50 | 0.95 | 2.49 | |
λ||,b | −Eint = 3.69e0.518λ||,b + 2 × 10−4e3.054λ||,b | 0.95 | 2.51 | |
dY···X | −Eint = 4.28 × 104e−2.650d | 0.95 | 2.55 | |
[(A)nZ–I···Br]− | Vb | −Eint = −2.12Vb − 3.88 | 0.95 | 2.22 |
Gb | −Eint = 0.212Gb2 − 0.77Gb + 4.88 | 0.96 | 2.17 | |
Hb | −Eint = −4.45Hb + 14.52 a | 0.95 | 2.08 | |
ρb | −Eint = 197.6ρb2 + 56.42ρb + 0.11 | 0.95 | 2.23 | |
λ||,b | −Eint = 2.51e0.867λ||,b + 1.3 × 10−8e6.390λ||,b | 0.96 | 2.06 | |
dY···X | −Eint = 7.21 × 104e−2.688d | 0.95 | 2.29 | |
[(A)nZ–I···I]− | Vb | −Eint = −2.34Vb − 2.56 | 0.96 | 2.34 |
Gb | −Eint = 0.360Gb2 − 2.05Gb + 7.87 | 0.95 | 2.48 | |
Hb | −Eint = −4.38Hb + 16.60 a | 0.96 | 2.07 | |
ρb | −Eint = 232.2ρb2 + 54.11ρb + 0.49 | 0.96 | 2.21 | |
dY···X | −Eint = 1.30 × 105e−2.746d | 0.96 | 2.27 | |
[(A)nZ–Cl···I]− | Hb | −Eint = 0.0513Hb2 − 1.41Hb + 9.60 a | 0.95 | 3.33 |
dY···X | −Eint = 1.4 × 1010e−8.078d + 2.21 × 103e−1.834d | 0.96 | 2.70 | |
[(A)nZ–Br···I]− | Vb | −Eint = −1.95Vb − 1.92 | 0.95 | 2.70 |
Gb | −Eint = 0.248Gb2 − 1.39Gb + 6.48 | 0.95 | 2.66 | |
Hb | −Eint = −3.74Hb + 14.81 a | 0.96 | 2.31 | |
ρb | −Eint = 235.6ρb2 + 13.34ρb + 2.68 | 0.96 | 2.41 | |
dY···X | −Eint = 1.38 × 105e−2.957d | 0.96 | 2.50 | |
[(A)nP–Cl···I]− | Vb | −Eint = 14.92 − 68.71e0.639Vb | 0.97 | 0.64 |
[(A)nC–Cl···I]− | Vb | −Eint = 9.84 − 57.41e0.725Vb | 0.92 | 0.77 |
[(A)nSi,B–Cl···I]− | Vb | −Eint = −6.75Vb − 12.33 | 0.98 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, M.L. Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. Molecules 2021, 26, 2083. https://doi.org/10.3390/molecules26072083
Kuznetsov ML. Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. Molecules. 2021; 26(7):2083. https://doi.org/10.3390/molecules26072083
Chicago/Turabian StyleKuznetsov, Maxim L. 2021. "Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy" Molecules 26, no. 7: 2083. https://doi.org/10.3390/molecules26072083
APA StyleKuznetsov, M. L. (2021). Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. Molecules, 26(7), 2083. https://doi.org/10.3390/molecules26072083